1
|
Vogel AL, Thompson KJ, Straub D, Musat F, Gutierrez T, Kleindienst S. Genetic redundancy in the naphthalene-degradation pathway of Cycloclasticus pugetii strain PS-1 enables response to varying substrate concentrations. FEMS Microbiol Ecol 2024; 100:fiae060. [PMID: 38614960 PMCID: PMC11099662 DOI: 10.1093/femsec/fiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) contamination in marine environments range from low-diffusive inputs to high loads. The influence of PAH concentration on the expression of functional genes [e.g. those encoding ring-hydroxylating dioxygenases (RHDs)] has been overlooked in PAH biodegradation studies. However, understanding marker-gene expression under different PAH loads can help to monitor and predict bioremediation efficiency. Here, we followed the expression (via RNA sequencing) of Cycloclasticus pugetii strain PS-1 in cell suspension experiments under different naphthalene (100 and 30 mg L-1) concentrations. We identified genes encoding previously uncharacterized RHD subunits, termed rhdPS1α and rhdPS1β, that were highly transcribed in response to naphthalene-degradation activity. Additionally, we identified six RHD subunit-encoding genes that responded to naphthalene exposure. By contrast, four RHD subunit genes were PAH-independently expressed and three other RHD subunit genes responded to naphthalene starvation. Cycloclasticus spp. could, therefore, use genetic redundancy in key PAH-degradation genes to react to varying PAH loads. This genetic redundancy may restrict the monitoring of environmental hydrocarbon-degradation activity using single-gene expression. For Cycloclasticus pugetii strain PS-1, however, the newly identified rhdPS1α and rhdPS1β genes might be potential target genes to monitor its environmental naphthalene-degradation activity.
Collapse
Affiliation(s)
- Anjela L Vogel
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| | - Katharine J Thompson
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| | - Daniel Straub
- Eberhard Karls University of Tübingen, Quantitative Biology Center (QBiC), Auf der Morgenstelle 10, Tübingen 72076, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Florin Musat
- Aarhus University, Department of Biology, Section for Microbiology, Ny Munkegade 116, Aarhus C 8000, Denmark
- Babeş-Bolyai University, Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Str. Republicii nr 44, Cluj-Napoca 400015, Romania
| | - Tony Gutierrez
- Heriot-Watt University, Institute of Mechanical Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Edinburgh EH14 4AS, UK
| | - Sara Kleindienst
- Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
- University of Stuttgart, Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Am Bandtäle 2, Stuttgart 70569, Germany
| |
Collapse
|
2
|
AL-Muzahmi M, Rizvi M, AL-Quraini M, AL-Muharrmi Z, AL-Jabri Z. Comparative Genomic Analysis Reveals the Emergence of ST-231 and ST-395 Klebsiella pneumoniae Strains Associated with the High Transmissibility of blaKPC Plasmids. Microorganisms 2023; 11:2411. [PMID: 37894068 PMCID: PMC10608898 DOI: 10.3390/microorganisms11102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Conjugative transposons in Gram-negative bacteria have a significant role in the dissemination of antibiotic-resistance-conferring genes between bacteria. This study aims to genomically characterize plasmids and conjugative transposons carrying integrons in clinical isolates of Klebsiella pneumoniae. The genetic composition of conjugative transposons and phenotypic assessment of 50 multidrug-resistant K. pneumoniae isolates from a tertiary-care hospital (SQUH), Muscat, Oman, were investigated. Horizontal transferability was investigated by filter mating conjugation experiments. Whole-genome sequencing (WGS) was performed to determine the sequence type (ST), acquired resistome, and plasmidome of integron-carrying strains. Class 1 integrons were detected in 96% of isolates and, among integron-positive isolates, 18 stains contained variable regions. Horizontal transferability by conjugation confirmed the successful transfer of integrons between cells and WGS confirmed their presence in conjugative plasmids. Dihydrofolate reductase (dfrA14) was the most prevalent (34.8%) gene cassette in class 1 integrons. MLST analysis detected predominantly ST-231 and ST-395. BlaOXA-232 and blaCTX-M-15 were the most frequently detected carbapenemases and beta-lactamases in the sequenced isolates. This study highlighted the high transmissibility of MDR-conferring conjugative plasmids in clinical isolates of K. pneumoniae. Therefore, the wise use of antibiotics and the adherence to effective infection control measures are necessary to limit the further dissemination of multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| | - Munawr AL-Quraini
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zakariya AL-Muharrmi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman; (M.A.-Q.); (Z.A.-M.)
| | - Zaaima AL-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman;
| |
Collapse
|
3
|
Dinh MTN, Nguyen VT, Nguyen LTH. The potential application of carbazole-degrading bacteria for dioxin bioremediation. BIORESOUR BIOPROCESS 2023; 10:56. [PMID: 38647625 PMCID: PMC10992316 DOI: 10.1186/s40643-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
Extensive research has been conducted over the years on the bacterial degradation of dioxins and their related compounds including carbazole, because these chemicals are highly toxic and has been widely distributed in the environment. There is a pressing need to explore and develop more bacterial strains with unique catabolic features to effectively remediate dioxin-polluted sites. Carbazole has a chemical structure similar to dioxins, and the degradation pathways of these two chemicals are highly homologous. Some carbazole-degrading bacterial strains have been demonstrated to have the ability to degrade dioxins, such as Pseudomonas sp. strain CA10 và Sphingomonas sp. KA1. The introduction of strain KA1 into dioxin-contaminated model soil resulted in the degradation of 96% and 70% of 2-chlorodibenzo-p-dioxin (2-CDD) and 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD), respectively, after 7-day incubation period. These degradation rates were similar to those achieved with strain CA10, which removed 96% of 2-CDD and 80% of 2,3-DCDD from the same model soil. Therefore, carbazole-degrading bacteria hold significant promise as potential candidates for dioxin bioremediation. This paper overviews the connection between the bacterial degradation of dioxins and carbazole, highlighting the potential for dioxin biodegradation by carbazole-degrading bacterial strains.
Collapse
Affiliation(s)
- Mai Thi Ngoc Dinh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, A9 Building, Nguyen Van Trac Street, Ha Dong District, Hanoi, Vietnam.
- Bioresource Research Center, Phenikaa University, Hanoi, Vietnam.
| | - Van Thi Nguyen
- VNU Institute of Microbiology and Biotechnology, Vietnam National University, E2 Building, 144 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
4
|
Vasileiadis S, Perruchon C, Scheer B, Adrian L, Steinbach N, Trevisan M, Plaza-Bolaños P, Agüera A, Chatzinotas A, Karpouzas DG. Nutritional inter-dependencies and a carbazole-dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole. Environ Microbiol 2022; 24:5105-5122. [PMID: 35799498 DOI: 10.1111/1462-2920.16116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ-degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi-omic approach combined with DNA-stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13 C-labelled versus 12 C-TBZ showed that 66% of the 13 C-labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome-assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta-transcriptomics/-proteomics and non-target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole-4-carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho-cleavage (cat) pathway. Microbial co-occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the 'black queen hypothesis' where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.
Collapse
Affiliation(s)
- Sotirios Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Chiara Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Benjamin Scheer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nicole Steinbach
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marco Trevisan
- Department of Sustainable Food Process, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Patricia Plaza-Bolaños
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| |
Collapse
|
5
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
6
|
Storck V, Gallego S, Vasileiadis S, Hussain S, Béguet J, Rouard N, Baguelin C, Perruchon C, Devers-Lamrani M, Karpouzas DG, Martin-Laurent F. Insights into the Function and Horizontal Transfer of Isoproturon Degradation Genes ( pdmAB) in a Biobed System. Appl Environ Microbiol 2020; 86:e00474-20. [PMID: 32414799 PMCID: PMC7357488 DOI: 10.1128/aem.00474-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Biobeds, designed to minimize pesticide point source contamination, rely mainly on biodegradation processes. We studied the interactions of a biobed microbial community with the herbicide isoproturon (IPU) to explore the role of the pdmA gene, encoding the large subunit of an N-demethylase responsible for the initial demethylation of IPU, via quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR) and the effect of IPU on the diversity of the total bacterial community and its active fraction through amplicon sequencing of DNA and RNA, respectively. We further investigated the localization and dispersal mechanisms of pdmAB in the biobed packing material by measuring the abundance of the plasmid pSH (harboring pdmAB) of the IPU-degrading Sphingomonas sp. strain SH (previously isolated from the soil used in the biobed) compared with the abundance of the pdmA gene and metagenomic fosmid library screening. pdmA abundance and expression increased concomitantly with IPU mineralization, verifying its major role in IPU transformation in the biobed system. DNA- and RNA-based 16S rRNA gene sequencing analysis showed no effects on bacterial diversity. The pdmAB-harboring plasmid pSH showed a consistently lower abundance than pdmA, suggesting the localization of pdmAB in replicons other than pSH. Metagenomic analysis identified four pdmAB-carrying fosmids. In three of these fosmids, the pdmAB genes were organized in a well-conserved operon carried by sphingomonad plasmids with low synteny with pSH, while the fourth fosmid contained an incomplete pdmAB cassette localized in a genomic fragment of a Rhodanobacter strain. Further analysis suggested a potentially crucial role of IS6 and IS256 in the transposition and activation of the pdmAB operon.IMPORTANCE Our study provides novel insights into the interactions of IPU with the bacterial community of biobed systems, reinforces the assumption of a transposable nature of IPU-degrading genes, and verifies that on-farm biobed systems are hot spots for the evolution of pesticide catabolic traits.
Collapse
Affiliation(s)
- Veronika Storck
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sara Gallego
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College, University of Faisalabad, Faisalabad, Pakistan
| | - Jérémie Béguet
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Baguelin
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
- Hydreka Enoveo, Lyon, France
| | - Chiara Perruchon
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Marion Devers-Lamrani
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, Larisa, Greece
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
7
|
Genome-Wide Analysis Reveals Genetic Potential for Aromatic Compounds Biodegradation of Sphingopyxis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5849123. [PMID: 32596333 PMCID: PMC7273453 DOI: 10.1155/2020/5849123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Members of genus Sphingopyxis are frequently found in diverse eco-environments worldwide and have been traditionally considered to play vital roles in the degradation of aromatic compounds. Over recent decades, many aromatic-degrading Sphingopyxis strains have been isolated and recorded, but little is known about their genetic nature related to aromatic compounds biodegradation. In this study, bacterial genomes of 19 Sphingopyxis strains were used for comparative analyses. Phylogeny showed an ambiguous relatedness between bacterial strains and their habitat specificity, while clustering based on Cluster of Orthologous Groups suggested the potential link of functional profile with substrate-specific traits. Pan-genome analysis revealed that 19 individuals were predicted to share 1,066 orthologous genes, indicating a high genetic homogeneity among Sphingopyxis strains. Notably, KEGG Automatic Annotation Server results suggested that most genes pertaining aromatic compounds biodegradation were predicted to be involved in benzoate, phenylalanine, and aminobenzoate metabolism. Among them, β-ketoadipate biodegradation might be the main pathway in Sphingopyxis strains. Further inspection showed that a number of mobile genetic elements varied in Sphingopyxis genomes, and plasmid-mediated gene transfer coupled with prophage- and transposon-mediated rearrangements might play prominent roles in the evolution of bacterial genomes. Collectively, our findings presented that Sphingopyxis isolates might be the promising candidates for biodegradation of aromatic compounds in pollution sites.
Collapse
|
8
|
Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1238-1247. [PMID: 28787798 DOI: 10.1016/j.scitotenv.2017.07.249] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/12/2023]
Abstract
Bacteria belonging to the genera Sphingomonas and Sphingobium are known for their ability to catabolize aromatic compounds. In this study, we analyzed the whole genome sequences of 26 strains in the genera Sphingomonas and Sphingobium to gain insight into dissemination of bioremediation capabilities, biodegradation potential, central pathways and genome plasticity. Phylogenetic analysis revealed that both Sphingomonas sp. strain BHC-A and Sphingomonas paucimobilis EPA505 should be placed in the genus Sphingobium. The bph and xyl gene cluster was found in 6 polycyclic aromatic hydrocarbons-degrading strains. Transposase and IS coding genes were found in the 6 gene clusters, suggesting the mobility of bph and xyl gene clusters. β-ketoadipate and homogentisate pathways were the main central pathways in Sphingomonas and Sphingobium strains. A large number of oxygenase coding genes were predicted in the 26 genomes, indicating a huge biodegradation potential of the Sphingomonas and Sphingobium strains. Horizontal gene transfer related genes and prophages were predicted in the analyzed strains, suggesting the ongoing evolution and shaping of the genomes. Analysis of the 26 genomes in this work contributes to the understanding of dispersion of bioremediation capabilities, bioremediation potential and genome plasticity in strains belonging to the genera Sphingomonas and Sphingobium.
Collapse
Affiliation(s)
- Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengjie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Degradation of Diphenyl Ether in Sphingobium phenoxybenzoativorans SC_3 Is Initiated by a Novel Ring Cleavage Dioxygenase. Appl Environ Microbiol 2017; 83:AEM.00104-17. [PMID: 28283519 DOI: 10.1128/aem.00104-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) or 2-carboxy-DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy-DE initiated by a novel ring cleavage angular dioxygenase (diphenyl ether dioxygenase [Dpe]) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C-1a, C-2) of a benzene ring in DE (or the 2-carboxybenzene ring in 2-carboxy-DE) and cleaves the C-1a-C-2 bond (decarboxylation occurs simultaneously for 2-carboxy-DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin, and a glutathione reductase (GR)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in the degradation and utilization of DE and 2-carboxy-DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of 1 molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C-1a and C-2 to form a hemiacetal-like intermediate, which is further deoxygenated, resulting in the cleavage of the C-1a-C-2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring cleavage of aromatic compounds.IMPORTANCE Benzene ring cleavage, catalyzed by dioxygenase, is the key and speed-limiting step in the aerobic degradation of aromatic compounds. As previously reported, in the ring cleavage of DEs, the benzene ring needs to be first dihydroxylated at a lateral position and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S. phenoxybenzoativorans SC_3. Under Dpe-mediated catalysis, the benzene ring of DE is dioxygenated at the angular position (C-1a, C-2), resulting in the cleavage of the C-1a-C-2 bond to generate a novel product, 2,4-hexadienal phenyl ester. This process needs only one angular dioxygenase, Dpe. Thus, the ring cleavage catalyzed by Dpe represents a novel mechanism of benzene ring cleavage.
Collapse
|
10
|
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58. Appl Environ Microbiol 2017; 83:AEM.00133-17. [PMID: 28188209 DOI: 10.1128/aem.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.
Collapse
|
11
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA. Appl Environ Microbiol 2015; 81:8254-64. [PMID: 26386060 DOI: 10.1128/aem.01883-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02' in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase.
Collapse
|
13
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
14
|
A novel angular dioxygenase gene cluster encoding 3-phenoxybenzoate 1',2'-dioxygenase in Sphingobium wenxiniae JZ-1. Appl Environ Microbiol 2014; 80:3811-8. [PMID: 24747891 DOI: 10.1128/aem.00208-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingobium wenxiniae JZ-1 utilizes a wide range of pyrethroids and their metabolic product, 3-phenoxybenzoate, as sources of carbon and energy. A mutant JZ-1 strain, MJZ-1, defective in the degradation of 3-phenoxybenzoate was obtained by successive streaking on LB agar. Comparison of the draft genomes of strains JZ-1 and MJZ-1 revealed that a 29,366-bp DNA fragment containing a putative angular dioxygenase gene cluster (pbaA1A2B) is missing in strain MJZ-1. PbaA1, PbaA2, and PbaB share 65%, 52%, and 10% identity with the corresponding α and β subunits and the ferredoxin component of dioxin dioxygenase from Sphingomonas wittichii RW1, respectively. Complementation of pbaA1A2B in strain MJZ-1 resulted in the active 3-phenoxybenzoate 1',2'-dioxygenase, but the enzyme activity in Escherichia coli was achieved only through the coexpression of pbaA1A2B and a glutathione reductase (GR)-type reductase gene, pbaC, indicating that the 3-phenoxybenzoate 1',2'-dioxygenase belongs to a type IV Rieske non-heme iron aromatic ring-hydroxylating oxygenase system consisting of a hetero-oligomeric oxygenase, a [2Fe-2S]-type ferredoxin, and a GR-type reductase. The pbaC gene is not located in the immediate vicinity of pbaA1A2B. 3-Phenoxybenzoate 1',2'-dioxygenase catalyzes the hydroxylation in the 1' and 2' positions of the benzene moiety of 3-phenoxybenzoate, yielding 3-hydroxybenzoate and catechol. Transcription of pbaA1A2B and pbaC was induced by 3-phenoxybenzoate, but the transcriptional level of pbaC was far less than that of pbaA1A2B, implying the possibility that PbaC may not be the only reductase that can physiologically transfer electrons to PbaA1A2B in strain JZ-1. Some GR-type reductases from other sphingomonad strains could also transfer electrons to PbaA1A2B, suggesting that PbaA1A2B has a low specificity for reductase.
Collapse
|
15
|
Genome sequences of Pseudomonas luteola XLDN4-9 and Pseudomonas stutzeri XLDN-R, two efficient carbazole-degrading strains. J Bacteriol 2012; 194:5701-2. [PMID: 23012282 DOI: 10.1128/jb.01296-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas luteola XLDN4-9 and Pseudomonas stutzeri XLDN-R are two efficient carbazole-degrading pseudomonad strains. Here we present 4.63- and 4.70-Mb assemblies of their genomes. Their annotated key genes for carbazole catabolism are similar, which may provide further insights into the molecular mechanism of carbazole degradation in Pseudomonas.
Collapse
|
16
|
Poza M, Gayoso C, Gómez MJ, Rumbo-Feal S, Tomás M, Aranda J, Fernández A, Bou G. Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing. PLoS One 2012; 7:e44105. [PMID: 22952889 PMCID: PMC3430676 DOI: 10.1371/journal.pone.0044105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/30/2012] [Indexed: 02/01/2023] Open
Abstract
Understanding microbial populations in hospital environments is crucial for improving human health. Hospital-acquired infections are an increasing problem in intensive care units (ICU). In this work we present an exploration of bacterial diversity at inanimate surfaces of the ICU wards of the University Hospital A Coruña (Spain), as an example of confined hospital environment subjected to selective pressure, taking the entrance hall of the hospital, an open and crowded environment, as reference. Surface swab samples were collected from both locations and recovered DNA used as template to amplify a hypervariable region of the bacterial 16S rRNA gene. Sequencing of the amplicons was performed at the Roche 454 Sequencing Center using GS-FLX Titanium procedures. Reads were pre-processed and clustered into OTUs (operational taxonomic units), which were further classified. A total of 16 canonical bacterial phyla were detected in both locations. Members of the phyla Firmicutes (mainly Staphylococcus and Streptococcus) and Actinobacteria (mainly Micrococcaceae, Corynebacteriaceae and Brevibacteriaceae) were over-represented in the ICU with respect to the Hall. The phyllum Proteobacteria was also well represented in the ICU, mainly by members of the families Enterobacteriaceae, Methylobacteriaceae and Sphingomonadaceae. In the Hall sample, the phyla Proteobacteria, Bacteroidetes, Deinococcus-Thermus and Cyanobacteria were over-represented with respect to the ICU. Over-representation of Proteobacteria was mainly due to the high abundance of Enterobacteriaceae members. The presented results demonstrate that bacterial diversity differs at the ICU and entrance hall locations. Reduced diversity detected at ICU, relative to the entrance hall, can be explained by its confined character and by the existence of antimicrobial selective pressure. This is the first study using deep sequencing techniques made in hospital wards showing substantial hospital microbial diversity.
Collapse
Affiliation(s)
- Margarita Poza
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - Carmen Gayoso
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - Manuel J. Gómez
- Sequencing and Bioinformatics Department, Astrobiology Center INTA-CSIC, Madrid, Spain
| | - Soraya Rumbo-Feal
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - María Tomás
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - Jesús Aranda
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - Ana Fernández
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
| | - Germán Bou
- Microbioloy Department, Biomedical Research Institute-University Hospital, A Coruña, Spain
- * E-mail:
| |
Collapse
|
17
|
Liu X, Gai Z, Tao F, Tang H, Xu P. Carotenoids play a positive role in the degradation of heterocycles by Sphingobium yanoikuyae. PLoS One 2012; 7:e39522. [PMID: 22745775 PMCID: PMC3380023 DOI: 10.1371/journal.pone.0039522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/22/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microbial oxidative degradation is a potential way of removing pollutants such as heterocycles from the environment. During this process, reactive oxygen species or other oxidants are inevitably produced, and may cause damage to DNA, proteins, and membranes, thereby decreasing the degradation rate. Carotenoids can serve as membrane-integrated antioxidants, protecting cells from oxidative stress. FINDINGS Several genes involved in the carotenoid biosynthetic pathway were cloned and characterized from a carbazole-degrading bacterium Sphingobium yanoikuyae XLDN2-5. In addition, a yellow-pigmented carotenoid synthesized by strain XLDN2-5 was identified as zeaxanthin that was synthesized from β-carotene through β-cryptoxanthin. The amounts of zeaxanthin and hydrogen peroxide produced were significantly and simultaneously enhanced during the biodegradation of heterocycles (carbazole < carbazole + benzothiophene < carbazole + dibenzothiophene). These higher production levels were consistent with the transcriptional increase of the gene encoding phytoene desaturase, one of the key enzymes for carotenoid biosynthesis. CONCLUSIONS/SIGNIFICANCE Sphingobium yanoikuyae XLDN2-5 can enhance the synthesis of zeaxanthin, one of the carotenoids, which may modulate membrane fluidity and defense against intracellular oxidative stress. To our knowledge, this is the first report on the positive role of carotenoids in the biodegradation of heterocycles, while elucidating the carotenoid biosynthetic pathway in the Sphingobium genus.
Collapse
Affiliation(s)
- Xiaorui Liu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People′s Republic of China
| | - Zhonghui Gai
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People′s Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People′s Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People′s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People′s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Genome sequence of Sphingobium yanoikuyae XLDN2-5, an efficient carbazole-degrading strain. J Bacteriol 2011; 193:6404-5. [PMID: 22038966 DOI: 10.1128/jb.06050-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingobium yanoikuyae XLDN2-5 is an efficient carbazole-degrading strain. Carbazole-degrading genes are accompanied on both sides by two copies of IS6100 elements. Here, we describe the draft genome sequence of strain XLDN2-5, which may provide important clues as to how it recruited exogenous genes to establish pathways to degrade the xenobiotics.
Collapse
|