1
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Billard JM. D-Serine in the aging hippocampus. J Pharm Biomed Anal 2015; 116:18-24. [PMID: 25740810 DOI: 10.1016/j.jpba.2015.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Experimental evidences now indicate that memory formation relies on the capacity of neuronal networks to manage long-term changes in synaptic communication. This property is driven by N-methyl-D-aspartate receptors (NMDAR), which requires the binding of glutamate but also the presence of the co-agonist D-serine at the glycine site. Defective memory function and impaired brain synaptic plasticity observed in aging are rescued by partial agonist acting at this site suggesting that this gating process is targeted to induce age-related cognitive defects. This review aims at compelling recent studies characterizing the role of D-serine in changes in functional plasticity that occur in the aging hippocampus since deficits are rescued by D-serine supplementation. The impaired efficacy of endogenous D-serine is not due to changes in the affinity to glycine-binding site but to a decrease in tissue levels of the amino acid resulting from a weaker expression of the producing enzyme serine racemase (SR). Interestingly, neither SR expression, D-serine levels, nor NMDAR activation is affected in aged LOU/C rats, a model of healthy aging in which memory deficits do not occur. These old animals do not develop oxidative stress suggesting that the D-serine-related pathway could be targeted by the age-related accumulation of reactive oxygen species. Accordingly, senescent rats chronically treated with the reducing agent N-acetyl-cysteine to prevent oxidative damage, show intact NMDAR activation linked to preserved D-serine levels and SR expression. These results point to a significant role of D-serine in age-related functional alterations underlying hippocampus-dependent memory deficits, at least within the CA1 area since the amino acid does not appear as critical in changes affecting the dentate gyrus.
Collapse
Affiliation(s)
- Jean-Marie Billard
- Center of Psychiatry and Neurosciences, Paris Descartes University, Sorbonne Paris City, UMR U894, Paris 75014 France.
| |
Collapse
|
4
|
Kervern M, Silvestre de Ferron B, Alaux-Cantin S, Fedorenko O, Antol J, Naassila M, Pierrefiche O. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus 2015; 25:912-23. [PMID: 25581546 DOI: 10.1002/hipo.22414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/29/2022]
Abstract
Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olivier Pierrefiche
- INSERM ERi 24 - GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, C.U.R.S., UPJV, Amiens, France
| |
Collapse
|
5
|
Plattner F, Hernández A, Kistler TM, Pozo K, Zhong P, Yuen EY, Tan C, Hawasli AH, Cooke SF, Nishi A, Guo A, Wiederhold T, Yan Z, Bibb JA. Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 2014; 81:1070-1083. [PMID: 24607229 DOI: 10.1016/j.neuron.2014.01.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers because of its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when overexpressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor's cell surface expression. Disrupting NR2B-Cdk5 interaction via a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernández
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tara M Kistler
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Eunice Y Yuen
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar H Hawasli
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sam F Cooke
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Akinori Nishi
- Department of Pharmacology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Ailan Guo
- Cell Signaling Technology, CNS Development, Danvers, MA 01923, USA
| | | | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 2013; 12:579-94. [PMID: 23395782 DOI: 10.1016/j.arr.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration.
Collapse
|
7
|
Latour A, Grintal B, Champeil-Potokar G, Hennebelle M, Lavialle M, Dutar P, Potier B, Billard JM, Vancassel S, Denis I. Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell 2013; 12:76-84. [PMID: 23113887 DOI: 10.1111/acel.12026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2012] [Indexed: 11/28/2022] Open
Abstract
Epidemiological data suggest that a poor ω3 status favoured by the low ω3/ω6 polyunsaturated fatty acids ratio in western diets contributes to cognitive decline in the elderly, but mechanistic evidence is lacking. We therefore explored the impact of ω3 deficiency on the evolution of glutamatergic transmission in the CA1 of the hippocampus during aging by comparing 4 groups of rats aged 6-22 months fed ω3-deficient or ω3/ω6-balanced diets from conception to sacrifice: Young ω3 Balanced (YB) or Deficient (YD), Old ω3 Balanced (OB) or Deficient (OD) rats. ω3 Deficiency induced a 65% decrease in the amount of docosahexaenoic acid (DHA, the main ω3 in cell membranes) in brain phospholipids, but had no impact on glutamatergic transmission and astroglial function in young rats. Aging induced a 10% decrease in brain DHA, a 35% reduction of synaptic efficacy (fEPSP/PFV) due to decreased presynaptic glutamate release and a 30% decrease in the astroglial glutamate uptake associated with a marked astrogliosis (+100% GFAP). The ω3 deficiency further decreased these hallmarks of aging (OD vs. OB rats: -35% fEPSP/PFV P < 0.05, -15% astroglial glutamate uptake P < 0.001, +30% GFAP P < 0.01). This cannot be attributed to aggravation of the brain DHA deficit because the brains of OD rats had more DHA than those of YD rats. Thus, ω3 deficiency worsens the age-induced degradation of glutamatergic transmission and its associated astroglial regulation in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences; UMR 894; INSERM; Paris; 75014; France
| | - Brigitte Potier
- Centre de Psychiatrie et Neurosciences; UMR 894; INSERM; Paris; 75014; France
| | - Jean-Marie Billard
- Centre de Psychiatrie et Neurosciences; UMR 894; INSERM; Paris; 75014; France
| | | | | |
Collapse
|
8
|
Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, Norris CM. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7:e38170. [PMID: 22666474 PMCID: PMC3362564 DOI: 10.1371/journal.pone.0038170] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.
Collapse
Affiliation(s)
- Diana M. Sama
- Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hafiz Mohmmad Abdul
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jennifer L. Furman
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
9
|
Potier B, Billard JM, Rivière S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 2010; 9:722-35. [PMID: 20569241 DOI: 10.1111/j.1474-9726.2010.00593.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT-1 and reduced glutamate uptake occur in the aged (24-27 months) Sprague-Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3-5 months) and aged rats are depressed by DL-TBOA, an inhibitor of glutamate transporter activity, in an N-Methyl-d-Aspartate (NMDA)-receptor-dependent manner. In aged but not in young rats, part of the depressing effect of DL-TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d-methyl-4-carboxy-phenylglycine (MCPG). The paired-pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL-TBOA. These results suggest that the age-associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz-induced long-term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.
Collapse
Affiliation(s)
- Brigitte Potier
- Université Paris Descartes, Centre de Psychiatrie et de Neurosciences, UMR, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|