1
|
Dang A, Bernard GD, Yuan F, Macias-Muñoz A, Hill RI, Lawrence JP, Rangel Olguin AG, Luis-Martínez A, Mullen SP, Llorente-Bousquets J, Briscoe AD. Trichromacy is insufficient for mate detection in a mimetic butterfly. Commun Biol 2025; 8:189. [PMID: 39915690 PMCID: PMC11802900 DOI: 10.1038/s42003-025-07472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Color vision is thought to play a key role in the evolution of animal coloration, while achromatic vision is rarely considered as a mechanism for species recognition. Here we test the hypothesis that brightness vision rather than color vision helps Adelpha fessonia butterflies identify potential mates while their co-mimetic wing coloration is indiscriminable to avian predators. We examine the trichromatic visual system of A. fessonia and characterize its photoreceptors using RNA-seq, eyeshine, epi-microspectrophotometry, and optophysiology. We model the discriminability of its wing color patches in relation to those of its co-mimic, A. basiloides, through A. fessonia and avian eyes. Visual modeling suggests that neither A. fessonia nor avian predators can readily distinguish the co-mimics' coloration using chromatic or achromatic vision under natural conditions. These results suggest that mimetic colors are well-matched to visual systems to maintain mimicry, and that mate avoidance between these two look-alike species relies on other cues.
Collapse
Affiliation(s)
- Andrew Dang
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
| | - Gary D Bernard
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Furong Yuan
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
- Department of Process Development, Lonza Houston Inc, Houston, TX, USA
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - J P Lawrence
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| | - Aline Giselle Rangel Olguin
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Armando Luis-Martínez
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sean P Mullen
- Department of Biology, Boston University, Boston, MA, USA
| | - Jorge Llorente-Bousquets
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Xiong J, Wang Z, Dong Y, Cao J, Chen Y. Melatonin nuclear receptors mediate monochromatic light-induced T-lymphocyte proliferation of thymus through the AKT/GSK3β/β-catenin pathway in chick. Poult Sci 2024; 103:104507. [PMID: 39522347 PMCID: PMC11585689 DOI: 10.1016/j.psj.2024.104507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Based on previous research, it's unclear about the signaling pathway involved in the negative regulation of T-lymphocyte proliferation in thymus by monochromatic red light. Newly hatched chicks were randomly assigned divided into white (WL), red (RL), green (GL), and blue (BL) light treatments. Three days later, each light treatment group was further divided into intact, sham operation, and pinealectomy groups. The findings revealed that RL led to an increase in the expression of RORα and RORγ, while p-AKT/p-GSK3β/β-catenin/CyclinD1 expression in the thymus of chicks were decreased. Conversely, GL showed opposite results compared to RL. After pinealectomy, accompanied with the expression of RORα and RORγ increased under four light, p-AKT/ p-GSK3β/ β-catenin/ CyclinD1 expression were decreased. In vitro, exogenous melatonin increased the p-AKT/β-catenin/CyclinD1 expression in the thymic lymphocytes of chick reared under RL. The stimulative effect of melatonin was enhanced by SR3335 (RORα antagonist) or GSK298 (RORγ antagonist), while it was attenuated by SR1078 (RORα/RORγ agonist), LY-294 (PI3K antagonist) and HY-102 (AKT antagonist). These results demonstrate that RORα/RORγ negatively regulate monochromatic red light induced-T-lymphocyte proliferation in the thymus, possibly through the PI3K/AKT/p-GSK3β (Ser9) signaling pathway.
Collapse
Affiliation(s)
- Juanjuan Xiong
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Qixia, Nanjing, 210046, China; Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193, China.
| |
Collapse
|
3
|
Tommasini D, Yoshimatsu T, Baden T, Shekhar K. Comparative transcriptomic insights into the evolutionary origin of the tetrapod double cone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621990. [PMID: 39574734 PMCID: PMC11580882 DOI: 10.1101/2024.11.04.621990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The tetrapod double cone is a pair of tightly associated cones called the "principal" and the "accessory" member. It is found in amphibians, reptiles, and birds, as well as monotreme and marsupial mammals but is absent in fish and eutherian mammals. To explore the potential evolutionary origins of the double cone, we analyzed single-cell and -nucleus transcriptomic atlases of photoreceptors from six vertebrate species: zebrafish, chicken, lizard, opossum, ground squirrel, and human. Computational analyses separated the principal and accessory members in chicken and lizard, identifying molecular signatures distinguishing either member from single cones and rods in the same species. Comparative transcriptomic analyses suggest that both the principal and accessory originated from ancestral red cones. Furthermore, the gene expression variation among cone subtypes mirrors their spectral order (red → green → blue → UV), suggesting a constraint in their order of emergence during evolution. Finally, we find that rods are equally dissimilar to all cone types, suggesting that they emerged before the spectral diversification of cones.
Collapse
Affiliation(s)
- Dario Tommasini
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tom Baden
- Center for Sensory Neuroscience and Computation, Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Karthik Shekhar
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA
- Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Zheng L, Liao Z, Zou J. Animal modeling for myopia. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:173-181. [PMID: 39263386 PMCID: PMC11385420 DOI: 10.1016/j.aopr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Myopia is one of the most common eye diseases globally, and has become an increasingly serious health concern among adolescents. Understanding the factors contributing to the onset of myopia and the strategies to slow its progression is critical to reducing its prevalence. Main text Animal models are key to understanding of the etiology of human diseases. Various experimental animal models have been developed to mimic human myopia, including chickens, rhesus monkeys, marmosets, mice, tree shrews, guinea pigs and zebrafish. Studies using these animal models have provided evidences and perspectives on the regulation of eye growth and refractive development. This review summarizes the characteristics of these models, the induction methods, common indicators of myopia in animal models, and recent findings on the pathogenic mechanism of myopia. Conclusions Investigations using experimental animal models have provided valuable information and insights into the pathogenic mechanisms of human myopia and its treatment strategies.
Collapse
Affiliation(s)
- Lingman Zheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Lei Y, Ni R. Non-equilibrium dynamic hyperuniform states. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:023004. [PMID: 39431432 DOI: 10.1088/1361-648x/ad83a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Disordered hyperuniform structures are an exotic state of matter having suppressed density fluctuations at large length-scale similar to perfect crystals and quasicrystals but without any long range orientational order. In the past decade, an increasing number of non-equilibrium systems were found to have dynamic hyperuniform states, which have emerged as a new research direction coupling both non-equilibrium physics and hyperuniformity. Here we review the recent progress in understanding dynamic hyperuniform states found in various non-equilibrium systems, including the critical hyperuniformity in absorbing phase transitions, non-equilibrium hyperuniform fluids and the hyperuniform structures in phase separating systems via spinodal decomposition.
Collapse
Affiliation(s)
- Yusheng Lei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
6
|
Serejnikova NB, Trofimova NN, Yakovleva MA, Dontsov AE, Zak PP, Ostrovsky MA. Blue Light-Induced Accelerated Formation of Melanolipofuscin-Like Organelles in Japanese Quail RPE Cells: An Electron Microscopic Study. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39297806 PMCID: PMC11421679 DOI: 10.1167/iovs.65.11.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose The retinal pigment epithelium (RPE) is a monolayer of epithelial cells essential for photoreceptor function and viability. Quail Coturnix japonica is a convenient experimental animal model for the study of age and pathological retina processes to an accelerated time regime. The three main types of pigment granules present in the RPE are melanin-containing melanosomes, lipofuscin-containing lipofuscin granules, and mixed melanolipofuscin granules containing both melanin and lipofuscin. The purpose of this work was to study the process of melanolipofuscinogenesis during aging and under light exposure. Methods We examined melanolipofuscin granules in "macular" areas, the area of the retina containing oxycarotenoids, as a function of the macula in humans, of the quail retina by transmission electron microscopy in young, middle-aged, and old birds, and in middle-aged birds irradiated with blue LED light (450 nm, 4 J/cm2). Results It has been shown that during photo-oxidative stress caused by the action of blue light on the quail eye, active fusion of melanosomes and lipofuscin granules occurs with formation of various types, including giant, mixed melanolipofuscin-like granules. Increased accumulation of melanolipofuscin-like granules was also observed in non-irradiated old birds. Conclusions It is assumed that the decrease in the number of melanosomes in the RPE during aging and photo-oxidative stress is associated with their fusion with lipofuscin granules and subsequent degradation of melanin by reactive oxygen species formed in melanolipofuscin-like granules. The disappearance of melanin deprives the RPE cells of light-filtering and antioxidant protection, and significantly increases the risk of their oxidative stress.
Collapse
Affiliation(s)
| | - Natalia N. Trofimova
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Marina A. Yakovleva
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexander E. Dontsov
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Pavel P. Zak
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Ostrovsky
- N. N. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Choi J, Joisher HNV, Gill HK, Lin L, Cepko C. Characterization of the development of the high-acuity area of the chick retina. Dev Biol 2024; 511:39-52. [PMID: 38548147 DOI: 10.1016/j.ydbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.
Collapse
Affiliation(s)
- Jiho Choi
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Heer N V Joisher
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | | | - Lucas Lin
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA
| | - Constance Cepko
- Department of Genetics, Blavatnik Institute, USA; Department of Ophthalmology, Harvard Medical School, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
8
|
Straight PJ, Gignac PM, Kuenzel WJ. A histological and diceCT-derived 3D reconstruction of the avian visual thalamofugal pathway. Sci Rep 2024; 14:8447. [PMID: 38600121 PMCID: PMC11006926 DOI: 10.1038/s41598-024-58788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA.
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, AZ, USA
- MicroCT Imaging Consortium for Research and Outreach, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
9
|
Hung LF. Visual information and the development/control of myopia: Insights from nonhuman primate experiences. Taiwan J Ophthalmol 2024; 14:172-178. [PMID: 39027077 PMCID: PMC11254003 DOI: 10.4103/tjo.tjo-d-24-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/16/2024] [Indexed: 07/20/2024] Open
Abstract
Over the past few decades, primarily by animal studies, correspondingly reinforced by epidemiological, clinical studies and controlled trials, researchers have identified that visual feedback regulates eye refractive developments, with visual image alterations being the most influential myopiagenic environmental factor. This article reviews studies using nonhuman primates to investigate visual risk factors for myopia development and evaluates and summarizes which visual factors contribute to the occurrence and progression of myopia. The possible underlying myopiagenic mechanisms and related myopia prevention/control strategies are also discussed.
Collapse
Affiliation(s)
- Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Straight PJ, Gignac PM, Kuenzel WJ. Mapping the avian visual tectofugal pathway using 3D reconstruction. J Comp Neurol 2024; 532:e25558. [PMID: 38047431 DOI: 10.1002/cne.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks, Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine-based contrast-enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three-dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, Arizona, USA
- Anatomy and Cell Biology Department, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
11
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
12
|
Safwan M, Mehmood S, Sherzada S, Usman M, Hashmi SGMD, Ali S, Rehman AU, Riaz MF, Elahi U, Hussain M, Latif HRA, Saleem K, Ahmad S. Effects of prenatal dichromatic light exposure on hatching results and post-hatch performance of Japanese quail. Trop Anim Health Prod 2023; 55:379. [PMID: 37880556 DOI: 10.1007/s11250-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Present study evaluated the effect of lighted incubation on pre- and post-hatch performance of Japanese quail. In a completely randomized design, 1200 eggs were evenly divided into 4 treatments groups having six replicates (each tray was considered as replicate), 50 eggs each. Different dichromatic lights (Green + Red; GR, Green + Blue; GB, and Blue + Red; BR) of 250 lux were provided during incubation for 12 h daily and effects of these lights very evaluated on hatching results and post-hatch growth. After hatch, 600 quail chicks were divided into 4 treatments, 6 replicates, and 25 birds each. Regarding hatching traits, better hatchability was found in the GR group compared to GB, BR, and dark group; while early embryonic mortality was lower in BR, GB, and dark group than GR; mid embryonic mortality was lower in dark group and late embryonic mortality was noted in the GR group than those of other treatment groups. In addition, moisture loss during incubation was minimum in BR and dark groups; however, chick spread was better in the GR group. In terms of growth performance, weight gain was better in the GR group; feed intake in dark, feed conversion ratio in BR, and livability were better in BR and GR group. In morphometrics, keel and shank length were higher in all the colored groups (GB, BR, and GR) whereas body length, wing spread, shank circumference, drumstick length, and circumference were higher in the GR group. Regarding serum chemistry, glucose, albumin, and globulin levels were higher in the GR group. It was concluded that under the experimental conditions, GR light at the prenatal stage to Japanese quail eggs positively influenced hatching performance and post-hatch growth.
Collapse
Affiliation(s)
- Muhammad Safwan
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Mehmood
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Usman
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syed Ghulam Mohayud Din Hashmi
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaheryar Ali
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abd Ur Rehman
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Faisal Riaz
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Department of Poultry Science, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Usman Elahi
- Faculty of Agriculture & Veterinary Sciences, Superior University, 17-KM Main Raiwind Road, Lahore, Pakistan
| | - Murrawat Hussain
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Rao Abdul Latif
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kinza Saleem
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
13
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
15
|
Beygi A. Universality of Form: The Case of Retinal Cone Photoreceptor Mosaics. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050766. [PMID: 37238521 DOI: 10.3390/e25050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Cone photoreceptor cells are wavelength-sensitive neurons in the retinas of vertebrate eyes and are responsible for color vision. The spatial distribution of these nerve cells is commonly referred to as the cone photoreceptor mosaic. By applying the principle of maximum entropy, we demonstrate the universality of retinal cone mosaics in vertebrate eyes by examining various species, namely, rodent, dog, monkey, human, fish, and bird. We introduce a parameter called retinal temperature, which is conserved across the retinas of vertebrates. The virial equation of state for two-dimensional cellular networks, known as Lemaître's law, is also obtained as a special case of our formalism. We investigate the behavior of several artificially generated networks and the natural one of the retina concerning this universal, topological law.
Collapse
Affiliation(s)
- Alireza Beygi
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, 60325 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Gesemann M, Neuhauss SCF. Evolution of visual guanylyl cyclases and their activating proteins with respect to clade and species-specific visual system adaptation. Front Mol Neurosci 2023; 16:1131093. [PMID: 37008786 PMCID: PMC10061024 DOI: 10.3389/fnmol.2023.1131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Membrane guanylyl cyclase receptors are important regulators of local cGMP production, critically influencing cell growth and differentiation as well as ion transport, blood pressure and calcium feedback of vertebrate phototransduction. Currently, seven different subtypes of membrane guanylyl cyclase receptors have been characterized. These receptors have tissue specific expression and are activated either by small extracellular ligands, changing CO2 concentrations or, in the case of visual guanylyl cyclases, intracellularly interacting Ca2+-dependent activating proteins. In this report, we focus on the visual guanylyl cyclase receptors (GCs) GC-E (gucy2d/e) and GC-F (gucy2f) and their activating proteins (GCAP1/2/3; guca1a/b/c). While gucy2d/e has been detected in all analyzed vertebrates, GC-F receptors are missing in several clades (reptiles, birds, and marsupials) and/or individual species. Interestingly, the absence of GC-F in highly visual sauropsida species with up to 4 different cone-opsins is compensated by an increased number of guanylyl cyclase activating proteins, whereas in nocturnal or visually impaired species with reduced spectral sensitivity it is consolidated by the parallel inactivation of these activators. In mammals, the presence of GC-E and GC-F is accompanied by the expression of one to three GCAPs, whereas in lizards and birds, up to five different GCAPs are regulating the activity of the single GC-E visual membrane receptor. In several nearly blind species, a single GC-E enzyme is often accompanied by a single variant of GCAP, suggesting that one cyclase and one activating protein are both sufficient and required for conferring the basic detection of light.
Collapse
|
17
|
Pan C, Wang S, He P, Hayat K, Jin H, Bai L, Hu Y, Pan J. Effects of light color and intensity on discrimination of red objects in broilers. J Anim Sci 2023; 101:skac389. [PMID: 36434786 PMCID: PMC9847463 DOI: 10.1093/jas/skac389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Poultry are sensitive to red objects, such as comb and blood on the body surface, likely inducing injurious pecking in flocks. Light is an important factor that affects the pecking behavior of poultry. A wooden box was built to investigate the effects of Light Emitting Diode (LED) light color (warm white and cold white) and intensity (5 and 50 lux) of background light on the discrimination of red objects in broilers. A piece of red photographic paper (Paper 1) was used to simulate a red object and paired with another piece of paper (Paper 2 to 8) with a different color. Bigger number of the paired paper indicated greater color difference. The experiment consisted of three phases: adaptation, training, and test. In the adaptation phase, birds were selected for the adaptation to reduce the stress from the box. In the training phase, birds were trained to discriminate and peck at Paper 1 when paired with Paper 8 under one type of background light. Twenty-three birds were tested when the paired paper was changed from Paper 7 to 2. Each pair of paper included 12 trials for every bird, and response time to peck and proportion of choices of Paper 1 in the last 10 trials were collected. The results showed that broilers tested under 5 lux light had longer response times than broilers tested under 50 lux light (P < 0.05). When Paper 1 was paired with paper 7, broilers tested under warm white light had lower proportion of choices of Paper 1 than those tested under cold white light (P < 0.05). Color difference had a significant effect on response time of broilers (P < 0.05). Moreover, the proportion of choices of Paper 1 decreased to 50% (chance-level performance) when color of the paired paper was gradually similar to Paper 1. Conclusively, rearing broilers in warm white rather than cold white light with appropriate light intensity should be recommended to reduce damaging pecking behavior in broiler production.
Collapse
Affiliation(s)
- Chenghao Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Shouyi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Pengguang He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Khawar Hayat
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Hao Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Leshang Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Yuchen Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
18
|
Wu Y, Zhou X, Wang M, Wang W, Yang Y. Effect of light intensity on growth performance and bone development of tibia in broilers. J Anim Physiol Anim Nutr (Berl) 2023; 107:192-199. [PMID: 35060202 DOI: 10.1111/jpn.13681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
Light management affects the health outcomes and growth performance of broiler chickens. However, the effects of different light intensities on growth performance and its association with tibia development of broilers remain unclear. In the present study, 462 Ross male broilers were divided into seven treatment groups with 6 replicates (11 birds per replicate), and then were subjected to different light intensity levels (0.5, 2, 5, 7, 9, 13 or 19 Lx) for 42 days. The results demonstrated that broilers under lower light intensity (2, 5Lx) obtained higher body weight (p < 0.05) and feed conversion ratio (p < 0.05). Lower light intensity exposure had no effects on the length, width, weight, breaking strength and the mineral density of the tibia (p > 0.05), but led to increased ash content and phosphorus during the starter phase (p < 0.05). Also, plasma levels of calcium (Ca), phosphorus (P) and alkaline phosphatase were increased in response to lower light intensity conditions (p < 0.05), but decreased under higher light intensity (p < 0.05), indicating dynamic mineral metabolic and depositional activity to light intensity. In addition, broilers exposed to lower intensity (0.5 Lx, 2 Lx and 5 Lx) during the starter phase had decreased hypertrophic chondrocytes (p < 0.05), but did not affect resting zone chondrocytes and proliferative chondrocytes of the growth plate (p > 0.05). In contrast, the light intensity did not affect the growth performance and the development of the tibia of broilers during the finishing phase. In summary, we demonstrated that lower light intensity promoted the growth performance and the bone development of broilers. Application of lower light intensity at the starter phase might be a management strategy for broiler industries.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Xiumin Zhou
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Mengmeng Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Wenyu Wang
- Nantong Tiancheng Modern Agricultural Technology Co. Ltd., Nantong, Jiangsu Province, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Toomey MB, Marques CI, Araújo PM, Huang D, Zhong S, Liu Y, Schreiner GD, Myers CA, Pereira P, Afonso S, Andrade P, Gazda MA, Lopes RJ, Viegas I, Koch RE, Haynes ME, Smith DJ, Ogawa Y, Murphy D, Kopec RE, Parichy DM, Carneiro M, Corbo JC. A mechanism for red coloration in vertebrates. Curr Biol 2022; 32:4201-4214.e12. [PMID: 36049480 PMCID: PMC9588406 DOI: 10.1016/j.cub.2022.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA.
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro M Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Delai Huang
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Siqiong Zhong
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen D Schreiner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Małgorzata A Gazda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
| | - Ivan Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Maureen E Haynes
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Dustin J Smith
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
20
|
Rotov AY, Goriachenkov AA, Cherbunin RV, Firsov ML, Chernetsov N, Astakhova LA. Magnetoreceptory Function of European Robin Retina: Electrophysiological and Morphological Non-Homogeneity. Cells 2022; 11:cells11193056. [PMID: 36231018 PMCID: PMC9564291 DOI: 10.3390/cells11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for the role of primary magnetosensory molecules are the cryptochromes that are known to be expressed in the avian retina and must be able to interact with phototransduction proteins. Previously, we reported that in migratory birds change in magnetic field direction induces significant effects on electroretinogram amplitude in response to blue flashes, and such an effect was observed only in the nasal quadrant of the retina. Here, we report new electroretinographic, microscopic and microspectrophotometric data on European robins, confirming the magnetosensitivity of the retinal nasal quadrant after applying the background illumination. We hypothesized that magnetoreceptive distinction of this region may be related to its morphology and analyzed the retinal distribution and optical properties of oil droplets, the filtering structures within cones. We found that the nasal quadrant contains double cones with the most intensely colorized oil droplets compared to the rest of the retina, which may be related to its magnetosensory function.
Collapse
Affiliation(s)
- Alexander Yu. Rotov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Arsenii A. Goriachenkov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Roman V. Cherbunin
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Spin Optics Laboratory, Physics Faculty, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Michael L. Firsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Nikita Chernetsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Department of Vertebrate Zoology, Biological Faculty, St. Petersburg State University, 199034 St. Petersburg, Russia
- Ornithology Lab, Zoological Institute RAS, 199034 St. Petersburg, Russia
| | - Luba A. Astakhova
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
21
|
Nagloo N, Mountford JK, Gundry BJ, Hart NS, Davies WIL, Collin SP, Hemmi JM. Enhanced short-wavelength sensitivity in the blue-tongued skink, Tiliqua rugosa. J Exp Biol 2022; 225:275680. [PMID: 35582824 PMCID: PMC9234500 DOI: 10.1242/jeb.244317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022]
Abstract
Despite lizards using a wide range of color signals, the limited variation in photoreceptor spectral sensitivities across lizards suggests only weak selection for species-specific, spectral tuning of photoreceptors. Some species, however, have enhanced short wavelength sensitivity, which likely helps with the detection of signals rich in ultraviolet and short wavelengths. In this study, we examined the visual system of Tiliqua rugosa, which has a UV/blue tongue, to gain insight into this species' visual ecology. We used electroretinograms, opsin sequencing and immunohistochemical labelling to characterize whole eye spectral sensitivity and the elements that shape it. Our findings reveal that T. rugosa expresses all five opsins typically found in lizards (SWS1, SWS2, RH1, RH2 and LWS) but possesses greatly enhanced short wavelength sensitivity compared to other diurnal lizards. This enhanced short wavelength sensitivity is characterized by a broadening of the spectral sensitivity curve of the eye towards shorter wavelengths while the peak sensitivity of the eye at longer wavelengths (560 nm) remains similar to other diurnal lizards. While an increased abundance of SWS1 photoreceptors is thought to mediate elevated ultraviolet sensitivity in a couple of other lizard species, SWS1 photoreceptor abundance remains low in our species. Instead, our findings suggest that short-wavelength sensitivity is driven by multiple factors which include a potentially red-shifted SWS1 photoreceptor and the absence of short-wavelength absorbing oil droplets. Examining the coincidence of enhanced short-wavelength sensitivity with blue tongues among lizards of this genus will provide further insight into the co-evolution of conspecific signals and whole-eye spectral sensitivity.
Collapse
Affiliation(s)
- Nicolas Nagloo
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,Department of Biology, Lund University, Lund, S-212263, Sweden.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| | - Jessica K Mountford
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia
| | - Ben J Gundry
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia
| | - Nathan S Hart
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,School of Natural Sciences, Macquarie University, 2109 NSW, Australia
| | - Wayne I L Davies
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, S-90187, Sweden.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia.,Oceans Graduate School, The University of Western Australia, 6009 WA, Australia.,Clinical Genetics and Epidemiology, and Centre for Ophthalmology and Visual Science incorporating the Lions Eye Institute, The University of Western Australia, 6009 WA, Australia.,School of Agriculture, Biomedicine and Environment, La Trobe University Bundoora, Victoria 3086, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, 6009 WA, Australia.,The UWA Oceans Institute, The University of Western Australia, 6009 WA, Australia
| |
Collapse
|
22
|
José Paixão S, Mendes AS, Possenti MA, Sikorski RR, do Vale MM, de Souza C, Guimarães BE, de Moura DJ, de Alencar Nääs I, Nunes IB. Broiler behavior differs from males to females when under different light wavelengths. Trop Anim Health Prod 2022; 54:189. [PMID: 35581505 DOI: 10.1007/s11250-022-03188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
It is well established that different light wavelengths affect broiler behavior. The present study aims to evaluate the effect of four light wavelengths on broiler behavior from 1 to 42 days of age. Birds were housed at a stocking density of 13 birds/m2, in 32 boxes of 1.56 m2. The experimental design was a completely randomized factorial of 4 × 2 (four colors × two sexes), with four replicates. Behavioral variables were accessed through cameras and observed in person thrice a week for 30 min per day in three different periods. Data were organized according to age groups and analyzed by a data mining approach with the different light wavelengths as the classes. Natural behavior defined by stretch, dust bath of male broilers reared in environments with green and blue light was more relevant to the classification of male broilers' behavior (96.9 and 96.9% accuracy and 0.8 and 1.0 of class precision of behavior classification, respectively). Blue and green lights affected the behavior of male broilers starting at 7 days of age, increasing the presence at the bird feeder, and reducing the idle period.
Collapse
|
23
|
Chetverikova R, Dautaj G, Schwigon L, Dedek K, Mouritsen H. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. J R Soc Interface 2022; 19:20210877. [PMID: 35414212 PMCID: PMC9006000 DOI: 10.1098/rsif.2021.0877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity. Theoretical considerations suggest that this could be best achieved if neighbouring double cones were oriented in an ordered pattern. Therefore, we investigate the orientation patterns of double cones in European robins (Erithacus rubecula) and domestic chickens (Gallus gallus domesticus). We used whole-mounted retinas labelled with double cone markers to quantify the orientations of individual double cones in relation to their nearest neighbours. In both species, our data show that the double cone array is highly ordered: the angles between neighbouring double cones were more likely to be 90°/-90° in the central retina and 180°/0° in the peripheral retina, respectively. The observed regularity in double cone orientation could aid the cells' putative function in light-dependent magnetoreception and/or polarized light sensing.
Collapse
Affiliation(s)
- Raisa Chetverikova
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Glen Dautaj
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Leonard Schwigon
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Impact of cone abundancy ratios and light spectra on emmetropization in chickens. Exp Eye Res 2022; 219:109086. [DOI: 10.1016/j.exer.2022.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|
25
|
Oso OM, Metowogo K, Oke OE, Tona K. Influence of LED bulb on reproductive and production performance of different poultry species: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2044273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- O. M Oso
- Regional Centre of Excellence in Poultry Sciences, University of Lome, Lome, Togo
| | - K. Metowogo
- Regional Centre of Excellence in Poultry Sciences, University of Lome, Lome, Togo
- Department of Animal Physiology, Faculty of Science, University of Lome, Lome, Togo
| | - O. E Oke
- Regional Centre of Excellence in Poultry Sciences, University of Lome, Lome, Togo
- Department of Animal Physiology, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, Nigeria
| | - K. Tona
- Regional Centre of Excellence in Poultry Sciences, University of Lome, Lome, Togo
| |
Collapse
|
26
|
Remonato Franco B, Leis ML, Wong M, Shynkaruk T, Crowe T, Fancher B, French N, Gillingham S, Schwean-Lardner K. Light Color and the Commercial Broiler: Effect on Ocular Health and Visual Acuity. Front Physiol 2022; 13:855266. [PMID: 35360232 PMCID: PMC8960735 DOI: 10.3389/fphys.2022.855266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Light is a critical management factor for broiler production, and the wavelength spectrum, one of its components, can affect bird physiology, behavior and production. Among all the senses, sight is important to birds, and their visual system possess several adaptations that allow them to perceive light differently from humans. Therefore, it is critical to consider whether the exposure to monochromatic light colors influences broiler visual ability, which could affect behavioral expression. The present study examined the effects of various light colors on the visual systems of broiler chickens. Ross 708 males were raised from 0 to 35 days under three wavelength programs [blue (dominant wavelengths near 455 nm), green (dominant wavelengths near 510 nm) or white]. Broilers were given a complete ophthalmic examination, including chromatic pupillary light reflex testing, rebound tonometry, anterior segment biomicroscopy and indirect ophthalmoscopy (n = 36, day 21). To assess ocular anatomy, broilers were euthanized, eyes were weighed, and dimensions were taken (n = 108, day 16 and day 24). An autorefractor was used to assess the refractive index and the corneal curvature (n = 18, day 26). To evaluate spatial vision, broilers underwent a grating acuity test at one of three distances–50, 75, or 100 cm (n = 24, day 29). Data were analyzed as a one-way ANOVA using the MIXED procedure or Proc Par1way for non-normally distributed data. Significant differences were observed for refractive index and spatial vision. Birds raised under blue light were slightly more hyperopic, or far-sighted, than birds raised under white light (P = 0.01). As for spatial vision, birds raised under blue light took less time to approach the stimulus at distances of 50 cm (P = 0.03) and 75 cm (P = 0.0006) and had a higher success rate (choosing the right feeder, P = 0.03) at 100 cm than birds raised under white light. Improvements in spatial vision for birds exposed to blue light can partially explain the behavioral differences resulting from rearing broilers under different wavelengths.
Collapse
Affiliation(s)
- Bruna Remonato Franco
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marina L. Leis
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melody Wong
- Department of Ophthalmology, Saskatoon City Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tory Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Trever Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryan Fancher
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Nick French
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Scot Gillingham
- Aviagen™ Inc., Cummings Research Park, Huntsville, AL, United States
| | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Karen Schwean-Lardner,
| |
Collapse
|
27
|
Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones MK, Zack DJ, Enke RA, Wahlin KJ. Temporal and Isoform-Specific Expression of CTBP2 Is Evolutionarily Conserved Between the Developing Chick and Human Retina. Front Mol Neurosci 2022; 14:773356. [PMID: 35095414 PMCID: PMC8793361 DOI: 10.3389/fnmol.2021.773356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Complex transcriptional gene regulation allows for multifaceted isoform production during retinogenesis, and novel isoforms transcribed from a single locus can have unlimited potential to code for diverse proteins with different functions. In this study, we explored the CTBP2/RIBEYE gene locus and its unique repertoire of transcripts that are conserved among vertebrates. We studied the transcriptional coregulator (CTBP2) and ribbon synapse-specific structural protein (RIBEYE) in the chicken retina by performing comprehensive histochemical and sequencing analyses to pinpoint cell and developmental stage-specific expression of CTBP2/RIBEYE in the developing chicken retina. We demonstrated that CTBP2 is widely expressed in retinal progenitors beginning in early retinogenesis but becomes limited to GABAergic amacrine cells in the mature retina. Inversely, RIBEYE is initially epigenetically silenced in progenitors and later expressed in photoreceptor and bipolar cells where they localize to ribbon synapses. Finally, we compared CTBP2/RIBEYE regulation in the developing human retina using a pluripotent stem cell derived retinal organoid culture system. These analyses demonstrate that similar regulation of the CTBP2/RIBEYE locus during chick and human retinal development is regulated by different members of the K50 homeodomain transcription factor family.
Collapse
Affiliation(s)
- Elizabeth Gage
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Devansh Agarwal
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Calvin Chenault
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Sarah Szvetecz
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
| | - Nusrat Jahan
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Zixiao Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Melissa K. Jones
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Karl J. Wahlin
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Yu L, Xu X, Li F, Zhou W, Zeng H, Tan EJ, Zhang S, Li D. From crypsis to masquerade: Ontogeny changes the colour defences of a crab spider hiding as bird droppings. Funct Ecol 2022. [DOI: 10.1111/1365-2435.13998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution School of Life Sciences Hubei University Wuhan China
| | - Xin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution School of Life Sciences Hubei University Wuhan China
- School of Life Sciences Hunan Normal University Changsha China
| | - Fan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution School of Life Sciences Hubei University Wuhan China
- Department of Biological Sciences National University of Singapore Singapore
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Wei Zhou
- Department of Biological Sciences National University of Singapore Singapore
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | | | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering & Centre for Behavioural Ecology & Evolution School of Life Sciences Hubei University Wuhan China
| | - Daiqin Li
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
29
|
Wang B, Yu L, Ma N, Zhang Z, Gong D, Liu R, Li D, Zhang S. Conspicuous cruciform silk decorations deflect avian predator attacks. Integr Zool 2021; 17:689-703. [PMID: 34958514 DOI: 10.1111/1749-4877.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although camouflage as an effective antipredator defence strategy is widespread across animals, highly conspicuous color patterning is not uncommon either. Many orb-web spiders adorn their webs with extra, bright white silk. These conspicuous decorations are hypothesized to deter predators by warning the presence of sticky webs, camouflaging spiders, acting as a decoy, or intimidating predators by their apparent size. The decorations may also deflect predator attacks from spiders. However, empirical evidence for this deflection function remains limited. Here we tested this hypothesis using the X-shaped silk cruciform decorations built by females of Argiope minuta. We employed visual modelling to quantify the conspicuousness of spiders and decorations from a perspective of avian predators. Then we determined actual predation risk on spiders using naïve chicks as predators. Spider bodies and decorations were conspicuous against natural backgrounds to the avian visual systems. Chicks attacked the spider main bodies significantly less frequently on the decorated webs than on the undecorated webs, thus reducing predation risk. When both spiders and decorations were present, chicks also attacked the spider main bodies and their legs or decorations, and not randomly: they attacked the legs or decorations sooner and more frequently than they attacked the main bodies, independence of the ratio of the surface area between the decoration and spider size. Despite the increase in detectability, incorporating a conspicuous cruciform decoration to the web effectively defends the spider by diverting the attack towards the decoration or leg, but not by camouflaging or intimidating, thus, supporting the deflection hypothesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bingjun Wang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Long Yu
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543
| | - Nina Ma
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zengtao Zhang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Deyong Gong
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Rui Liu
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543
| | - Shichang Zhang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| |
Collapse
|
30
|
Victory N, Segovia Y, García M. Cone distribution and visual resolution of the yellow-legged gull, Larus michahellis (Naumann, 1840). Anat Histol Embryol 2021; 51:197-214. [PMID: 34939688 DOI: 10.1111/ahe.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 11/27/2021] [Indexed: 01/21/2023]
Abstract
The morphological characteristics of the yellow-legged gull's photoreceptors and cone distribution were studied using light and electron microscopy. In wholemount fresh retinas, five different coloured oil droplets located in the cone inner segments could be seen and characterized by colour, diameter and stratification. The photoreceptors were classified by comparing the fresh and fixed vertical sections under a light and electron microscope. Rods were easily distinguished from cones based on the outer segment morphology and the absence of oil droplets in their inner segments. Four types of single cones were associated with red, yellow, colourless and transparent oil droplets. Unequal double cones comprised a long principal member with a green oil droplet and an accessory short member containing a green microdroplet which was highly electron-dense under electron microscopy. The different types of oil droplets were counted from microphotographs of fresh retinal samples in 20 regions. The density, percentage and diameter of the oil droplets were determined. The results showed that central regions had the highest oil droplet density which decreased towards the retinal periphery in all quadrants. Moreover, the oil droplet density was higher in the dorsotemporal quadrant than in other retinal regions. The average density of the red oil droplets was highest in the central areas, whereas colourless oil droplets had the highest density throughout the retina. In contrast, transparent oil droplets had the lowest density across all the regions of the retina. Finally, the retinal resolution was 52.61 cycles/degree. It was calculated using the posterior nodal distance and the oil droplet diameter. The work concludes by discussing the significance of the relative proportion of different cone types across the retina.
Collapse
Affiliation(s)
- Noemi Victory
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Yolanda Segovia
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| | - Magdalena García
- Department of Biotechnology, Faculty of Science, University of Alicante, Alicante, Spain
| |
Collapse
|
31
|
Ontogenetic colour change of a sexual ornament in males of a damselfly: female mimicry, crypsis or both? Naturwissenschaften 2021; 109:2. [PMID: 34874492 DOI: 10.1007/s00114-021-01775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Female mimicry by males is a widespread phenomenon in several taxa and may be involved in aggression avoidance or facilitated access to resources. In early developmental stages, female mimicry may be a mechanism involved in signalling sexual immaturity or, when coupled with strategies related to visual camouflage, may be involved in the avoidance of male-male agonistic interactions. Here, we addressed whether the delayed colour maturation of a sexual ornament in males of Mnesarete pudica damselflies might be a case of crypsis, female mimicry or both. We analysed how conspecifics and predators perceive the pigmented wings of juvenile males by contrasting the wing spectra against a savannah background and the wings of both juvenile and sexually mature males and females. Our results based on the modelled visual system of conspecifics and predators suggest that the colour maturation of juvenile males may function as both crypsis and female mimicry. We discuss whether these results related to age- and sexual-dichromatism might be a mechanism to avoid unwanted intraspecific interactions or to avoid territorial and aggressive males. We conclude that the female mimicry and crypsis in juvenile males of M. pudica are mechanisms involved in avoidance of predators and unwanted intraspecific interactions, and the signalling of sexual maturity.
Collapse
|
32
|
Wu Y, Huang J, Quan S, Yang Y. Light regimen on health and growth of broilers: an update review. Poult Sci 2021; 101:101545. [PMID: 34823171 PMCID: PMC8626679 DOI: 10.1016/j.psj.2021.101545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The importance of lighting regimen is increasing with the industrialization of poultry production, as lighting has been intimately associated with not only the establishment of rhythm and synchronous physiology of broiler chickens, but also the secretion of hormones associated with broiler maturation and growth. In recent years, increasing attention has been paid to the effects of lighting management on growth performance, immune status, and welfare of broilers. An appropriate lighting regimen, including proper source of lighting, intensity, duration, and wavelength (color) of light, is crucial to improve the growth performance and welfare of broilers. In this review, we updated the impacts of different light regimens on health and growth performance of broilers.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shuli Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Arias M, Leroy L, Madec C, Matos L, Tedore C, Elias M, Gomez D. Partial wing transparency works better when disrupting wing edges: Evidence from a field experiment. J Evol Biol 2021; 34:1840-1846. [PMID: 34601773 DOI: 10.1111/jeb.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Lepidoptera-a group of insects in which wing transparency has arisen multiple times-exhibits much variation in the size and position of transparent wing zones. However, little is known as to how this variability affects detectability. Here, we test how the size and position of transparent elements affect the predation of artificial moths by wild birds in the field. Morphs with transparent elements touching wing borders showed a reduced predation risk, with the effect being the same regardless of the number of wing borders being touched. By contrast, transparent element size had little to no effect on predation risk. Overall, this experiment shows for the first time that transparency offers higher protection when it disrupts prey contour in terrestrial habitats.
Collapse
Affiliation(s)
- Mónica Arias
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,ISYEB, CNRS, MNHN, Sorbonne Univ, EPHE, Univ. Antilles, 45 rue Buffon CP50, Paris, France
| | - Lucie Leroy
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Clément Madec
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Louane Matos
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France
| | - Cynthia Tedore
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,Faculty of Mathematics, Informatics and Natural Sciences, Institute of Zoology, Univ. Hamburg, Hamburg, Germany
| | - Marianne Elias
- ISYEB, CNRS, MNHN, Sorbonne Univ, EPHE, Univ. Antilles, 45 rue Buffon CP50, Paris, France
| | - Doris Gomez
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, Montpellier, France.,INSP, CNRS, Sorbonne Univ., Paris, France
| |
Collapse
|
34
|
Multimodal imaging and functional analysis of the chick NMDA retinal damage model. PLoS One 2021; 16:e0257148. [PMID: 34492087 PMCID: PMC8423281 DOI: 10.1371/journal.pone.0257148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Objectives The chick is rapidly becoming a standardized preclinical model in vision research to study mechanisms of ocular disease. We seek to comprehensively evaluate the N-methyl-D-aspartate (NMDA) model of excitotoxic retinal damage using multimodal imaging, functional, and histologic approaches in NMDA-damaged, vehicle-treated, and undamaged chicks. Methods Chicks were either left undamaged in both eyes or were injected with NMDA in the left eye and saline (vehicle) in the right eye. TUNEL assay was performed on chicks to assess levels of retinal cell death one day post-injection of NMDA or saline and on age-matched untreated chicks. Spectral domain optical coherence tomography (SD-OCT) was performed weekly on chicks and age-matched controls day 1 (D1) up to D28 post-injection. Light adapted electroretinograms (ERG) were performed alongside SD-OCT measurements on post-injection chicks along with age-matched untreated controls. Results Untreated and vehicle-treated eyes had no TUNEL positive cells while NMDA-treated eyes accumulated large numbers of TUNEL positive cells in the Inner Nuclear Layer (INL), but not other layers, at D1 post injection. Significant inner retina swelling or edema was found on SD-OCT imaging at D1 post-injection which resolved at subsequent timepoints. Both the INL and the inner plexiform layer significantly thinned by one-week post-injection and did not recover for the duration of the measurements. On ERG, NMDA-treated eyes had significantly reduced amplitudes of all parameters at D1 with all metrics improving over time. The b-wave, oscillatory potentials, and ON/OFF bipolar responses were the most affected with at least 70% reduction immediately after damage compared to the fellow eye control. Conclusion This study establishes a normative baseline on the retinal health and gross functional ability as well as intraocular pressures of undamaged, vehicle-treated, and NMDA-damaged chicks to provide a standard for comparing therapeutic treatment studies in this important animal model.
Collapse
|
35
|
Wang B, Yu L, Ma N, Zhang Z, Liu Q, Fan W, Rong Y, Zhang S, Li D. Discoid decorations function to shield juvenile Argiope spiders from avian predator attacks. Behav Ecol 2021. [DOI: 10.1093/beheco/arab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Decorating behavior is common in various animal taxa and serves a variety of functions from camouflage to communication. One predominant function cited for decoration is to avoid predators. Conspicuous, disc-like (discoid) silk decorations spun by orb-web Argiope juvenile spiders are hypothesized, among others, to defend spiders against visual predators by concealing spider outlines on the web, deflecting attacks, shielding them from view, or masquerading as bird-droppings. However, the direct evidence is limited for a specific mechanism by which discoid decorations may deter predators. Here we evaluate the mechanisms by which discoid decorations may defend Argiope juveniles against naïve chicks. Using visual modeling, we show that avian predators are able to distinguish spiders from discoid decorations. Using chick predation experiments, we found that the naïve chicks readily pecked any objects, ruling out the possibility of their neophobia. Significantly more chicks attacked spiders when they were exposed to chicks, regardless of whether their webs had discoid decorations, but few chicks attacked spiders when they were behind the decorations. We also found that significantly few chicks attacked decorations when spiders were absent or behind the decorations. We thus conclude that discoid decorations function to deter avian predators by shielding the spider from view or distracting, not by deflecting attacks, concealing the spider’s outline, or masquerading as bird-droppings. This study sheds light on the study of other similar anti-predator strategies, in a wide range of spider species and other animals that use decorating strategies.
Collapse
Affiliation(s)
- Bingjun Wang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Long Yu
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Nina Ma
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zengtao Zhang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qian Liu
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wenrui Fan
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yu Rong
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Shichang Zhang
- Centre for Behavioural Ecology and Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
36
|
Barua A, Beygi A, Hatzikirou H. Close to Optimal Cell Sensing Ensures the Robustness of Tissue Differentiation Process: The Avian Photoreceptor Mosaic Case. ENTROPY 2021; 23:e23070867. [PMID: 34356408 PMCID: PMC8303396 DOI: 10.3390/e23070867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
The way that progenitor cell fate decisions and the associated environmental sensing are regulated to ensure the robustness of the spatial and temporal order in which cells are generated towards a fully differentiating tissue still remains elusive. Here, we investigate how cells regulate their sensing intensity and radius to guarantee the required thermodynamic robustness of a differentiated tissue. In particular, we are interested in finding the conditions where dedifferentiation at cell level is possible (microscopic reversibility), but tissue maintains its spatial order and differentiation integrity (macroscopic irreversibility). In order to tackle this, we exploit the recently postulated Least microEnvironmental Uncertainty Principle (LEUP) to develop a theory of stochastic thermodynamics for cell differentiation. To assess the predictive and explanatory power of our theory, we challenge it against the avian photoreceptor mosaic data. By calibrating a single parameter, the LEUP can predict the cone color spatial distribution in the avian retina and, at the same time, suggest that such a spatial pattern is associated with quasi-optimal cell sensing. By means of the stochastic thermodynamics formalism, we find out that thermodynamic robustness of differentiated tissues depends on cell metabolism and cell sensing properties. In turn, we calculate the limits of the cell sensing radius that ensure the robustness of differentiated tissue spatial order. Finally, we further constrain our model predictions to the avian photoreceptor mosaic.
Collapse
Affiliation(s)
- Arnab Barua
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Alireza Beygi
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
| | - Haralampos Hatzikirou
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Nöthnitzer Straße 46, 01062 Dresden, Germany; (A.B.); (A.B.)
- Mathematics Department, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
37
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
38
|
Abstract
Our previous research showed that increased phosphorylation of connexin (Cx)36 indicated extended coupling of AII amacrine cells (ACs) in the rod-dominant mouse myopic retina. This research will determine whether phosphorylation at serine 276 of Cx35-containing gap junctions increased in the myopic chicken, whose retina is cone-dominant. Refractive errors and ocular biometric dimensions of 7-days-old chickens were determined following 12 h and 7 days induction of myopia by a −10D lens. The expression pattern and size of Cx35-positive plaques were examined in the early (12 h) and compensated stages (7 days) of lens-induced myopia (LIM). At the same time, phosphorylation at serine 276 (functional assay) of Cx35 in strata 5 (S5) of the inner plexiform layer was investigated. The axial length of the 7 days LIM eyes was significantly longer than that of non-LIM controls (P < 0.05). Anti-phospho-Ser276 (Ser276-P)-labeled plaques were significantly increased in LIM retinas at both 12 h and 7 days. The density of Ser276-P of Cx35 was observed to increase after 12 h LIM. In the meanwhile, the areas of existing Cx35 plaques did not change. As there was more phosphorylation of connexin35 at Ser276 at both the early and late stages (12 h) and 7 days of LIM chicken retinal activity, the coupling with ACs could be increased in myopia development of the cone-dominated chicken retina.
Collapse
|
39
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
40
|
McNerney C, Johnston RJ. Thyroid hormone signaling specifies cone photoreceptor subtypes during eye development: Insights from model organisms and human stem cell-derived retinal organoids. VITAMINS AND HORMONES 2021; 116:51-90. [PMID: 33752828 DOI: 10.1016/bs.vh.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cones are the color-detecting photoreceptors of the vertebrate eye. Cones are specialized into subtypes whose functions are determined by the expression of color-sensitive opsin proteins. Organisms differ greatly in the number and patterning of cone subtypes. Despite these differences, thyroid hormone is an important regulator of opsin expression in most vertebrates. In this chapter, we outline how the timing of thyroid hormone signaling controls cone subtype fates during retinal development. We first examine our current understanding of cone subtype specification in model organisms and then describe advances in human stem cell-derived organoid technology that identified mechanisms controlling development of the human retina.
Collapse
Affiliation(s)
- Christina McNerney
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
41
|
Tedore C, Nilsson DE. Ultraviolet vision aids the detection of nutrient-dense non-signaling plant foods. Vision Res 2021; 183:16-29. [PMID: 33639304 DOI: 10.1016/j.visres.2021.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 11/29/2022]
Abstract
To expand our understanding of what tasks are particularly helped by UV vision and may justify the costs of focusing high-energy light onto the retina, we used an avian-vision multispectral camera to image diverse vegetated habitats in search of UV contrasts that differ markedly from visible-light contrasts. One UV contrast that stood out as very different from visible-light contrasts was that of nutrient-dense non-signaling plant foods (such as young leaves and immature fruits) against their natural backgrounds. From our images, we calculated color contrasts between 62+ species of such foods and mature foliage for the two predominant color vision systems of birds, UVS and VS. We also computationally generated images of what a generalized tetrachromat, unfiltered by oil droplets, would see, by developing a new methodology that uses constrained linear least squares to solve for optimal weighted combinations of avian camera filters to mimic new spectral sensitivities. In all visual systems, we found that nutrient-dense non-signaling plant foods presented a lower, often negative figure-ground contrast in the UV channels, and a higher, often positive figure-ground contrast in the visible channels. Although a zero contrast may sound unhelpful, it can actually enhance color contrast when compared in a color opponent system to other channels with nonzero contrasts. Here, low or negative UV contrasts markedly enhanced color contrasts. We propose that plants may struggle to evolve better UV crypsis since UV reflectance from vegetation is largely specular and thus highly dependent on object orientation, shape, and texture.
Collapse
Affiliation(s)
- Cynthia Tedore
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| | - Dan-Eric Nilsson
- Lund Vision Group, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
42
|
Ren Y, Hiscock HG, Hore PJ. Angular Precision of Radical Pair Compass Magnetoreceptors. Biophys J 2021; 120:547-555. [PMID: 33421412 PMCID: PMC7896030 DOI: 10.1016/j.bpj.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022] Open
Abstract
The light-dependent magnetic compass sense of night-migratory songbirds is thought to rely on magnetically sensitive chemical reactions of radical pairs in cryptochrome proteins located in the birds' eyes. Recently, an information theory approach was developed that provides a strict lower bound on the precision with which a bird could estimate its head direction using only geomagnetic cues and a cryptochrome-based radical pair sensor. By means of this lower bound, we show here how the performance of the compass sense could be optimized by adjusting the orientation of cryptochrome molecules within photoreceptor cells, the distribution of cells around the retina, and the effects of the geomagnetic field on the photochemistry of the radical pair.
Collapse
Affiliation(s)
- Yi Ren
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hamish G Hiscock
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
43
|
Yamagata M, Yan W, Sanes JR. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021; 10:e63907. [PMID: 33393903 PMCID: PMC7837701 DOI: 10.7554/elife.63907] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/01/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal structure and function have been studied in many vertebrate orders, but molecular characterization has been largely confined to mammals. We used single-cell RNA sequencing (scRNA-seq) to generate a cell atlas of the chick retina. We identified 136 cell types plus 14 positional or developmental intermediates distributed among the six classes conserved across vertebrates - photoreceptor, horizontal, bipolar, amacrine, retinal ganglion, and glial cells. To assess morphology of molecularly defined types, we adapted a method for CRISPR-based integration of reporters into selectively expressed genes. For Müller glia, we found that transcriptionally distinct cells were regionally localized along the anterior-posterior, dorsal-ventral, and central-peripheral retinal axes. We also identified immature photoreceptor, horizontal cell, and oligodendrocyte types that persist into late embryonic stages. Finally, we analyzed relationships among chick, mouse, and primate retinal cell classes and types. Our results provide a foundation for anatomical, physiological, evolutionary, and developmental studies of the avian visual system.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
44
|
Olsson P, Johnsson RD, Foster JJ, Kirwan JD, Lind O, Kelber A. Chicken colour discrimination depends on background colour. J Exp Biol 2020; 223:jeb209429. [PMID: 33097569 DOI: 10.1242/jeb.209429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
How well can a bird discriminate between two red berries on a green background? The absolute threshold of colour discrimination is set by photoreceptor noise, but animals do not perform at this threshold; their performance can depend on additional factors. In humans and zebra finches, discrimination thresholds for colour stimuli depend on background colour, and thus the adaptive state of the visual system. We have tested how well chickens can discriminate shades of orange or green presented on orange or green backgrounds. Chickens discriminated slightly smaller colour differences between two stimuli presented on a similarly coloured background, compared with a background of very different colour. The slope of the psychometric function was steeper when stimulus and background colours were similar but shallower when they differed markedly, indicating that background colour affects the certainty with which the animals discriminate the colours. The effect we find for chickens is smaller than that shown for zebra finches. We modelled the response to stimuli using Bayesian and maximum likelihood estimation and implemented the psychometric function to estimate the effect size. We found that the result is independent of the psychophysical method used to evaluate the effect of experimental conditions on choice performance.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | - James J Foster
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - John D Kirwan
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Olle Lind
- Department of Philosophy, Lund University, 223 62 Lund, Sweden
| | - Almut Kelber
- Department of Biology, Lund University, 223 62 Lund, Sweden
| |
Collapse
|
45
|
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. Semin Cell Dev Biol 2020; 106:106-115. [PMID: 32295724 DOI: 10.1016/j.semcdb.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The Avian retina is far less known than that of mammals such as mouse and macaque, and detailed study is overdue. The chicken (Gallus gallus) has potential as a model, in part because research can build on developmental studies of the eye and nervous system. One can expect differences between bird and mammal retinas simply because whereas most mammals have three types of visual photoreceptor birds normally have six. Spectral pathways and colour vision are of particular interest, because filtering by oil droplets narrows cone spectral sensitivities and birds are probably tetrachromatic. The number of receptor inputs is reflected in the retinal circuitry. The chicken probably has four types of horizontal cell, there are at least 11 types of bipolar cell, often with bi- or tri-stratified axon terminals, and there is a high density of ganglion cells, which make complex connections in the inner plexiform layer. In addition, there is likely to be retinal specialisation, for example chicken photoreceptors and ganglion cells have separate peaks of cell density in the central and dorsal retina, which probably serve different types of behaviour.
Collapse
Affiliation(s)
- M Seifert
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK.
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK; Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - D Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
| |
Collapse
|
46
|
Ma N, Yu L, Gong D, Hua Z, Zeng H, Chen L, Mao A, Chen Z, Cai R, Ma Y, Zhang Z, Li D, Luo J, Zhang S. Detritus decorations as the extended phenotype deflect avian predator attack in an orb‐web spider. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nina Ma
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Long Yu
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Deyong Gong
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zeyuan Hua
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Hua Zeng
- State Key Laboratory of Protein and Plant Gene Research Peking‐Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Luyao Chen
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Aijia Mao
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zhizhao Chen
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Ruxing Cai
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Yubing Ma
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Zengtao Zhang
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Daiqin Li
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Jing Luo
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| | - Shichang Zhang
- Centre for Behavioral Ecology and Evolution State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University Wuhan China
| |
Collapse
|
47
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
48
|
Lomba E, Weis JJ, Guisández L, Torquato S. Minimal statistical-mechanical model for multihyperuniform patterns in avian retina. Phys Rev E 2020; 102:012134. [PMID: 32794939 DOI: 10.1103/physreve.102.012134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
Birds are known for their extremely acute sense of vision. The very peculiar structural distribution of five different types of cones in the retina underlies this exquisite ability to sample light. It was recently found that each cone population as well as their total population display a disordered pattern in which long-wavelength density fluctuations vanish [Jiao et al., Phys. Rev. E 89, 022721 (2014)PLEEE81539-375510.1103/PhysRevE.89.022721]. This property, known as hyperuniformity, is also present in perfect crystals. In situations like the avian retina in which both the global structure and that of each component display hyperuniformity, the system is said to be multihyperuniform. In this work, we aim at devising a minimal statistical-mechanical model that can reproduce the main features of the spatial distribution of photoreceptors in avian retina, namely the presence of disorder, multihyperuniformity, and local heterocoordination. This last feature is key to avoiding local clustering of the same type of photoreceptors, an undesirable feature for the efficient sampling of light. For this purpose, we formulate a minimal statistical-mechanical model that definitively exhibits the required structural properties: an equimolar three-component mixture (one component to sample each primary color: red, green, and blue) of nonadditive hard disks to which a long-range logarithmic repulsion is added between like particles. Interestingly, a Voronoi analysis of our idealized system of photoreceptors shows that the space-filling Voronoi polygons display a rather uniform area distribution, symmetrically centered around that of a regular lattice, a structural property also found in human retina. Disordered multihyperuniformity offers an alternative to generate photoreceptor patterns with minimal long-range concentration and density fluctuations. This is the key to overcoming the difficulties in devising an efficient visual system in which crystal-like order is absent.
Collapse
Affiliation(s)
- Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Jean-Jacques Weis
- Université de Paris-Saclay, Laboratoire de Physique Théorique, Bâtiment 210, 91405 Orsay Cedex, France
| | - Leandro Guisández
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain.,IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
49
|
Soliman FN, El-Sabrout K. Light wavelengths/colors: Future prospects for broiler behavior and production. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2019.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Shao Y, Tian HY, Zhang JJ, Kharrati-Koopaee H, Guo X, Zhuang XL, Li ML, Nanaie HA, Dehghani Tafti E, Shojaei B, Reza Namavar M, Sotoudeh N, Oluwakemi Ayoola A, Li JL, Liang B, Esmailizadeh A, Wang S, Wu DD. Genomic and Phenotypic Analyses Reveal Mechanisms Underlying Homing Ability in Pigeon. Mol Biol Evol 2020; 37:134-148. [PMID: 31501895 DOI: 10.1093/molbev/msz208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | | | - Elahe Dehghani Tafti
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bahador Shojaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Narges Sotoudeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shu Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|