1
|
Szabó T, Garaiová Z, Melikishvili S, Tatarko M, Keresztes Z, Hianik T. The Effect of Lipopolysaccharides from Salmonella enterica on the Size, Density, and Compressibility of Phospholipid Vesicles. Biomimetics (Basel) 2025; 10:55. [PMID: 39851772 PMCID: PMC11759865 DOI: 10.3390/biomimetics10010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
The properties of the large unilamellar vesicles (LUVs) from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), modified by lipopolysaccharides (LPS) from Salmonella enterica sv. Enteritidis, which mimics Gram-negative bacteria, were studied by various physical methods. LPS, in the range of 0/20/50 % w/w relative to the lipid, had a regulatory role in the structure of the LUVs toward the lower size, low polydispersity, and over-a-month size stability due to the lower negative zeta potential. The addition of LPS resulted in increased density, which determined the ultrasound velocity and the specific adiabatic compressibility. In a 0.5/1/2 mg/mL concentration range, the total lipid content did not significantly affect the size of LUVs and influenced the density-related attributes similarly to the LPS content. A positive correlation was found between temperature and vesicle size, and a negative correlation was found between temperature and density and compressibility-except for the anomaly behavior at 25 °C, around the melting point of DMPC.
Collapse
Affiliation(s)
- Tamás Szabó
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
| | - Zuzana Garaiová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia; (Z.G.); (M.T.)
| | - Sopio Melikishvili
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Comenius University, Sasinkova 2, 81372 Bratislava, Slovakia;
| | - Marek Tatarko
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia; (Z.G.); (M.T.)
| | - Zsófia Keresztes
- Functional Interfaces Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia; (Z.G.); (M.T.)
| |
Collapse
|
2
|
Lira AL, Taskin B, Puy C, Keshari RS, Silasi R, Pang J, Aslan JE, Shatzel JJ, Lorentz CU, Tucker EI, Schmaier AH, Gailani D, Lupu F, McCarty OJT. The physicochemical properties of lipopolysaccharide chemotypes regulate activation of the contact pathway of blood coagulation. J Biol Chem 2025; 301:108110. [PMID: 39706265 PMCID: PMC11773025 DOI: 10.1016/j.jbc.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK), and high molecular weight kininogen interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients. In this study, using an in vivo baboon model of Gram-negative Escherichia coli sepsis, we observed activation of the contact pathway including FXII, FXI, and PK. We examined whether E.coli LPS molecules could bind and activate contact pathway members by quantifying the interaction and activation of either FXII, FXI, or PK with each of the three chemotypes of LPS: O111:B4, O26:B6, or Rd2. The LPS chemotypes exhibited distinct physicochemical properties as aggregates and formed complexes with FXII, FXI, and PK. The LPS chemotype O26:B6 uniquely promoted the autoactivation of FXII to FXIIa and, in complex with FXIIa, promoted the cleavage of FXI and PK to generate FXIa and plasma kallikrein, respectively. Furthermore, in complex with the active forms of FXI or PK, LPS chemotypes were able to regulate the catalytic activity of FXIa and plasma kallikrein, respectively, despite the inability to promote the autoactivation of either zymogen. These data suggest that the procoagulant phenotype of E.coli is influenced by bacterial strain and the physicochemical properties of the LPS chemotypes.
Collapse
Affiliation(s)
- André L Lira
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
| | - Berk Taskin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ravi S Keshari
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Christina U Lorentz
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora, Inc, Portland, Oregon, USA
| | - Erik I Tucker
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Aronora, Inc, Portland, Oregon, USA
| | - Alvin H Schmaier
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Kumari A, Singh M, Sharma R, Kumar T, Jindal N, Maan S, Joshi VG. Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability. Amino Acids 2023; 55:1405-1416. [PMID: 37725185 DOI: 10.1007/s00726-023-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The emergence of antibiotic resistance prompts exploration of viable antimicrobial peptides (AMPs) designs. The present study explores the antimicrobial prospects of Apoptin nuclear localization sequence (NLS2)-derived peptide ANLP (PRPRTAKRRIRL). Further, we examined the utility of the NLS dimerization strategy for improvement in antimicrobial activity and sustained bio-stability of AMPs. Initially, the antimicrobial potential of ANLP using antimicrobial peptide databases was analyzed. Then, ANLP along with its two homodimer variants namely ANLP-K1 and ANLP-K2 were synthesized and evaluated for antimicrobial activity against Escherichia coli and Salmonella. Among three AMPs, ANLP-K2 showed efficient antibacterial activity with 12 µM minimum inhibitory concentration (MIC). Slow degradation of ANLP-K1 (26.48%) and ANLP-K2 (13.21%) compared with linear ANLP (52.33%) at 480 min in serum stability assay indicates improved bio-stability of dimeric peptides. The AMPs presented no cytotoxicity in Vero cells. Dye penetration assays confirmed the membrane interacting nature of AMPs. The zeta potential analysis reveals effective charge neutralization of both lipopolysaccharide (LPS) and bacterial cells by dimeric AMPs. The dimeric AMPs on scanning electron microscopy studies showed multiple pore formations on the bacterial surface. Collectively, proposed Lysine scaffold dimerization of Apoptin NLS2 strategy resulted in enhancing antibacterial activity, bio-stability, and could be effective in neutralizing the off-target effect of LPS. In conclusion, these results suggest that nuclear localization sequence with a modified dimeric approach could represent a rich source of template for designing future antimicrobial peptides.
Collapse
Affiliation(s)
- Anu Kumari
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Ruchi Sharma
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Tarun Kumar
- Veterinary Clinical Complex, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India.
| |
Collapse
|
4
|
Ferreira AR, Ferreira M, Nunes C, Reis S, Teixeira C, Gomes P, Gameiro P. The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles. MEMBRANES 2023; 13:138. [PMID: 36837642 PMCID: PMC9966869 DOI: 10.3390/membranes13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cláudia Nunes
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cátia Teixeira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Santos MA, Silva FL, Lira BOV, Cardozo Fh JL, Vasconcelos AG, Araujo AR, Murad AM, Garay AV, Freitas SM, Leite JRSA, Bloch C, Ramada MHS, de Oliveira AL, Brand GD. Probing human proteins for short encrypted antimicrobial peptides reveals Hs10, a peptide with selective activity for gram-negative bacteria. Biochim Biophys Acta Gen Subj 2023; 1867:130265. [PMID: 36280021 DOI: 10.1016/j.bbagen.2022.130265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Some cationic and amphiphilic α-helical segments of proteins adsorb to prokaryotic membranes when synthesized as individual polypeptide sequences, resulting in broad and potent antimicrobial activity. However, amphiphilicity, a determinant physicochemical property for peptide-membrane interactions, can also be observed in some β-sheets. METHODS The software Kamal was used to scan the human reference proteome for short (7-11 amino acid residues) cationic and amphiphilic protein segments with the characteristic periodicity of β-sheets. Some of the uncovered peptides were chemically synthesized, and antimicrobial assays were conducted. Biophysical techniques were used to probe the molecular interaction of one peptide with phospholipid vesicles, lipopolysaccharides (LPS) and the bacterium Escherichia coli. RESULTS Thousands of compatible segments were found in human proteins, five were synthesized, and three presented antimicrobial activity in the micromolar range. Hs10, a nonapeptide fragment of the Complement C3 protein, could inhibit only the growth of tested Gram-negative microorganisms, presenting also little cytotoxicity to human fibroblasts. Hs10 interacted with LPS while transitioning from an unstructured segment to a β-sheet and increased the hydrodynamic radius of LPS particles. This peptide also promoted morphological alterations in E. coli cells. CONCLUSIONS Data presented herein introduce yet another molecular template to probe proteins in search for encrypted membrane-active segments and demonstrates that, using this approach, short peptides with low cytotoxicity and high selectivity to prokaryotic cells might be obtained. GENERAL SIGNIFICANCE This work widens the biotechnological potential of the human proteome as a source of antimicrobial peptides with application in human health.
Collapse
Affiliation(s)
- Michele A Santos
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Fernanda L Silva
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Bianca O V Lira
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - José L Cardozo Fh
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Alyne R Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, Parnaíba, PI, Brazil
| | - André M Murad
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Aisel V Garay
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - Sonia M Freitas
- Laboratório de Biofísica Molecular, Instituto de Biologia, Universidade de Brasília (IB-CEL/UnB), Campus Darcy Ribeiro, Asa Norte, Brasília, DF, Brazil
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Carlos Bloch
- Laboratório de Espectrometria de Massa, LEM, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Marcelo H S Ramada
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Aline Lima de Oliveira
- Laboratório de Ressonância Magnética Nuclear, LRMN, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | - Guilherme D Brand
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
6
|
Felício MR, Silveira GGOS, Oshiro KGN, Meneguetti BT, Franco OL, Santos NC, Gonçalves S. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens. J Antimicrob Chemother 2021; 76:1174-1186. [PMID: 33501992 DOI: 10.1093/jac/dkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.
Collapse
Affiliation(s)
- Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gislaine G O S Silveira
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Beatriz T Meneguetti
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
7
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
8
|
Integrated strategy for the separation of endotoxins from biofluids. LPS capture on newly synthesized protein. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Lousa D, Pinto ART, Campos SRR, Baptista AM, Veiga AS, Castanho MARB, Soares CM. Effect of pH on the influenza fusion peptide properties unveiled by constant-pH molecular dynamics simulations combined with experiment. Sci Rep 2020; 10:20082. [PMID: 33208852 PMCID: PMC7674464 DOI: 10.1038/s41598-020-77040-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
The influenza virus fusion process, whereby the virus fuses its envelope with the host endosome membrane to release the genetic material, takes place in the acidic late endosome environment. Acidification triggers a large conformational change in the fusion protein, hemagglutinin (HA), which enables the insertion of the N-terminal region of the HA2 subunit, known as the fusion peptide, into the membrane of the host endosome. However, the mechanism by which pH modulates the molecular properties of the fusion peptide remains unclear. To answer this question, we performed the first constant-pH molecular dynamics simulations of the influenza fusion peptide in a membrane, extending for 40 µs of aggregated time. The simulations were combined with spectroscopic data, which showed that the peptide is twofold more active in promoting lipid mixing of model membranes at pH 5 than at pH 7.4. The realistic treatment of protonation introduced by the constant-pH molecular dynamics simulations revealed that low pH stabilizes a vertical membrane-spanning conformation and leads to more frequent contacts between the fusion peptide and the lipid headgroups, which may explain the increase in activity. The study also revealed that the N-terminal region is determinant for the peptide’s effect on the membrane.
Collapse
Affiliation(s)
- Diana Lousa
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Antónia R T Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Sara R R Campos
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - António M Baptista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
10
|
Antibiofilm Activity on Candida albicans and Mechanism of Action on Biomembrane Models of the Antimicrobial Peptide Ctn[15-34]. Int J Mol Sci 2020; 21:ijms21218339. [PMID: 33172206 PMCID: PMC7664368 DOI: 10.3390/ijms21218339] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Ctn[15–34], the C-terminal fragment of crotalicidin, an antimicrobial peptide from the South American rattlesnake Crotalus durissus terrificus venom, displays remarkable anti-infective and anti-proliferative activities. Herein, its activity on Candida albicans biofilms and its interaction with the cytoplasmic membrane of the fungal cell and with a biomembrane model in vitro was investigated. A standard C. albicans strain and a fluconazole-resistant clinical isolate were exposed to the peptide at its minimum inhibitory concentration (MIC) (10 µM) and up to 100 × MIC to inhibit biofilm formation and its eradication. A viability test using XTT and fluorescent dyes, confocal laser scanning microscopy, and atomic force microscopy (AFM) were used to observe the antibiofilm effect. To evaluate the importance of membrane composition on Ctn[15–34] activity, C. albicans protoplasts were also tested. Fluorescence assays using di-8-ANEPPS, dynamic light scattering, and zeta potential measurements using liposomes, protoplasts, and C. albicans cells indicated a direct mechanism of action that was dependent on membrane interaction and disruption. Overall, Ctn[15–34] showed to be an effective antifungal peptide, displaying antibiofilm activity and, importantly, interacting with and disrupting fungal plasma membrane.
Collapse
|
11
|
Antimicrobial Peptides with Enhanced Salt Resistance and Antiendotoxin Properties. Int J Mol Sci 2020; 21:ijms21186810. [PMID: 32948086 PMCID: PMC7554977 DOI: 10.3390/ijms21186810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
A strategy was described to design antimicrobial peptides (AMPs) with enhanced salt resistance and antiendotoxin activities by linking two helical AMPs with the Ala-Gly-Pro (AGP) hinge. Among the designed peptides, KR12AGPWR6 demonstrated the best antimicrobial activities even in high salt conditions (NaCl ~300 mM) and possessed the strongest antiendotoxin activities. These activities may be related to hydrophobicity, membrane-permeability, and α-helical content of the peptide. Amino acids of the C-terminal helices were found to affect the peptide-induced permeabilization of LUVs, the α-helicity of the designed peptides under various LUVs, and the LPS aggregation and size alternation. A possible model was proposed to explain the mechanism of LPS neutralization by the designed peptides. These findings could provide a new approach for designing AMPs with enhanced salt resistance and antiendotoxin activities for potential therapeutic applications.
Collapse
|
12
|
Membrane interactions of the anuran antimicrobial peptide HSP1-NH 2: Different aspects of the association to anionic and zwitterionic biomimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183449. [PMID: 32828849 DOI: 10.1016/j.bbamem.2020.183449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022]
Abstract
Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hylaseptin P1-NH2 (HSP1-NH2), derived from the tree-frog Hyla punctata, which has stronger antifungal than antibacterial potential. Biophysical and structural analyses were performed and the correlated results were used to describe in detail the interactions of HSP1-NH2 with zwitterionic and anionic detergent micelles and phospholipid vesicles. HSP1-NH2 presents similar well-defined helical conformations in both zwitterionic and anionic micelles, although NMR spectroscopy revealed important structural differences in the peptide N-terminus. 2H exchange experiments of HSP1-NH2 indicated the insertion of the most N-terminal residues (1-3) in the DPC-d38 micelles. A higher enthalpic contribution was verified for the interaction of the peptide with anionic vesicles in comparison with zwitterionic vesicles. The pore formation ability of HSP1-NH2 (examined by dye release assays) and its effect on the size and surface charge as well as on the lipid acyl chain ordering (evaluated by Fourier-transform infrared spectroscopy) of anionic phospholipid vesicles showed membrane disruption even at low peptide-to-phospholipid ratios, and the effect increases proportionately to the peptide concentration. On the other hand, these biophysical investigations showed that a critical peptide-to-phospholipid ratio around 0.6 is essential for promoting disruption of zwitterionic membranes. In conclusion, this study demonstrates that the binding process of the antimicrobial HSP1-NH2 peptide depends on the membrane composition and peptide concentration.
Collapse
|
13
|
Redeker C, Briscoe WH. Interactions between Mutant Bacterial Lipopolysaccharide (LPS-Ra) Surface Layers: Surface Vesicles, Membrane Fusion, and Effect of Ca 2+and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15739-15750. [PMID: 31604373 DOI: 10.1021/acs.langmuir.9b02609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPS) are a major component of the protective outer membrane of Gram-negative bacteria. Understanding how the solution conditions may affect LPS-containing membranes is important to optimizing the design of antibacterial agents (ABAs) which exploit electrostatic and hydrophobic interactions to disrupt the bacteria membrane. Here, interactions between surface layers of LPS (Ra mutants) in aqueous media have been studied using a surface force apparatus (SFA), exploring the effects of temperature and divalent Ca2+ cations. Complementary dynamic light scattering (DLS) characterization suggests that vesicle-like aggregates of diameter ∼28-80 nm are formed by LPS-Ra in aqueous media. SFA results show that LPS-Ra vesicles adsorb weakly onto mica in pure water at room temperature (RT) and the surface layers are readily squeezed out as the two surfaces approach each other. However, upon addition of calcium (Ca2+) cations at near physiological concentration (2.5 mM) at RT, LPS multilayers or deformed LPS liposomes on mica are observed, presumably due to bridging between LPS phosphate groups and between LPS phosphates and negatively charged mica mediated by Ca2+, with a hard wall repulsion at surface separation D0 ∼ 30-40 nm. At 40 °C, which is above the LPS-Ra β-α acyl chain melting temperature (Tm = 36 °C), fusion events between the surface layers under compression could be observed, evident from δD ∼ 8-10 nm steps in the force-distance profiles attributed to LPS-bilayers being squeezed out due to enhanced fluidity of the LPS acyl-chain, with a final hard wall surface separation D0 ∼ 8-10 nm corresponding to the thickness of a single bilayer confined between the surfaces. These unprecedented SFA results reveal intricate structural responses of LPS surface layers to temperature and Ca2+, with implications to our fundamental understanding of the structures and interactions of bacterial membranes.
Collapse
Affiliation(s)
- Christian Redeker
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Wuge H Briscoe
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| |
Collapse
|
14
|
Selective antibacterial activity of the cationic peptide PaDBS1R6 against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1375-1387. [DOI: 10.1016/j.bbamem.2019.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023]
|
15
|
Ferreyra Maillard AP, Gonçalves S, Santos NC, López de Mishima BA, Dalmasso PR, Hollmann A. Studies on interaction of green silver nanoparticles with whole bacteria by surface characterization techniques. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1086-1092. [DOI: 10.1016/j.bbamem.2019.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022]
|
16
|
Irazazabal LN, Porto WF, Fensterseifer IC, Alves ES, Matos CO, Menezes AC, Felício MR, Gonçalves S, Santos NC, Ribeiro SM, Humblot V, Lião LM, Ladram A, Franco OL. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:178-190. [DOI: 10.1016/j.bbamem.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|
17
|
Abstract
Antimicrobial peptides (AMPs) are one of the most promising alternatives to conventional antibiotics. Atomic force microscopy (AFM), as imaging and force spectroscopy tool, has been applied to study their mechanism of action and development. Here, we describe different methods to be applied in the study of AMP effects on bacteria, either by imaging or by force spectroscopy studies, essential to underlie their action and to identify possibly outcomes of the same.
Collapse
Affiliation(s)
- Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
18
|
Interaction of green silver nanoparticles with model membranes: possible role in the antibacterial activity. Colloids Surf B Biointerfaces 2018; 171:320-326. [DOI: 10.1016/j.colsurfb.2018.07.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022]
|
19
|
Chih YH, Wang SY, Yip BS, Cheng KT, Hsu SY, Wu CL, Yu HY, Cheng JW. Dependence on size and shape of non-nature amino acids in the enhancement of lipopolysaccharide (LPS) neutralizing activities of antimicrobial peptides. J Colloid Interface Sci 2018; 533:492-502. [PMID: 30176540 DOI: 10.1016/j.jcis.2018.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Release of lipopolysaccharides (LPS) from bacteria into bloodstream may cause serious unwanted stimulation of the host immune system. P-113 is a clinically active histidine-rich antimicrobial peptide. Nal-P-113, a β-naphthylalanine-substituted P-113, is salt-resistant but has limited LPS neutralizing activity. We suspected the size and shape of the non-natural bulky amino acid may affect its LPS neutralizing activity. Herein, antimicrobial, LPS neutralizing, and antiproteolytic effects of phenylalanine- (Phe-P-113), β-naphthylalanine- (Nal-P-113), β-diphenylalanine- (Dip-P-113), and β-(4,4'-biphenyl)alanine- (Bip-P-113) substituted P-113 were studied. EXPERIMENTS Structure-activity relationships of P-113, Phe-P-113, Nal-P-113, Dip-P-113, and Bip-P-113 were evaluated using antimicrobial activity assays, serum proteolytic assays, peptide-induced permeabilization of large unilamellar vesicles, zeta potential measurements, dynamic light scattering measurement of LPS aggregation, and Limulus amebocyte lysate assays for measuring LPS neutralization. In vitro and in vivo LPS neutralizing activities were further confirmed by LPS-induced inflammation inhibition in an endotoxemia mouse model. FINDINGS Bip-P-113 and Dip-P-113 had the longest and widest non-nature amino acids, respectively. Bip-P-113 enhanced salt resistance, serum proteolytic stability, peptide-induced permeabilization, zeta potential measurements, LPS aggregation, and in vitro and in vivo LPS neutralizing activities. These results could help design novel antimicrobial peptides that have enhanced stability in vivo and that can have potential therapeutic applications.
Collapse
Affiliation(s)
- Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Siou-Ying Wang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Kuang-Ting Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Su-Ya Hsu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Lung Wu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
20
|
Nanobiostructure of fibrous-like alumina functionalized with an analog of the BP100 peptide: Synthesis, characterization and biological applications. Colloids Surf B Biointerfaces 2018; 163:275-283. [DOI: 10.1016/j.colsurfb.2018.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/11/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
|
21
|
Lee JK, Luchian T, Park Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget 2018; 9:15616-15634. [PMID: 29643997 PMCID: PMC5884652 DOI: 10.18632/oncotarget.24582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Clavaspirin peptide (CSP) is derived from the pharyngeal tissues of the tunicate Styela clava. The 23-amino acid peptide is histidine-rich and amidated at the N-terminus. CSP possesses low antimicrobial and high hemolytic activity at pH 7.4. Therefore, we designed 4 CSP analogs with substituted hydrophobic amino acids to reduce hydrophobic amino acid interactions. These modifications reduced the aggregation and cytotoxicity of the analogs at pH 7.4. The analogs also showed potent antimicrobial activity by accumulating on bacterial cell surfaces and inducing the lytic mechanism against gram-negative and gram-positive cells at pH 5.5 and 7.4. Moreover, exposure to the CSP-4 analog for up to 29 passages did not induce drug resistance in Staphylococcus aureus. Application of CSP-4 to inflamed skin of hairless mice infected with drug-resistant S. aureus (DRSA) significantly reduced skin infections without damaging dermal collagen or elastin. Topically applied CSP-4 penetrated 25–40 µm in the dermis within 30 min, reducing the levels of Toll-like receptor-2, nuclear factor kappa B (NF-κB), and the pro-inflammatory cytokines tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1 β). These results suggest that CSP-4 could be a promising topical antimicrobial agent for skin diseases caused by DRSA such as S. aureus CCARM 0027.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials, Chosun University, Gwangju, Korea.,Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Research Center for Proteinaceous Materials, Chosun University, Gwangju, Korea.,Department of Biomedical Science, Chosun University, Gwangju, Korea
| |
Collapse
|
22
|
Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sci Rep 2017; 7:17795. [PMID: 29259246 PMCID: PMC5736615 DOI: 10.1038/s41598-017-18102-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Host defense cationic Antimicrobial Peptides (AMPs) can kill microorganisms including bacteria, viruses and fungi using various modes of action. The negatively charged bacterial membranes serve as a key target for many AMPs. Bacterial cell death by membrane permeabilization has been well perceived. A number of cationic AMPs kill bacteria by cell agglutination which is a distinctly different mode of action compared to membrane pore formation. However, mechanism of cell agglutinating AMPs is poorly understood. The outer membrane lipopolysaccharide (LPS) or the cell-wall peptidoglycans are targeted by AMPs as a key step in agglutination process. Here, we report the first atomic-resolution structure of thanatin, a cell agglutinating AMP, in complex with LPS micelle by solution NMR. The structure of thanatin in complex with LPS, revealed four stranded antiparallel β-sheet in a ‘head-tail’ dimeric topology. By contrast, thanatin in free solution assumed an antiparallel β-hairpin conformation. Dimeric structure of thanatin displayed higher hydrophobicity and cationicity with sites of LPS interactions. MD simulations and biophysical interactions analyses provided mode of LPS recognition and perturbation of LPS micelle structures. Mechanistic insights of bacterial cell agglutination obtained in this study can be utilized to develop antibiotics of alternative mode of action.
Collapse
|
23
|
Swasthi HM, Mukhopadhyay S. Electrostatic lipid-protein interactions sequester the curli amyloid fold on the lipopolysaccharide membrane surface. J Biol Chem 2017; 292:19861-19872. [PMID: 29021250 DOI: 10.1074/jbc.m117.815522] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/04/2017] [Indexed: 12/14/2022] Open
Abstract
Curli is a functional amyloid protein in the extracellular matrix of enteric Gram-negative bacteria. Curli is assembled at the cell surface and consists of CsgA, the major subunit of curli, and a membrane-associated nucleator protein, CsgB. Oligomeric intermediates that accumulate during the lag phase of amyloidogenesis are generally toxic, but the underlying mechanism by which bacterial cells overcome this toxicity during curli assembly at the surface remains elusive. Here, we elucidated the mechanism of curli amyloidogenesis and provide molecular insights into the strategy by which bacteria can potentially bypass the detrimental consequences of toxic amyloid intermediates. Using a diverse range of biochemical and biophysical tools involving circular dichroism, fluorescence, Raman spectroscopy, and atomic force microscopy imaging, we characterized the molecular basis of the interaction of CsgB with a membrane-mimetic anionic surfactant as well as with lipopolysaccharide (LPS) constituting the outer leaflet of Gram-negative bacteria. Aggregation studies revealed that the electrostatic interaction of the positively charged C-terminal region of the protein with a negatively charged head group of surfactant/LPS promotes a protein-protein interaction that results in facile amyloid formation without a detectable lag phase. We also show that CsgB, in the presence of surfactant/LPS, accelerates the fibrillation rate of CsgA by circumventing the lag phase during nucleation. Our findings suggest that the electrostatic interactions between lipid and protein molecules play a pivotal role in efficiently sequestering the amyloid fold of curli on the membrane surface without significant accumulation of toxic oligomeric intermediates.
Collapse
Affiliation(s)
- Hema M Swasthi
- From the Centre for Protein Science, Design and Engineering.,Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- From the Centre for Protein Science, Design and Engineering, .,Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, Knowledge City, Mohali, Punjab, India.,Departments of Biological Sciences and
| |
Collapse
|
24
|
Shang D, Meng X, Zhang D, Kou Z. Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa. Biochem Pharmacol 2017; 143:65-78. [PMID: 28756209 DOI: 10.1016/j.bcp.2017.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022]
Abstract
Nosocomial infections caused by Pseudomonas aeruginosa are difficult to treat due to the low permeability of its outer membrane as well as to its remarkable ability to acquire further resistance to antibiotics. Chensinin-1b exhibited antibacterial activity against the tested multiple-drug-resistant bacteria with a MIC ranging between 1.56 and 50μM, except E. cloacae strain 0320 (MREC0320), P. fluorescens strain 0322 (MRPF0322) and E. aerogenes strain 0320 (MREA0320). However, the MIC (25μM) of chensinin-1b to multiple-drug-resistant P. aeruginosa strain (MRPA 0108) was 16-fold higher than that observed to P. aeruginosa susceptible strain CGMCC 1.860 (PA1860). Chensinin-1b was able to disturb the integration of the cytoplasmic membrane of PA1860 and MRPA0108 cells similarly, but the outer membrane permeability of MRPA0108 cells was significantly lower. This low permeability was associated with increased expression of lipopolysaccharide (LPS) in the outer membrane and a decrease in negatively charged phospholipids in the outer membrane leaflet. In addition, the biofilm of MRPA0108 was responsible for the reduced susceptibility to chensinin-1b. A higher concentration of chensinin-1b (12.5µM) was required to maximally inhibit the formation of MRPA0108 biofilm. Notably, chensinin-1b inhibited the formation of MRPA0108 biofilm at concentrations below its MIC value by down-regulating the level of PelA, algD, and PslA gene transcription. Importantly, chensinin-1b had a significant antibacterial effect against MRPA0108 in vivo. Administration of chensinin-1b to mice infected with MRPA 0108 significantly increased survival by 50-70%. Moreover, chensinin-1b reduced the production of pro-inflammatory mediators and correspondingly reduced lung and liver tissue damage in the mouse model of septic shock induced by MRPA 0108. Collectively, these results suggest that chensinin-1b could be an effective antibiotic against multiple-drug-resistant bacterial strains.
Collapse
Affiliation(s)
- Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Xin Meng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dongdong Zhang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Zhiru Kou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
25
|
Dias SA, Freire JM, Pérez-Peinado C, Domingues MM, Gaspar D, Vale N, Gomes P, Andreu D, Henriques ST, Castanho MARB, Veiga AS. New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins. Front Microbiol 2017; 8:775. [PMID: 28522994 PMCID: PMC5415599 DOI: 10.3389/fmicb.2017.00775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties.
Collapse
Affiliation(s)
- Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal
| | - João M Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal.,Department of Virology, Institut PasteurParis, France
| | - Clara Pérez-Peinado
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research ParkBarcelona, Spain
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal
| | - Nuno Vale
- UCIBIO-REQUIMTE, Faculdade de Farmácia, Universidade do PortoPorto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research ParkBarcelona, Spain
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, BrisbaneQLD, Australia
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal
| | - Ana S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
26
|
Yu HY, Chen YA, Yip BS, Wang SY, Wei HJ, Chih YH, Chen KH, Cheng JW. Role of β-naphthylalanine end-tags in the enhancement of antiendotoxin activities: Solution structure of the antimicrobial peptide S1-Nal-Nal in complex with lipopolysaccharide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1114-1123. [PMID: 28288781 DOI: 10.1016/j.bbamem.2017.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS, endotoxin) is the major component of Gram-negative bacterial outer surface membrane. LPS released from bacteria into bloodstream during infection may cause serious unwanted stimulation of host's immune system and lead to septic shock of the patient. Recently, we have developed a strategy to increase salt resistance and LPS neutralization of short antimicrobial peptides by adding β-naphthylalanine end-tags to their termini. Herein, correlations between membrane immersion depth, orientation, and antiendotoxin activities of the antimicrobial peptides S1 and S1-Nal-Nal have been investigated via solution structure, paramagnetic resonance enhancement, and saturation transfer difference NMR studies. Unlike the parent peptide S1, S1-Nal-Nal rotated its two terminal β-naphthylalanine residues into the hydrophobic lipid A motif of LPS micelles. The LPS-induced inflammation may then be prohibited by the blocked lipid A motif.
Collapse
Affiliation(s)
- Hui-Yuan Yu
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-An Chen
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bak-Sau Yip
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Siou-Ying Wang
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsiu-Ju Wei
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ya-Han Chih
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kuan-Hao Chen
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jya-Wei Cheng
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
27
|
Pulido D, Garcia-Mayoral MF, Moussaoui M, Velázquez D, Torrent M, Bruix M, Boix E. Structural basis for endotoxin neutralization by the eosinophil cationic protein. FEBS J 2016; 283:4176-4191. [PMID: 27696685 DOI: 10.1111/febs.13915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Acute infection by Gram-negative pathogens can induce an exacerbated immune response that leads to lethal septic shock syndrome. Bacterial lipopolysaccharide (LPS) is a major pathogen-associated molecular pattern molecule that can initiate massive and lethal immune system stimulation. Therefore, the development of new and effective LPS-neutralizing agents is a top priority. The eosinophil cationic protein (ECP) is an antimicrobial protein secreted in response to infection, with a remarkable affinity for LPS. In the present study, we demonstrate that ECP is able to neutralize bacterial LPS and inhibit tumor necrosis factor-α production in human macrophages. We also characterized ECP neutralizing activity using progressively truncated LPS mutants, and conclude that the polysaccharide moiety and lipid A portions are required for LPS-mediated neutralization. In addition, we mapped the structural determinants required for the ECP-LPS interaction by nuclear magnetic resonance. Our results show that ECP is able to neutralize LPS and therefore opens a new route for developing novel therapeutic agents based on the ECP structural scaffolding.
Collapse
Affiliation(s)
- David Pulido
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Diego Velázquez
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marta Bruix
- Departamento de Química Biológica, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
28
|
Migliolo L, Felício MR, Cardoso MH, Silva ON, Xavier MAE, Nolasco DO, de Oliveira AS, Roca-Subira I, Vila Estape J, Teixeira LD, Freitas SM, Otero-Gonzalez AJ, Gonçalves S, Santos NC, Franco OL. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa -MAP2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1488-98. [DOI: 10.1016/j.bbamem.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
29
|
Lousa D, Pinto ART, Victor BL, Laio A, Veiga AS, Castanho MARB, Soares CM. Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide. Sci Rep 2016; 6:28099. [PMID: 27302370 PMCID: PMC4908596 DOI: 10.1038/srep28099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/27/2016] [Indexed: 01/26/2023] Open
Abstract
During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide’s free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies.
Collapse
Affiliation(s)
- Diana Lousa
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Antónia R T Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bruno L Victor
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alessandro Laio
- SISSA/ISAS, Statistical and biological physics, Via Beirut 2-4 Trieste, Italy
| | - Ana S Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Cláudio M Soares
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
30
|
Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity. Sci Rep 2016; 6:27128. [PMID: 27292548 PMCID: PMC4904370 DOI: 10.1038/srep27128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 05/13/2016] [Indexed: 11/21/2022] Open
Abstract
Clavanins is a class of peptides (23aa) histidine-rich, free of post-translational modifications. Clavanins have been studied largely for their ability to disrupt bacterial membranes. In the present study, the interaction of clavanin A with membranes was assessed by dynamic light scattering, zeta potential and permeabilization assays. We observed through those assays that clavanin A lysis bacterial cells at concentrations corresponding to its MIC. Further, the structure and function of clavanin A was investigated. To better understand how clavanin interacted with bacteria, its NMR structure was elucidated. The solution state NMR structure of clavanin A in the presence of TFE-d3 indicated an α-helical conformation. Secondary structures, based on circular dichroism measurements in anionic sodium dodecyl sulfate (SDS) and TFE (2,2,2-trifluorethanol), in silico lipid-peptide docking and molecular simulations with lipids DPPC and DOPC revealed that clavanin A can adopt a variety of folds, possibly influencing its different functions. Microcalorimetry assays revealed that clavanin A was capable of discriminating between different lipids. Finally, clavanin A was found to eradicate bacterial biofilms representing a previously unrecognized function.
Collapse
|
31
|
Mohanram H, Bhattacharjya S. Salt-resistant short antimicrobial peptides. Biopolymers 2016; 106:345-56. [DOI: 10.1002/bip.22819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551
| | - Surajit Bhattacharjya
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551
| |
Collapse
|
32
|
A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep 2016; 6:21385. [PMID: 26916401 PMCID: PMC4768251 DOI: 10.1038/srep21385] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.
Collapse
|
33
|
Uppu DSSM, Haldar J. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation. Biomacromolecules 2016; 17:862-73. [DOI: 10.1021/acs.biomac.5b01567] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
34
|
Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents. Peptides 2015; 72:88-94. [PMID: 26048089 DOI: 10.1016/j.peptides.2015.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Doctoral Degree Program in Marine Biotechnology, Institute of Cellular and Orgasmic Biology, Academia Sinica and National Sun-Yat Sen University, Kaohsiung, Taiwan; Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
| |
Collapse
|
35
|
Conceição K, Magalhães PR, Campos SRR, Domingues MM, Ramu VG, Michalek M, Bertani P, Baptista AM, Heras M, Bardaji ER, Bechinger B, Ferreira ML, Castanho MARB. The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism. Amino Acids 2015; 48:307-18. [DOI: 10.1007/s00726-015-2088-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/12/2023]
|
36
|
Ultrashort Antimicrobial Peptides with Antiendotoxin Properties. Antimicrob Agents Chemother 2015; 59:5052-6. [PMID: 26033727 DOI: 10.1128/aac.00519-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/25/2015] [Indexed: 11/20/2022] Open
Abstract
Release of lipopolysaccharide (LPS) (endotoxin) from bacteria into the bloodstream may cause serious unwanted stimulation of the host immune system. Some but not all antimicrobial peptides can neutralize LPS-stimulated proinflammatory responses. Salt resistance and serum stability of short antimicrobial peptides can be boosted by adding β-naphthylalanine to their termini. Herein, significant antiendotoxin effects were observed in vitro and in vivo with the β-naphthylalanine end-tagged variants of the short antimicrobial peptides S1 and KWWK.
Collapse
|
37
|
Kim YM, Kim NH, Lee JW, Jang JS, Park YH, Park SC, Jang MK. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity. Biochem Biophys Res Commun 2015; 463:322-8. [PMID: 26028561 DOI: 10.1016/j.bbrc.2015.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/15/2015] [Indexed: 01/22/2023]
Abstract
An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea
| | - Nam-Hong Kim
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea
| | - Jong-Wan Lee
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea
| | - Jin-Sun Jang
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea
| | - Yung-Hoon Park
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea
| | - Seong-Cheol Park
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea.
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 540-950, South Korea.
| |
Collapse
|
38
|
Freire JM, Almeida Dias S, Flores L, Veiga AS, Castanho MA. Mining viral proteins for antimicrobial and cell-penetrating drug delivery peptides. Bioinformatics 2015; 31:2252-6. [DOI: 10.1093/bioinformatics/btv131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/25/2015] [Indexed: 11/14/2022] Open
|
39
|
Freire JM, Gaspar D, Veiga AS, Castanho MARB. Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 2015; 21:178-85. [DOI: 10.1002/psc.2741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
- João M. Freire
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Diana Gaspar
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Ana Salomé Veiga
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Miguel A. R. B. Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular; Universidade de Lisboa; Av. Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
40
|
Bello G, Eriksson J, Terry A, Edwards K, Lawrence MJ, Barlow D, Harvey RD. Characterization of the aggregates formed by various bacterial lipopolysaccharides in solution and upon interaction with antimicrobial peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:741-751. [PMID: 25514503 DOI: 10.1021/la503267k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The biophysical analysis of the aggregates formed by different chemotypes of bacterial lipopolysaccharides (LPS) before and after challenge by two different antiendotoxic antimicrobial peptides (LL37 and bovine lactoferricin) was performed in order to determine their effect on the morphology of LPS aggregates. Small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryoTEM) were used to examine the structures formed by both smooth and rough LPS chemotypes and the effect of the peptides, by visualization of the aggregates and analysis of the scattering data by means of both mathematical approximations and defined models. The data showed that the structure of LPS determines the morphology of the aggregates and influences the binding activity of both peptides. The morphologies of the worm-like micellar aggregates formed by the smooth LPS were relatively unaltered by the presence of the peptides due to their pre-existing high degree of positive curvature being little affected by their association with either peptide. On the other hand, the aggregates formed by the rough LPS chemotypes showed marked morphological changes from lamellar structures to ordered micellar networks, induced by the increase in positive curvature engendered upon association with the peptides. The combined use of cryoTEM and SANS proved to be a very useful tool for studying the aggregation properties of LPS in solution at biologically relevant concentrations.
Collapse
Affiliation(s)
- Gianluca Bello
- Institute of Pharmaceutical Science, King's College London , London, U.K
| | | | | | | | | | | | | |
Collapse
|
41
|
Freire JM, Gaspar D, de la Torre BG, Veiga AS, Andreu D, Castanho MARB. Monitoring antibacterial permeabilization in real time using time-resolved flow cytometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:554-60. [PMID: 25445678 DOI: 10.1016/j.bbamem.2014.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
Abstract
Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live-dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
| | - Beatriz Garcia de la Torre
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona E-08003, Spain
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona E-08003, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal.
| |
Collapse
|
42
|
Nascimento JM, Oliveira MD, Franco OL, Migliolo L, de Melo CP, Andrade CA. Elucidation of mechanisms of interaction of a multifunctional peptide Pa-MAP with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2899-909. [DOI: 10.1016/j.bbamem.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022]
|
43
|
Abstract
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Collapse
|
44
|
Mohanram H, Bhattacharjya S. β-Boomerang Antimicrobial and Antiendotoxic Peptides: Lipidation and Disulfide Bond Effects on Activity and Structure. Pharmaceuticals (Basel) 2014; 7:482-501. [PMID: 24756162 PMCID: PMC4014704 DOI: 10.3390/ph7040482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 01/28/2023] Open
Abstract
Drug-resistant Gram-negative bacterial pathogens and endotoxin- or lipopolysaccharide (LPS)-mediated inflammations are among some of the most prominent health issues globally. Antimicrobial peptides (AMPs) are eminent molecules that can kill drug-resistant strains and neutralize LPS toxicity. LPS, the outer layer of the outer membrane of Gram-negative bacteria safeguards cell integrity against hydrophobic compounds, including antibiotics and AMPs. Apart from maintaining structural integrity, LPS, when released into the blood stream, also induces inflammatory pathways leading to septic shock. In previous works, we have reported the de novo design of a set of 12-amino acid long cationic/hydrophobic peptides for LPS binding and activity. These peptides adopt β-boomerang like conformations in complex with LPS. Structure-activity studies demonstrated some critical features of the β-boomerang scaffold that may be utilized for the further development of potent analogs. In this work, β-boomerang lipopeptides were designed and structure-activity correlation studies were carried out. These lipopeptides were homo-dimerized through a disulfide bridge to stabilize conformations and for improved activity. The designed peptides exhibited potent antibacterial activity and efficiently neutralized LPS toxicity under in vitro assays. NMR structure of C4YI13C in aqueous solution demonstrated the conserved folding of the lipopeptide with a boomerang aromatic lock stabilized with disulfide bond at the C-terminus and acylation at the N-terminus. These lipo-peptides displaying bacterial sterilization and low hemolytic activity may be useful for future applications as antimicrobial and antiendotoxin molecules.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
45
|
Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:241-53. [PMID: 24743917 PMCID: PMC4053608 DOI: 10.1007/s00249-014-0958-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Abstract
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.
Collapse
|
46
|
Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:543-51. [DOI: 10.1016/j.nano.2013.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 11/18/2022]
|
47
|
Domingues MM, Bianconi ML, Barbosa LR, Santiago PS, Tabak M, Castanho MA, Itri R, Santos NC. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2419-27. [DOI: 10.1016/j.bbamem.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
48
|
Bouchet AM, Iannucci NB, Pastrian MB, Cascone O, Santos NC, Disalvo EA, Hollmann A. Biological activity of antibacterial peptides matches synergism between electrostatic and non electrostatic forces. Colloids Surf B Biointerfaces 2013; 114:363-71. [PMID: 24257688 DOI: 10.1016/j.colsurfb.2013.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022]
Abstract
Substitution of Ala 108 and Ala 111 in the 107-115 human lysozyme (hLz) fragment results in a 20-fold increased anti-staphylococcal activity while its hemolytic activity becomes significant (30%) at very high concentrations. This analog displays an additional positive charge near the N-terminus (108) and an extra Trp residue at the center of the molecule (111), indicating that this particular amino acid sequence improves its interaction with the bacterial plasma membrane. In order to understand the role of this arrangement in the membrane interaction, studies with model lipid membranes were carried out. The interactions of peptides, 107-115 hLz and the novel analog ([K(108)W(111)]107-115 hLz) with liposomes and lipid monolayers were evaluated by monitoring the changes in the fluorescence of the Trp residues and the variation of the monolayers surface pressure, respectively. Results obtained with both techniques revealed a significant affinity increase of [K(108)W(111)]107-115 hLz for lipids, especially when the membranes containing negatively charged lipids, such as phosphatidylglycerol. However, there is also a significant interaction with zwitterionic lipids, suggesting that other forces in addition to electrostatic interactions are involved in the binding. The analysis of adsorption isotherms and the insertion kinetics suggest that relaxation processes of the membrane structure are involved in the insertion process of novel peptide [K(108)W(111)]107-115 hLz but not in 107-115 hLz, probably by imposing a reorganization of water at the interphases. In this regard, the enhanced activity of peptide [K(108)W(111)]107-115 hLz may be explained by a synergistic effect between the increased electrostatic forces as well as the increased hydrophobic interactions.
Collapse
Affiliation(s)
- Ana M Bouchet
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina
| | - Nancy B Iannucci
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina; Therapeutic Peptides Research and Development Laboratory, Chemo-Romikin, 1605 Buenos Aires, Argentina
| | - María B Pastrian
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina
| | - Osvaldo Cascone
- School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires 1113, Argentina
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Edgardo A Disalvo
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina
| | - Axel Hollmann
- Laboratory of Biointerfaces and Biomimetic Systems, CITSE-University of Santiago del Estero, 4200 Santiago del Estero and CONICET, Argentina; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, University of Quilmes, B1876BXD Bernal, Argentina.
| |
Collapse
|
49
|
Gholizadeh A, Kohnehrouz SB. DUF538 protein super family is predicted to be the potential homologue of bactericidal/permeability-increasing protein in plant system. Protein J 2013; 32:163-71. [PMID: 23456176 DOI: 10.1007/s10930-013-9473-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DUF538 protein super family includes a number of plant proteins that their role is not yet clear. These proteins have been frequently reported to be expressed in plants under various stressful stimuli such as bacteria and elicitors. In order to further understand about this protein family we utilized bioinformatics tools to analyze its structure in details. As a result, plants DUF538 was predicted to be the partial structural homologue of BPI (bactericidal/permeability increasing) proteins in mammalian innate immune system that provides the first line of defense against different pathogens including bacteria, fungi, viruses and parasites. Moreover, on the base of the experimental data, it was identified that exogenously applied purified fused product of Celosia DUF538 affects the bacterial growth more possibly similar to BPI through the binding to the bacterial membranes. In conclusion, as the first ever time report, we nominated DUF538 protein family as the potential structural and functional homologue of BPI protein in plants, providing a basis to study the novel functions of this protein family in the biological systems in the future.
Collapse
Affiliation(s)
- Ashraf Gholizadeh
- Department of Molecular Biotechnology, Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.
| | | |
Collapse
|
50
|
Moiset G, Cirac AD, Stuart MCA, Marrink SJ, Sengupta D, Poolman B. Dual action of BPC194: a membrane active peptide killing bacterial cells. PLoS One 2013; 8:e61541. [PMID: 23620763 PMCID: PMC3631201 DOI: 10.1371/journal.pone.0061541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/10/2013] [Indexed: 11/30/2022] Open
Abstract
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis.
Collapse
Affiliation(s)
- Gemma Moiset
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Anna D. Cirac
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Institute of Computational Chemistry, University of Girona, Campus Montivili, Girona, Spain
| | - Marc C. A. Stuart
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Durba Sengupta
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- * E-mail: (BP); (DS)
| | - Bert Poolman
- Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- * E-mail: (BP); (DS)
| |
Collapse
|