1
|
Veerapandian B, Krishnan S, Sivaraman S, Immanuel A, Shanmugam SR, Toksoy Öner E, Venkatachalam P, Ulaganathan V. Bacillus spp. as microbial factories for levan and fructooligosaccharide production - Recent trends. Int J Biol Macromol 2025; 300:140252. [PMID: 39863230 DOI: 10.1016/j.ijbiomac.2025.140252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications. Studies on novel microbial producer strains and fermentation conditions have led to advancements in production processes. Remarkably, the production of levan using the native producer Bacillus spp. has shown promising trends in yield and molecular weight distribution of levan and levan-type fructooligosaccharides. Ongoing studies on levan highlight the importance of understanding the complexities of levan production for commercial scalability. The present article explores the potential of Bacillus spp. as native levan producers, presenting insights into synthesis mechanisms, factors influencing the production of levan, and genetic modifications aimed at enhancing production efficiency and altering properties.
Collapse
Affiliation(s)
- Bhuvaneshwari Veerapandian
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Srividhya Krishnan
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Subramaniyasharma Sivaraman
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Aruldoss Immanuel
- School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | | | - Ebru Toksoy Öner
- IBSB, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Ponnusami Venkatachalam
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
| | | |
Collapse
|
2
|
Koemans T, Bennett M, Ferraz MJ, Armstrong Z, Artola M, Aerts JMFG, Codée JDC, Overkleeft HS, Davies GJ. Structure-guided design of C3-branched swainsonine as potent and selective human Golgi α-mannosidase (GMII) inhibitor. Chem Commun (Camb) 2024; 60:11734-11737. [PMID: 39318342 DOI: 10.1039/d4cc04514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The human Golgi α-mannosidase, hGMII, removes two mannose residues from GlcNAc-Man5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor of all complex N-glycans including tumour-associated ones. The natural product GMII inhibitor, swainsonine, blocks processing of cancer-associated N-glycans, but also inhibits the four other human α-mannosidases, rendering it unsuitable for clinical use. Our previous structure-guided screening of iminosugar pyrrolidine and piperidine fragments identified two micromolar hGMII inhibitors occupying the enzyme active pockets in adjacent, partially overlapping sites. Here we demonstrate that fusing these fragments yields swainsonine-configured indolizidines featuring a C3-substituent that act as selective hGMII inhibitors. Our structure-guided GMII-selective inhibitor design complements a recent combinatorial approach that yielded similarly configured and substituted indolizidine GMII inhibitors, and holds promise for the potential future development of anti-cancer agents targeting Golgi N-glycan processing.
Collapse
Affiliation(s)
- Tony Koemans
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Megan Bennett
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York, YO10 5DD, UK.
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Zachary Armstrong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Liu FF, Wang M, Ma GH, Kulinich A, Liu L, Voglmeir J. Characterization of Solitalea canadensis α-mannosidase with specific activity towards α1,3-Mannosidic linkages. Carbohydr Res 2024; 538:109100. [PMID: 38555657 DOI: 10.1016/j.carres.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
A recombinant exo-α-mannosidase from Solitalea canadensis (Sc3Man) has been characterized to exhibit strict specificity for hydrolyzing α1,3-mannosidic linkages located at the non-reducing end of glycans containing α-mannose. Enzymatic characterization revealed that Sc3Man operates optimally at a pH of 5.0 and at a temperature of 37 °C. The enzymatic activity was notably enhanced twofold in the presence of Ca2+ ions, emphasizing its potential dependency on this metal ion, while Cu2+ and Zn2+ ions notably impaired enzyme function. Sc3Man was able to efficiently cleave the terminal α1,3 mannose residue from various high-mannose N-glycan structures and from the model glycoprotein RNase B. This work not only expands the categorical scope of bacterial α-mannosidases, but also offers new insight into the glycan metabolism of S. canadensis, highlighting the enzyme's utility for glycan analysis and potential biotechnological applications.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guan-Hua Ma
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Males A, Kok K, Nin-Hill A, de Koster N, van den Beukel S, Beenakker TJM, van der Marel GA, Codée JDC, Aerts JMFG, Overkleeft HS, Rovira C, Davies GJ, Artola M. Trans-cyclosulfamidate mannose-configured cyclitol allows isoform-dependent inhibition of GH47 α-d-mannosidases through a bump-hole strategy. Chem Sci 2023; 14:13581-13586. [PMID: 38033892 PMCID: PMC10685318 DOI: 10.1039/d3sc05016e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
Class I inverting exo-acting α-1,2-mannosidases (CAZY family GH47) display an unusual catalytic itinerary featuring ring-flipped mannosides, 3S1 → 3H4‡ → 1C4. Conformationally locked 1C4 compounds, such as kifunensine, display nanomolar inhibition but large multigene GH47 mannosidase families render specific "isoform-dependent" inhibition impossible. Here we develop a bump-and-hole strategy in which a new mannose-configured 1,6-trans-cyclic sulfamidate inhibits α-d-mannosidases by virtue of its 1C4 conformation. This compound does not inhibit the wild-type GH47 model enzyme by virtue of a steric clash, a "bump", in the active site. An L310S (a conserved residue amongst human GH47 enzymes) mutant of the model Caulobacter GH47 awoke 574 nM inhibition of the previously dormant inhibitor, confirmed by structural analysis of a 0.97 Å structure. Considering that L310 is a conserved residue amongst human GH47 enzymes, this work provides a unique framework for future biotechnological studies on N-glycan maturation and ER associated degradation by isoform-specific GH47 α-d-mannosidase inhibition through a bump-and-hole approach.
Collapse
Affiliation(s)
- Alexandra Males
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Ken Kok
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Fundació Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Nicky de Koster
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Sija van den Beukel
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Thomas J M Beenakker
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A van der Marel
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Fundació Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
5
|
Vutharadhi S, Ranganatha KS, Nadimpalli SK. Momordica charantia seed proteins - Purification, biochemical characterization of a class II α-mannosidase isoenzyme and its interaction with the lectin and protein body membrane. Int J Biol Macromol 2023; 248:126022. [PMID: 37506790 DOI: 10.1016/j.ijbiomac.2023.126022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Momordica charantia seeds contain a galactose specific lectin and mixture of glycosidases. These bind to lectin-affigel at pH 5.0 and are all eluted at pH 8.0. From the mixture, α-mannosidase was separated by gel filtration (purified enzyme Mr ∼ 238 kDa). In native PAGE (silver staining) it showed three bands that stained with methylumbelliferyl substrate (possible isoforms). Ion exchange chromatography separated two isoforms in 0.5 M eluates and one isoform in 1.0 M eluate. In SDS-PAGE it dissociated to Mr ∼70 and 45 kDa subunits, showing antigenic similarity to jack bean enzyme. MALDI analysis confirmed the 70 kDa band to be α-mannosidase with sequence identity to the genomic sequence of Momordica charantia enzyme (score 83, 29 % sequence coverage). The pH, temperature optima were 5.0 and 60o C respectively. Kinetic parameters KM and Vmax estimated with p-nitrophenyl α-mannopyranoside were 0.85 mM and 12.1 U/mg respectively. Swainsonine inhibits the enzyme activity (IC50 value was 50 nM). Secondary structural analysis at far UV (190-300 nm) showed 11.6 % α-helix and 36.5 % β-sheets. 2.197 mg of the enzyme was found to interact with 3.75 mg of protein body membrane at pH 5.0 and not at pH 8.0 suggesting a pH dependent interaction.
Collapse
Affiliation(s)
- Shivaranjani Vutharadhi
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kavyashree Sakharayapatna Ranganatha
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Siva Kumar Nadimpalli
- Protein Biochemistry and Glycobiology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
6
|
Morales-Quintana L, Méndez-Yáñez A. α-Mannosidase and β-D-N-acetylhexosaminidase outside the wall: partner exoglycosidases involved in fruit ripening process. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01356-2. [PMID: 37178231 DOI: 10.1007/s11103-023-01356-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Cell wall is a strong and complex net whose function is to provide turgor, pathogens attack protection and to give structural support to the cell. In growing and expanding cells, the cell wall of fruits is changing in space and time, because they are changing according to stage of ripening. Understand which mechanisms to produce significant could help to develop tools to prolong the fruit shelf life. Cell wall proteins (CWPs) with enzymatic activity on cell wall polysaccharides, have been studied widely. Another investigations take place in the study of N-glycosylations of CWPs and enzymes with activity on glycosidic linkages. α-mannosidase (α-Man; EC 3.2.1.24) and β-D-N-acetylhexosaminidase (β-Hex; EC 3.2.1.52), are enzymes with activity on mannose and N-acetylglucosamine sugar presents in proteins as part of N-glycosylations. Experimental evidence indicate that both are closely related to loss of fruit firmness, but in the literature, there is still no review of both enzymes involved fruit ripening. This review provides a complete state-of-the-art of α-Man and β-Hex enzymes related in fruit ripening. Also, we propose a vesicular α-Man (EC 3.2.1.24) name to α-Man involved in N-deglycosylations of CWPs of plants.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| | - Angela Méndez-Yáñez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
7
|
Yan X, Nie X, Li Q, Gao F, Liu P, Tan Z, Shi H. Expression and Characterization of a GH38 α-Mannosidase from the Hyperthermophile Pseudothermotoga thermarum. Appl Biochem Biotechnol 2023; 195:1823-1836. [PMID: 36399304 DOI: 10.1007/s12010-022-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
This study focused on the bio-characterization of a GH38 α-mannosidase from the hyperthermophile Pseudothermotoga thermarum DSM 5069. We aimed to successfully express and characterize this thermophilic α-mannosidase and to assess its functional properties. Subsequently, recombinant α-mannosidase PtαMan was expressed in Escherichia coli BL21(DE3) and purified via affinity chromatography, and native protein was verified as a tetramer by size exclusion chromatography. In addition, the activity of α-mannosidase PtαMan was relatively stable at pH 5.0-6.5 and temperatures up to 75 ℃. α-Mannosidase PtαMan was active toward Co2+ and had a good catalytic efficiency deduced from the kinetic parameters. However, its activity was strongly inhibited by Cu2+, Zn2+, SDS, and swainsonine. In summary, this cobalt-required α-mannosidase is putatively involved in the direct modification of glycoproteins.
Collapse
Affiliation(s)
- Xing Yan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Xinling Nie
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Qingfei Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Feng Gao
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Pei Liu
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, Jiangsu, China.
| |
Collapse
|
8
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
9
|
Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic Dispersion of Biofilms: An Emerging Biocatalytic Avenue to Combat Biofilm-Mediated Microbial Infections. J Biol Chem 2022; 298:102352. [PMID: 35940306 PMCID: PMC9478923 DOI: 10.1016/j.jbc.2022.102352] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Drug resistance by pathogenic microbes has emerged as a matter of great concern to mankind. Microorganisms such as bacteria and fungi employ multiple defense mechanisms against drugs and the host immune system. A major line of microbial defense is the biofilm, which comprises extracellular polymeric substances that are produced by the population of microorganisms. Around 80% of chronic bacterial infections are associated with biofilms. The presence of biofilms can increase the necessity of doses of certain antibiotics up to 1000-fold to combat infection. Thus, there is an urgent need for strategies to eradicate biofilms. Although a few physicochemical methods have been developed to prevent and treat biofilms, these methods have poor efficacy and biocompatibility. In this review, we discuss the existing strategies to combat biofilms and their challenges. Subsequently, we spotlight the potential of enzymes, in particular, polysaccharide degrading enzymes, for biofilm dispersion, which might lead to facile antimicrobial treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashish Kumar Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Simran Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
10
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
11
|
Activity of CcpA-Regulated GH18 Family Glycosyl Hydrolases That Contributes to Nutrient Acquisition and Fitness in Enterococcus faecalis. Infect Immun 2021; 89:e0034321. [PMID: 34424752 DOI: 10.1128/iai.00343-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or β-1,4 endo-β-N-acetylglucosaminidases (ENGases) based on their β-1,4 endo-N-acetyl-β-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.
Collapse
|
12
|
Assessing the Role of Pharyngeal Cell Surface Glycans in Group A Streptococcus Biofilm Formation. Antibiotics (Basel) 2020; 9:antibiotics9110775. [PMID: 33158121 PMCID: PMC7694240 DOI: 10.3390/antibiotics9110775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Antibiotic treatment failure rates of 20–40% have been observed. The role host cell glycans play in GAS biofilm formation in the context of GAS pharyngitis and subsequent antibiotic treatment failure has not been previously investigated. GAS serotype M12 GAS biofilms were assessed for biofilm formation on Detroit 562 pharyngeal cell monolayers following enzymatic removal of all N-linked glycans from pharyngeal cells with PNGase F. Removal of N-linked glycans resulted in an increase in biofilm biomass compared to untreated controls. Further investigation into the removal of terminal mannose and sialic acid residues with α1-6 mannosidase and the broad specificity sialidase (Sialidase A) also found that biofilm biomass increased significantly when compared to untreated controls. Increases in biofilm biomass were associated with increased production of extracellular polymeric substances (EPS). Furthermore, it was found that M12 GAS biofilms grown on untreated pharyngeal monolayers exhibited a 2500-fold increase in penicillin tolerance compared to planktonic GAS. Pre-treatment of monolayers with exoglycosidases resulted in a further doubling of penicillin tolerance in resultant biofilms. Lastly, an additional eight GAS emm-types were assessed for biofilm formation in response to terminal mannose and sialic acid residue removal. As seen for M12, biofilm biomass on monolayers increased following removal of terminal mannose and sialic acid residues. Collectively, these data demonstrate that pharyngeal cell surface glycan structures directly impact GAS biofilm formation in a strain and glycan specific fashion.
Collapse
|
13
|
Zhang J, Wang YY, Du LL, Ye K. Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1. FEBS Open Bio 2020; 10:2437-2451. [PMID: 32981237 PMCID: PMC7609781 DOI: 10.1002/2211-5463.12988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
Fungal α‐mannosidase Ams1 and its mammalian homolog MAN2C1 hydrolyze terminal α‐linked mannoses in free oligosaccharides released from misfolded glycoproteins or lipid‐linked oligosaccharide donors. Ams1 is transported by selective autophagy into vacuoles. Here, we determine the tetrameric structure of Ams1 from the fission yeast Schizosaccharomyces pombe at 3.2 Å resolution by cryo‐electron microscopy. Distinct from a low resolution structure of S. cerevisiae Ams1, S. pombe Ams1 has a prominent N‐terminal tail that mediates tetramerization and an extra β‐sheet domain. Ams1 shares a conserved active site with other enzymes in glycoside hydrolase family 38, to which Ams1 belongs, but contains extra N‐terminal domains involved in tetramerization. The atomic structure of Ams1 reported here will aid understanding of its enzymatic activity and transport mechanism.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Colonization of the Murine Oropharynx by Streptococcus pyogenes Is Governed by the Rgg2/3 Quorum Sensing System. Infect Immun 2020; 88:IAI.00464-20. [PMID: 32747598 DOI: 10.1128/iai.00464-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.
Collapse
|
15
|
Li C, Guo L, Chen F, Yu W, Rao T, Ruan Y. Golgi Alpha-Mannosidase II as a Novel Biomarker Predicts Prognosis in Clear Cell Renal Cell Carcinoma. Oncol Res Treat 2020; 43:264-275. [PMID: 32403105 DOI: 10.1159/000505931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/11/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Golgi alpha-mannosidase II (GM II) is one of the crucial enzymes in the process of N-glycan processing. The aim of our study was to examine the clinical significance of GM II in patients with clear cell renal cell carcinoma (ccRCC). METHODS Quantitative reverse transcription polymerase chain reaction analysis and immunohistochemical staining were used to analyze GM II expression in patients with ccRCC. The clinical data of 62 patients with ccRCC were collected to analyze the clinical significance of GM II. The clinical significance among GM II expression, clinicopathological staging, and histological grade of ccRCC was explored. Survival analyses were performed to identify the relevance between the expression of GM II and the overall survival of patients with ccRCC. A uni-/multivariate Cox regression model was used to detect risk factors affecting the prognosis of patients with ccRCC. Subsequently, the proliferation and migration of ccRCC cells were detected after transfecting with GM II-short hairpin RNA (shRNA). RESULTS The results of these comparisons suggested that GM II expression of ccRCC tissues was dramatically higher than that of para-carcinoma tissues (p < 0.05). GM II expression in the high-differentiation group was lower than that in the median- and low-differentiation groups (p < 0.05). GM II expression in stage I and II tissues was lower than that in stage III and IV tissues (p < 0.05). The expression levels of GM II in the group without lymph node metastasis were lower than those in the group with lymph node metastasis (p < 0.05). Survival analysis indicated that patients with ccRCC with high GM II expression generally had decreased overall survival. Uni-/multivariate Cox model analyses further suggested an association between GM II expression and prognosis of patients with breast cancer. High GM II expression is a potential and independent prognostic biomarker in ccRCC. The inhibition of GM II by transfecting with GM II-shRNA could reduce the proliferation and migration of ccRCC. CONCLUSION GM II expression in human ccRCC tissues was upregulated compared with that found in normal human renal tissue, and GM II may promote the progression and migration of ccRCC. Furthermore, the GM II gene may be used as a promising tumor marker for the diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linjie Guo
- Department of Urology, Jingzhou First People's Hospital, Jingzhou, China,
| | - Fan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiming Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Hehemann JH, Reintjes G, Klassen L, Smith AD, Ndeh D, Arnosti C, Amann R, Abbott DW. Single cell fluorescence imaging of glycan uptake by intestinal bacteria. ISME JOURNAL 2019; 13:1883-1889. [PMID: 30936421 PMCID: PMC6776043 DOI: 10.1038/s41396-019-0406-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 12/03/2018] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
Microbes in the intestines of mammals degrade dietary glycans for energy and growth. The pathways required for polysaccharide utilization are functionally diverse; moreover, they are unequally dispersed between bacterial genomes. Hence, assigning metabolic phenotypes to genotypes remains a challenge in microbiome research. Here we demonstrate that glycan uptake in gut bacteria can be visualized with fluorescent glycan conjugates (FGCs) using epifluorescence microscopy. Yeast α-mannan and rhamnogalacturonan-II, two structurally distinct glycans from the cell walls of yeast and plants, respectively, were fluorescently labeled and fed to Bacteroides thetaiotaomicron VPI-5482. Wild-type cells rapidly consumed the FGCs and became fluorescent; whereas, strains that had deleted pathways for glycan degradation and transport were non-fluorescent. Uptake of FGCs, therefore, is direct evidence of genetic function and provides a direct method to assess specific glycan metabolism in intestinal bacteria at the single cell level.
Collapse
Affiliation(s)
- Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany. .,Center for Marine Environmental Sciences, University of Bremen (MARUM), 28359, Bremen, Germany.
| | - Greta Reintjes
- Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Adam D Smith
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Didier Ndeh
- Institute for Cell and Molecular Biosciences, The Medical School Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Rudolf Amann
- Max Planck-Institute for Marine Microbiology, 28359, Bremen, Germany
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
17
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Thompson AJ, Spears RJ, Zhu Y, Suits MDL, Williams SJ, Gilbert HJ, Davies GJ. Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallogr D Struct Biol 2018; 74:394-404. [PMID: 29717710 PMCID: PMC5930347 DOI: 10.1107/s2059798318002942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 11/17/2022] Open
Abstract
A dominant human gut microbe, the well studied symbiont Bacteroides thetaiotaomicron (Bt), is a glyco-specialist that harbors a large repertoire of genes devoted to carbohydrate processing. Despite strong similarities among them, many of the encoded enzymes have evolved distinct substrate specificities, and through the clustering of cognate genes within operons termed polysaccharide-utilization loci (PULs) enable the fulfilment of complex biological roles. Structural analyses of two glycoside hydrolase family 92 α-mannosidases, BT3130 and BT3965, together with mechanistically relevant complexes at 1.8-2.5 Å resolution reveal conservation of the global enzyme fold and core catalytic apparatus despite different linkage specificities. Structure comparison shows that Bt differentiates the activity of these enzymes through evolution of a highly variable substrate-binding region immediately adjacent to the active site. These observations unveil a genetic/biochemical mechanism through which polysaccharide-processing bacteria can evolve new and specific biochemical activities from otherwise highly similar gene products.
Collapse
Affiliation(s)
- Andrew J. Thompson
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Richard J. Spears
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Yanping Zhu
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, England
| | - Michael D. L. Suits
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Harry J. Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, England
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
19
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
20
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
21
|
Robb M, Hobbs JK, Woodiga SA, Shapiro-Ward S, Suits MDL, McGregor N, Brumer H, Yesilkaya H, King SJ, Boraston AB. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 2017; 13:e1006090. [PMID: 28056108 PMCID: PMC5215778 DOI: 10.1371/journal.ppat.1006090] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022] Open
Abstract
The carbohydrate-rich coating of human tissues and cells provide a first point of contact for colonizing and invading bacteria. Commensurate with N-glycosylation being an abundant form of protein glycosylation that has critical functional roles in the host, some host-adapted bacteria possess the machinery to process N-linked glycans. The human pathogen Streptococcus pneumoniae depolymerizes complex N-glycans with enzymes that sequentially trim a complex N-glycan down to the Man3GlcNAc2 core prior to the release of the glycan from the protein by endo-β-N-acetylglucosaminidase (EndoD), which cleaves between the two GlcNAc residues. Here we examine the capacity of S. pneumoniae to process high-mannose N-glycans and transport the products. Through biochemical and structural analyses we demonstrate that S. pneumoniae also possesses an α-(1,2)-mannosidase (SpGH92). This enzyme has the ability to trim the terminal α-(1,2)-linked mannose residues of high-mannose N-glycans to generate Man5GlcNAc2. Through this activity SpGH92 is able to produce a substrate for EndoD, which is not active on high-mannose glycans with α-(1,2)-linked mannose residues. Binding studies and X-ray crystallography show that NgtS, the solute binding protein of an ABC transporter (ABCNG), is able to bind Man5GlcNAc, a product of EndoD activity, with high affinity. Finally, we evaluated the contribution of EndoD and ABCNG to growth of S. pneumoniae on a model N-glycosylated glycoprotein, and the contribution of these enzymes and SpGH92 to virulence in a mouse model. We found that both EndoD and ABCNG contribute to growth of S. pneumoniae, but that only SpGH92 and EndoD contribute to virulence. Therefore, N-glycan processing, but not transport of the released glycan, is required for full virulence in S. pneumoniae. To conclude, we synthesize our findings into a model of N-glycan processing by S. pneumoniae in which both complex and high-mannose N-glycans are targeted, and in which the two arms of this degradation pathway converge at ABCNG. Streptococcus pneumoniae (pneumococcus) is a bacterium that causes extensive morbidity and mortality in humans. Vaccines and antibiotics are effective forms of prevention and treatment, respectively, but present challenges as it is a constant race to vaccinate against the enormous and ever evolving pool of different serotypes of the bacterium while resistance to antibiotics continues to trend upwards. It is thus necessary to better understand the molecular aspects of the host-pneumococcus interaction in order to inform the potential generation of alternative treatment strategies. S. pneumoniae relies on its ability to process the carbohydrates presented on the surface of host cells for full-virulence. In this study, we examine the capability of the bacterium to process high-mannose N-linked sugars, a heretofore unknown ability for S. pneumoniae. The results show that the pneumococcal genome encodes enzymes capable of processing these sugars and that, remarkably, the initiating reaction performed by an enzyme that removes terminal α-(1,2)-linked mannose residues is critical to virulence in a mouse model. This study illuminates an extensive pathway in S. pneumoniae that targets N-linked sugars and is key to the host-pathogen interaction, therefore revealing a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa Robb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sarah Shapiro-Ward
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael D. L. Suits
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Nicholas McGregor
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Samantha J. King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
23
|
Bertipaglia C, Schneider S, Jakobi AJ, Tarafder AK, Bykov YS, Picco A, Kukulski W, Kosinski J, Hagen WJ, Ravichandran AC, Wilmanns M, Kaksonen M, Briggs JA, Sachse C. Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Rep 2016; 17:1044-60. [PMID: 27266708 PMCID: PMC4931565 DOI: 10.15252/embr.201541960] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/02/2016] [Indexed: 11/09/2022] Open
Abstract
Selective autophagy is the mechanism by which large cargos are specifically sequestered for degradation. The structural details of cargo and receptor assembly giving rise to autophagic vesicles remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy, together with a multi-scale analysis approach to study the molecular structure of Cvt vesicles. We report the oligomeric nature of the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and negative stain EM structure, as well as the secondary cargo Ams1 with a 6.3 Å cryo-EM structure. We show that the major dodecameric cargo prApe1 exhibits a tendency to form higher-order chain structures that are broken upon interaction with the receptor Atg19 in vitro The stoichiometry of these cargo-receptor complexes is key to maintaining the size of the Cvt aggregate in vivo Using correlative light and electron microscopy, we further visualize key stages of Cvt vesicle biogenesis. Our findings suggest that Atg19 interaction limits Ape1 aggregate size while serving as a vehicle for vacuolar delivery of tetrameric Ams1.
Collapse
Affiliation(s)
- Chiara Bertipaglia
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sarah Schneider
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arjen J Jakobi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Abul K Tarafder
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrea Picco
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wanda Kukulski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wim Jh Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arvind C Ravichandran
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias Wilmanns
- Hamburg Unit, European Molecular Biology Laboratory, Hamburg, Germany
| | - Marko Kaksonen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - John Ag Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
24
|
Bobovská A, Tvaroška I, Kóňa J. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II. J Mol Graph Model 2016; 66:47-57. [PMID: 27035259 DOI: 10.1016/j.jmgm.2016.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
Abstract
Human Golgi α-mannosidase II (GMII), a zinc ion co-factor dependent glycoside hydrolase (E.C.3.2.1.114), is a pharmaceutical target for the design of inhibitors with anti-cancer activity. The discovery of an effective inhibitor is complicated by the fact that all known potent inhibitors of GMII are involved in unwanted co-inhibition with lysosomal α-mannosidase (LMan, E.C.3.2.1.24), a relative to GMII. Routine empirical QSAR models for both GMII and LMan did not work with a required accuracy. Therefore, we have developed a fast computational protocol to build predictive models combining interaction energy descriptors from an empirical docking scoring function (Glide-Schrödinger), Linear Interaction Energy (LIE) method, and quantum mechanical density functional theory (QM-DFT) calculations. The QSAR models were built and validated with a library of structurally diverse GMII and LMan inhibitors and non-active compounds. A critical role of QM-DFT descriptors for the more accurate prediction abilities of the models is demonstrated. The predictive ability of the models was significantly improved when going from the empirical docking scoring function to mixed empirical-QM-DFT QSAR models (Q(2)=0.78-0.86 when cross-validation procedures were carried out; and R(2)=0.81-0.83 for a testing set). The average error for the predicted ΔGbind decreased to 0.8-1.1kcalmol(-1). Also, 76-80% of non-active compounds were successfully filtered out from GMII and LMan inhibitors. The QSAR models with the fragmented QM-DFT descriptors may find a useful application in structure-based drug design where pure empirical and force field methods reached their limits and where quantum mechanics effects are critical for ligand-receptor interactions. The optimized models will apply in lead optimization processes for GMII drug developments.
Collapse
Affiliation(s)
- Adela Bobovská
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-1, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Igor Tvaroška
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic.
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovak Republic.
| |
Collapse
|
25
|
Liu FF, Kulinich A, Du YM, Liu L, Voglmeir J. Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis. Glycoconj J 2016; 33:159-68. [PMID: 26864077 DOI: 10.1007/s10719-016-9651-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca(2+) ions, whereas Cu(2+) and Zn(2+) ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications.
Collapse
Affiliation(s)
- Fang F Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ya M Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China. .,Qlyco Ltd., Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
26
|
Moreira NR, Cardoso C, Ribeiro AF, Ferreira C, Terra WR. Insect midgut α-mannosidases from family 38 and 47 with emphasis on those of Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:94-104. [PMID: 26187253 DOI: 10.1016/j.ibmb.2015.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is perhaps related to the diet of these organisms, as suggested by a large number of lysosomal α-mannosidase in the T. molitor midgut.
Collapse
Affiliation(s)
- Nathalia R Moreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Alberto F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05513-970 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil.
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
28
|
Paixão L, Oliveira J, Veríssimo A, Vinga S, Lourenço EC, Ventura MR, Kjos M, Veening JW, Fernandes VE, Andrew PW, Yesilkaya H, Neves AR. Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected]. PLoS One 2015; 10:e0121042. [PMID: 25826206 PMCID: PMC4380338 DOI: 10.1371/journal.pone.0121042] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/12/2015] [Indexed: 01/13/2023] Open
Abstract
The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Laura Paixão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joana Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André Veríssimo
- Centre for Intelligent Systems, LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Vinga
- Centre for Intelligent Systems, LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Eva C. Lourenço
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M. Rita Ventura
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Vitor E. Fernandes
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Peter W. Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
29
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
30
|
Hansen DK, Webb H, Nielsen JW, Harris P, Winther JR, Willemoës M. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from Sulfolobus solfataricus. Biochemistry 2015; 54:2032-9. [PMID: 25751413 DOI: 10.1021/acs.biochem.5b00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutational analysis of Sulfolobus solfataricus class II α-mannosidase was focused on side chains that interact with the hydroxyls of the -1 mannosyl of the substrate (Asp-534) or form ligands to the active site divalent metal ion (His-228 and His-533) judged from crystal structures of homologous enzymes. D534A and D534N appeared to be completely inactive. When compared to the wild-type enzyme, the mutant enzymes in general showed only small changes in K(M) for the substrate, p-nitrophenyl-α-mannoside, but elevated activation constants, K(A), for the divalent metal ion (Co²⁺, Zn²⁺, Mn²⁺, or Cd²⁺). Some mutant enzyme forms displayed an altered preference for the metal ion compared to that of the wild type-enzyme. Furthermore, the H228Q, H533E, and H533Q enzymes were inhibited at increasing Zn²⁺ concentrations. The catalytic rate was reduced for all enzymes compared to that of the wild-type enzyme, although less dramatically with some activating metal ions. No major differences in the pH dependence between wild-type and mutant enzymes were found in the presence of different metal ions. The pH optimum was 5, but enzyme instability was observed at pH <4.5; therefore, only the basic limb of the bell-shaped pH profile was analyzed.
Collapse
Affiliation(s)
- Dennis K Hansen
- †Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Helen Webb
- †Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jonas Willum Nielsen
- †Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Pernille Harris
- ‡Department of Chemistry, Technical University of Denmark, Building 206, DK2800 Kgs. Lyngby, Denmark
| | - Jakob R Winther
- †Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Martin Willemoës
- †Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015. [PMID: 25586188 DOI: 10.1074/jbc.m114.62459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
32
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015; 290:6022-36. [PMID: 25586188 DOI: 10.1074/jbc.m114.624593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
33
|
Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton ILG. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol 2014; 17:796-815. [PMID: 24905222 DOI: 10.1111/1462-2920.12526] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/30/2022]
Abstract
The honey bee, the world's most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome. The function of the microbial community in the honey bee, as revealed by metatranscriptome sequencing, resembles that of other animal guts and food-processing environments. We identified three major bacterial classes that are active in the gut (γ-Proteobacteria, Bacilli and Actinobacteria), all of which are predicted to participate in the breakdown of complex macromolecules (e.g. polysaccharides and polypeptides), the fermentation of component parts of these macromolecules, and the generation of various fermentation products, such as short-chain fatty acids and alcohol. The ability of the microbial community to metabolize these carbon-rich food sources was confirmed through the use of community-level physiological profiling. Collectively, these findings suggest that the gut microflora of the honey bee harbours bacterial members with unique roles, which ultimately can contribute to the processing of plant-derived food for colonies.
Collapse
Affiliation(s)
- Fredrick J Lee
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
34
|
Putative Role of a Streptomyces coelicolor-Derived α-Mannosidase in Deglycosylation and Antibiotic Production. Appl Biochem Biotechnol 2013; 172:1639-51. [DOI: 10.1007/s12010-013-0635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/30/2013] [Indexed: 01/13/2023]
|
35
|
Stepper J, Dabin J, Eklof JM, Thongpoo P, Kongsaeree P, Taylor EJ, Turkenburg JP, Brumer H, Davies GJ. Structure and activity of the Streptococcus pyogenes family GH1 6-phospho-β-glucosidase SPy1599. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:16-23. [PMID: 23275159 DOI: 10.1107/s0907444912041005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 01/14/2023]
Abstract
The group A streptococcus Streptococcus pyogenes is the causative agent of a wide spectrum of invasive infections, including necrotizing fasciitis, scarlet fever and toxic shock syndrome. In the context of its carbohydrate chemistry, it is interesting that S. pyogenes (in this work strain M1 GAS SF370) displays a spectrum of oligosaccharide-processing enzymes that are located in close proximity on the genome but that the in vivo function of these proteins remains unknown. These proteins include different sugar transporters (SPy1593 and SPy1595), both GH125 α-1,6- and GH38 α-1,3-mannosidases (SPy1603 and SPy1604), a GH84 β-hexosaminidase (SPy1600) and a putative GH2 β-galactosidase (SPy1586), as well as SPy1599, a family GH1 `putative β-glucosidase'. Here, the solution of the three-dimensional structure of SPy1599 in a number of crystal forms complicated by unusual crystallographic twinning is reported. The structure is a classical (β/α)(8)-barrel, consistent with CAZy family GH1 and other members of the GH-A clan. SPy1599 has been annotated in sequence depositions as a β-glucosidase (EC 3.2.1.21), but no such activity could be found; instead, three-dimensional structural overlaps with other enzymes of known function suggested that SPy1599 contains a phosphate-binding pocket in the active site and has possible 6-phospho-β-glycosidase activity. Subsequent kinetic analysis indeed showed that SPy1599 has 6-phospho-β-glucosidase (EC 3.2.1.86) activity. These data suggest that SPy1599 is involved in the intracellular degradation of 6-phosphoglycosides, which are likely to originate from import through one of the organism's many phosphoenolpyruvate phosphotransfer systems (PEP-PTSs).
Collapse
Affiliation(s)
- Judith Stepper
- Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rose DR. Structure, mechanism and inhibition of Golgi α-mannosidase II. Curr Opin Struct Biol 2012; 22:558-62. [DOI: 10.1016/j.sbi.2012.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/23/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
37
|
Nielsen JW, Poulsen NR, Johnsson A, Winther JR, Stipp SLS, Willemoës M. Metal-Ion Dependent Catalytic Properties of Sulfolobus solfataricus Class II α-Mannosidase. Biochemistry 2012; 51:8039-46. [DOI: 10.1021/bi301096a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Willum Nielsen
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - Nina Rødtness Poulsen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - Anna Johnsson
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
| | - Jakob Rahr Winther
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| | - S. L. S. Stipp
- Nano-Science Center, Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2300 Copenhagen Ø, Denmark
| | - Martin Willemoës
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200
Copenhagen N, Denmark
| |
Collapse
|
38
|
Quach T, Tsegay S, Thompson AJ, Kukushkin NV, Alonzi DS, Butters TD, Davies GJ, Williams SJ. Fleetamine (3-O-α-d-glucopyranosyl-swainsonine): the synthesis of a hypothetical inhibitor of endo-α-mannosidase. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Possible role of α-mannosidase and β-galactosidase in larynx cancer. Contemp Oncol (Pozn) 2012; 16:154-8. [PMID: 23788869 PMCID: PMC3687398 DOI: 10.5114/wo.2012.28795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/21/2011] [Accepted: 01/19/2012] [Indexed: 12/17/2022] Open
Abstract
Background Lysosomal exoglycosidases, such as α-mannosidases (MAN) and β-galactosidases (GAL), are found in different glycoside hydrolase sequence-based families. Considerable research has proved plays the role of MAN, which play a key role in the modification and diversification of hybrid N-glycans, processes with strong cellular links to cancer. Therefore the study aim was to investigate the activities of MAN and GAL in larynx cancer compared to controls. Material and methods Larynx cancer (n = 21) and normal healthy tissue (n = 21) were collected from patients during total laryngectomy. A biopsy of macroscopically healthy tissue in the area of the lower 1/3 of omohyoid muscle was taken for frozen sections in each case and these served as controls. The release of p-nitrophenol from p-nitrophenol derivatives of MAN and GAL was used. Results In all specimens we observed significantly higher activity of investigated enzymes in larynx cancer compared with controls. The mean release of MAN from activated cells was 3.702 ±1.3245 nkat/g wet tissue compared to controls (1.614 ±0.8220 nkat/g wet tissue). The mean release of GAL from the activated cells was 3.383 ±2.1980 nkat/g wet tissue compared to controls (2.137 ±1.3685 nkat/g wet tissue). Differences in observed activity were statistically significant. Conclusion The present data indicate that MAN and GAL are significantly and consistently elevated in larynx cancer growth. It also means that catabolic reactions involving glycoproteins, glycolipids and proteoglycans may play a role in larynx cancer. Further research should also evaluate the relative importance of these particular exoglycosidases in indicating the progress of the disease in considering the spectrum of identified marker mediators.
Collapse
|
40
|
Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, Boraston AB. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem 2011; 286:15586-96. [PMID: 21388958 PMCID: PMC3083162 DOI: 10.1074/jbc.m111.223172] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/28/2011] [Indexed: 11/06/2022] Open
Abstract
The modification of N-glycans by α-mannosidases is a process that is relevant to a large number of biologically important processes, including infection by microbial pathogens and colonization by microbial symbionts. At present, the described mannosidases specific for α1,6-mannose linkages are very limited in number. Through structural and functional analysis of two sequence-related enzymes, one from Streptococcus pneumoniae (SpGH125) and one from Clostridium perfringens (CpGH125), a new glycoside hydrolase family, GH125, is identified and characterized. Analysis of SpGH125 and CpGH125 reveal them to have exo-α1,6-mannosidase activity consistent with specificity for N-linked glycans having their α1,3-mannose branches removed. The x-ray crystal structures of SpGH125 and CpGH125 obtained in apo-, inhibitor-bound, and substrate-bound forms provide both mechanistic and molecular insight into how these proteins, which adopt an (α/α)(6)-fold, recognize and hydrolyze the α1,6-mannosidic bond by an inverting, metal-independent catalytic mechanism. A phylogenetic analysis of GH125 proteins reveals this to be a relatively large and widespread family found frequently in bacterial pathogens, bacterial human gut symbionts, and a variety of fungi. Based on these studies we predict this family of enzymes will primarily comprise such exo-α1,6-mannosidases.
Collapse
Affiliation(s)
- Katie J. Gregg
- From the Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6 and
| | - Wesley F. Zandberg
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jan-Hendrik Hehemann
- From the Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6 and
| | - Garrett E. Whitworth
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lehua Deng
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David J. Vocadlo
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alisdair B. Boraston
- From the Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6 and
| |
Collapse
|
41
|
Stütz AE, Wrodnigg TM. Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. Adv Carbohydr Chem Biochem 2011; 66:187-298. [PMID: 22123190 DOI: 10.1016/b978-0-12-385518-3.00004-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty years of discoveries and research on imino sugars, which are carbohydrate analogues having a basic nitrogen atom instead of oxygen in the sugar ring and, acting as potent glycosidase inhibitors, have made considerable impact on our contemporary understanding of glycosidases. Imino sugars have helped to elucidate the catalytic machinery of glycosidases and have refined our methods and concepts of utilizing them. A number of new aspects have emerged for employing imino sugars as pharmaceutical compounds, based on their profound effects on metabolic activities in which glycosidases are involved. From the digestion of starch to the fight against viral infections, from research into malignant diseases to potential improvements in hereditary storage disorders, glycosidase action and inhibition are essential issues. This account aims at combining general developments with a focus on some niches where imino sugars have become useful tools for glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Arnold E Stütz
- Institut für Organische Chemie, Technische Universität Graz, Austria
| | | |
Collapse
|
42
|
Cobucci-Ponzano B, Conte F, Strazzulli A, Capasso C, Fiume I, Pocsfalvi G, Rossi M, Moracci M. The molecular characterization of a novel GH38 α-mannosidase from the crenarchaeon Sulfolobus solfataricus revealed its ability in de-mannosylating glycoproteins. Biochimie 2010; 92:1895-907. [PMID: 20696204 DOI: 10.1016/j.biochi.2010.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 07/29/2010] [Indexed: 02/03/2023]
Abstract
α-Mannosidases, important enzymes in the N-glycan processing and degradation in Eukaryotes, are frequently found in the genome of Bacteria and Archaea in which their function is still largely unknown. The α-mannosidase from the hyperthermophilic Crenarchaeon Sulfolobus solfataricus has been identified and purified from cellular extracts and its gene has been cloned and expressed in Escherichia coli. The gene, belonging to retaining GH38 mannosidases of the carbohydrate active enzyme classification, is abundantly expressed in this Archaeon. The purified α-mannosidase activity depends on a single Zn(2+) ion per subunit is inhibited by swainsonine with an IC(50) of 0.2 mM. The molecular characterization of the native and recombinant enzyme, named Ssα-man, showed that it is highly specific for α-mannosides and α(1,2), α(1,3), and α(1,6)-D-mannobioses. In addition, the enzyme is able to demannosylate Man(3)GlcNAc(2) and Man(7)GlcNAc(2) oligosaccharides commonly found in N-glycosylated proteins. More interestingly, Ssα-man removes mannose residues from the glycosidic moiety of the bovine pancreatic ribonuclease B, suggesting that it could process mannosylated proteins also in vivo. This is the first evidence that archaeal glycosidases are involved in the direct modification of glycoproteins.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Protein Biochemistry - Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|