1
|
Vertical HIV-1 Transmission in the Setting of Maternal Broad and Potent Antibody Responses. J Virol 2022; 96:e0023122. [PMID: 35536018 DOI: 10.1128/jvi.00231-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the worldwide availability of antiretroviral therapy (ART), approximately 150,000 pediatric HIV infections continue to occur annually. ART can dramatically reduce HIV mother-to-child transmission (MTCT), but inconsistent drug access and adherence, as well as primary maternal HIV infection during pregnancy and lactation are major barriers to eliminating vertical HIV transmission. Thus, immunologic strategies to prevent MTCT, such as an HIV vaccine, will be required to attain an HIV-free generation. A primary goal of HIV vaccine research has been to elicit broadly neutralizing antibodies (bnAbs) given the ability of passive bnAb immunization to protect against sensitive strains, yet we previously observed that HIV-transmitting mothers have more plasma neutralization breadth than nontransmitting mothers. Additionally, we have identified infant transmitted/founder (T/F) viruses that escape maternal bnAb responses. In this study, we examine a cohort of postpartum HIV-transmitting women with neutralization breadth to determine if certain maternal bnAb specificities drive the selection of infant T/F viruses. Using HIV pseudoviruses that are resistant to neutralizing antibodies targeting common bnAb epitopes, we mapped the plasma bnAb specificities of this cohort. Significantly more transmitting women with plasma bnAb activity had a mappable plasma bnAb specificity (six of seven, or 85.7%) compared to that of nontransmitting women with plasma bnAb activity (7 of 21, or 33.3%, P = 0.029 by 2-sided Fisher exact test). Our study suggests that having multispecific broad activity and/or uncommon epitope-specific bnAbs in plasma may be associated with protection against the vertical HIV transmission in the setting of maternal bnAb responses. IMPORTANCE As mother to child transmission (MTCT) of HIV plays a major part in the persistence of the HIV/AIDS epidemic and bnAb-based passive and active vaccines are a primary strategy for HIV prevention, research in this field is of great importance. While previous MTCT research has investigated the neutralizing antibody activity of HIV-infected women, this is, to our knowledge, the largest study identifying differences in bnAb specificity of maternal plasma between transmitting and nontransmitting women. Here, we show that among HIV-infected women with broad and potent neutralization activity, more postpartum-transmitting women had a mappable plasma broadly neutralizing antibody (bnAb) specificity, compared to that of nontransmitting women, suggesting that the nontransmitting women more often have multispecific bnAb responses or bnAb responses that target uncommon epitopes. Such responses may be required for protection against vertical HIV transmission in the setting of maternal bnAb responses.
Collapse
|
2
|
Yin L, Chang KF, Nakamura KJ, Kuhn L, Aldrovandi GM, Goodenow MM. Unique genotypic features of HIV-1 C gp41 membrane proximal external region variants during pregnancy relate to mother-to-child transmission via breastfeeding. JOURNAL OF CLINICAL PEDIATRICS AND NEONATOLOGY 2021; 1:9-20. [PMID: 34553192 PMCID: PMC8454918 DOI: 10.46439/pediatrics.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mother-to-child transmission (MTCT) through breastfeeding remains a major source of pediatric HIV-1 infection worldwide. To characterize plasma HIV-1 subtype C populations from infected mothers during pregnancy that related to subsequent breast milk transmission, an exploratory study was designed to apply next generation sequencing and a custom bioinformatics pipeline for HIV-1 gp41 extending from heptad repeat region 2 (HR2) through the membrane proximal external region (MPER) and the membrane spanning domain (MSD). MPER harbors linear and highly conserved epitopes that repeatedly elicits HIV-1 neutralizing antibodies with exceptional breadth. Viral populations during pregnancy from women who transmitted by breastfeeding, compared to those who did not, displayed greater biodiversity, more frequent amino acid polymorphisms, lower hydropathy index and greater positive charge. Viral characteristics were restricted to MPER, failed to extend into flanking HR2 or MSD regions, and were unrelated to predicted neutralization resistance. Findings provide novel parameters to evaluate an association between maternal MPER variants present during gestation and lactogenesis with subsequent transmission outcomes by breastfeeding. IMPORTANCE HIV-1 transmission through breastfeeding accounts for 39% of MTCT and continues as a major route of pediatric infection in developing countries where access to interventions for interrupting transmission is limited. Identifying women who are likely to transmit HIV-1 during breastfeeding would focus therapies, such as broad neutralizing HIV monoclonal antibodies (bn-HIV-Abs), during the breastfeeding period to reduce MTCT. Findings from our pilot study identify novel characteristics of gestational viral MPER quasispecies related to transmission outcomes and raise the possibility for predicting MTCT by breastfeeding based on identifying mothers with high-risk viral populations.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | | | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Sabin Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maureen M. Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Kordy K, Tobin NH, Aldrovandi GM. HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract. ACTA ACUST UNITED AC 2019; 15:139-152. [PMID: 33312088 DOI: 10.2174/1573395514666180605085313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cell-associated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.
Collapse
Affiliation(s)
- Kattayoun Kordy
- Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Nakamura KJ, Heath L, Sobrera ER, Wilkinson TA, Semrau K, Kankasa C, Tobin NH, Webb NE, Lee B, Thea DM, Kuhn L, Mullins JI, Aldrovandi GM. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017; 14:6. [PMID: 28122636 PMCID: PMC5267468 DOI: 10.1186/s12977-017-0331-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Results Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother–infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. Conclusions These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle J Nakamura
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Systems Biology and Disease Program, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Edwin R Sobrera
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas A Wilkinson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katherine Semrau
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas E Webb
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald M Thea
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Abstract
Mother-to-child transmission (MTCT) of HIV provides a setting for studying immune correlates of protection. Neutralizing antibodies (NAbs) are suggested to contribute to a viral bottleneck during MTCT, but their role in blocking transmission is unclear, as studies comparing the NAb sensitivities of maternal viruses have yielded disparate results. We sought to determine whether transmitting mothers differ from nontransmitting mothers in the ability to neutralize individual autologous virus variants present at transmission. Ten transmitting and 10 nontransmitting HIV-infected mothers at high risk of MTCT were included in this study. Full-length HIV envelope genes (n = 100) were cloned from peripheral blood mononuclear cells obtained near transmission from transmitting mothers and at similar time points from nontransmitting mothers. Envelope clones were tested as pseudoviruses against contemporaneous, autologous maternal plasma in neutralization assays. The association between transmission and the log2 50% inhibitory concentration (IC50) for multiple virus variants per mother was estimated by using logistic regression with clustered standard errors. t tests were used to compare proportions of neutralization-resistant viruses. Overall, transmitting mothers had a median IC50 of 317 (interquartile range [IQR], 202 to 521), and nontransmitting mothers had a median IC50 of 243 (IQR, 95 to 594). Transmission risk was not significantly associated with autologous NAb activity (odds ratio, 1.25; P = 0.3). Compared to nontransmitting mothers, transmitting mothers had similar numbers of or fewer neutralization-resistant virus variants, depending on the IC50 neutralization resistance cutoff. In conclusion, HIV-infected mothers harbor mostly neutralization-sensitive viruses, although resistant variants were detected in both transmitting and nontransmitting mothers. These results suggest that MTCT during the breastfeeding period is not driven solely by the presence of maternal neutralization escape variants. There are limited data demonstrating whether NAbs can prevent HIV transmission and infection in humans, and for this reason, NAbs have been studied in MTCT, where maternal antibodies are present at the time of transmission. Results of these studies have varied, perhaps because of differences in methods. Importantly, studies often used cultured viruses and samples from time points outside the window of transmission, which could confound findings. Here, we considered the role of maternal NAbs against individual maternal virus variants near the time of transmission. We found no evidence that NAbs are associated with protection from infection. In fact, depending on the cutoff used to define neutralization resistance, we found evidence that nontransmitting mothers have more neutralization-resistant virus variants. These results suggest that lack of virus transmission in the early breastfeeding period is not simply due to an absence of maternal neutralization escape variants and likely includes multiple factors.
Collapse
|
6
|
Gray GE, Corey L. Reevaluating HIV Vaccine Clinical Trials Policy for Infants. J Infect Dis 2014; 211:501-3. [DOI: 10.1093/infdis/jiu445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Most infants born to human immunodeficiency virus (HIV)-infected women escape HIV infection. Infants evade infection despite an immature immune system and, in the case of breastfeeding, prolonged repetitive exposure. If infants become infected, the course of their infection and response to treatment differs dramatically depending upon the timing (in utero, intrapartum, or during breastfeeding) and potentially the route of their infection. Perinatally acquired HIV infection occurs during a critical window of immune development. HIV's perturbation of this dynamic process may account for the striking age-dependent differences in HIV disease progression. HIV infection also profoundly disrupts the maternal immune system upon which infants rely for protection and immune instruction. Therefore, it is not surprising that infants who escape HIV infection still suffer adverse effects. In this review, we highlight the unique aspects of pediatric HIV transmission and pathogenesis with a focus on mechanisms by which HIV infection during immune ontogeny may allow discovery of key elements for protection and control from HIV.
Collapse
|
9
|
MacCarthy S, Rasanathan JJK, Ferguson L, Gruskin S. The pregnancy decisions of HIV-positive women: the state of knowledge and way forward. REPRODUCTIVE HEALTH MATTERS 2013. [PMID: 23177686 DOI: 10.1016/s0968-8080(12)39641-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Despite the growing number of women living with and affected by HIV, there is still insufficient attention to their pregnancy-related needs, rights, decisions and desires in research, policy and programs. We carried out a review of the literature to ascertain the current state of knowledge and highlight areas requiring further attention. We found that contraceptive options for pregnancy prevention by HIV-positive women are insufficient: condoms are not always available or acceptable, and other options are limited by affordability, availability or efficacy. Further, coerced sterilization of women living with HIV is widely reported. Information gaps persist in relation to effectiveness, safety and best practices regarding assisted reproductive technologies. Attention to neonatal outcomes generally outweighs attention to the health of women before, during and after pregnancy. Access to safe abortion and post-abortion care services, which are critical to women's ability to fulfill their sexual and reproductive rights, are often curtailed. There is inadequate attention to HIV-positive sex workers, injecting drug users and adolescents. The many challenges that women living with HIV encounter in their interactions with sexual and reproductive health services shape their pregnancy decisions. It is critical that HIV-positive women be more involved in the design and implementation of research, policies and programs related to their pregnancy-related needs and rights.
Collapse
Affiliation(s)
- Sarah MacCarthy
- The Miriam Hospital and Alpert Medical School of Brown University, Providence, RI, USA.
| | | | | | | |
Collapse
|
10
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
11
|
Permar SR, Salazar MG, Gao F, Cai F, Learn GH, Kalilani L, Hahn BH, Shaw GM, Salazar-Gonzalez JF. Clonal amplification and maternal-infant transmission of nevirapine-resistant HIV-1 variants in breast milk following single-dose nevirapine prophylaxis. Retrovirology 2013; 10:88. [PMID: 23941304 PMCID: PMC3765243 DOI: 10.1186/1742-4690-10-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/06/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Intrapartum administration of single-dose nevirapine (sdNVP) reduces perinatal HIV-1 transmission in resource-limiting settings by half. Yet this strategy has limited effect on subsequent breast milk transmission, making the case for new treatment approaches to extend maternal/infant antiretroviral prophylaxis through the period of lactation. Maternal and transmitted infant HIV-1 variants frequently develop NVP resistance mutations following sdNVP, complicating subsequent treatment/prophylaxis regimens. However, it is not clear whether NVP-resistant viruses are transmitted via breastfeeding or arise de novo in the infant. FINDINGS We performed a detailed HIV genetic analysis using single genome sequencing to identify the origin of drug-resistant variants in an sdNVP-treated postnatally-transmitting mother-infant pair. Phylogenetic analysis of HIV sequences from the child revealed low-diversity variants indicating infection by a subtype C single transmitted/founder virus that shared full-length sequence identity with a clonally-amplified maternal breast milk virus variant harboring the K103N NVP resistance mutation. CONCLUSION In this mother/child pair, clonal amplification of maternal NVP-resistant HIV variants present in systemic and mammary gland compartments following intrapartum sdNVP represents one source of transmitted NVP-resistant variants that is responsible for the acquisition of drug resistant virus by the breastfeeding infant. This finding emphasizes the need for combination antiretroviral prophylaxis to prevent mother-to-child HIV transmission.
Collapse
Affiliation(s)
- Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuhn L, Kim HY, Walter J, Thea DM, Sinkala M, Mwiya M, Kankasa C, Decker D, Aldrovandi GM. HIV-1 concentrations in human breast milk before and after weaning. Sci Transl Med 2013; 5:181ra51. [PMID: 23596203 PMCID: PMC4557798 DOI: 10.1126/scitranslmed.3005113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Concentrations of HIV-1 RNA and DNA in mucosal compartments influence the risk of sexual transmission and mother-to-child transmission of HIV-1. Breast milk production is physiologically regulated such that supply is a function of infant demand, but whether demand also influences HIV-1 dynamics in breast milk is unknown. We tested whether minor and major changes in feeding frequency influence breast milk viral concentrations in 958 HIV-1-infected women and their infants followed, for 24 months during a trial in Lusaka, Zambia. Women were randomized to wean abruptly at 4 months or to continue breast-feeding for a duration of their own choosing. Two weeks after breast-feeding cessation (4.5 months), HIV-1 concentrations in breast milk were substantially higher (median RNA, 2708 copies/ml; DNA, 14 copies/ml) than if breast-feeding continued (median RNA, <50 copies/ml; DNA, <1 copy/ml; P < 0.0001). Among those continuing breast-feeding, HIV-1 concentrations in milk were higher if breast-feeding was nonexclusive (median RNA, 293 copies/ml; DNA, 2 copies/ml; P = 0.0006). Elevated milk viral concentrations after stopping breast-feeding explained higher than expected rates of late postnatal HIV transmission in those who weaned early. Changes in the frequency of breast-feeding peri-weaning and with nonexclusive breast-feeding influenced milk viral concentrations. This may explain the reduced risk of HIV-1 transmission associated with exclusive breast-feeding and why early weaning does not achieve the magnitude of HIV prevention predicted by models. Our results support continuation of maternal antiretroviral drug interventions over the full duration of time when any breast milk exposures may occur after planned weaning.
Collapse
Affiliation(s)
- Louise Kuhn
- Gertrude H. Sergievsky Center, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Hae-Young Kim
- Gertrude H. Sergievsky Center, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Jan Walter
- Department of Pediatrics, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Donald M. Thea
- Center International Health & Development, Boston University School of Public Health, Boston, MA
| | - Moses Sinkala
- Lusaka District Health Management Team, Lusaka, Zambia
| | - Mwiya Mwiya
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Don Decker
- Department of Pediatrics, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Grace M. Aldrovandi
- Department of Pediatrics, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| |
Collapse
|
13
|
Ebbert MTW, Mallory MA, Wilson AR, Dooley SK, Hillyard DR. Application of a new informatics tool for contamination screening in the HIV sequencing laboratory. J Clin Virol 2013; 57:249-53. [PMID: 23583427 DOI: 10.1016/j.jcv.2013.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Current HIV-1 sequencing-based methods for detecting drug resistance-associated mutations are open and susceptible to contamination. Informatic identification of clinical sequences that are nearly identical to one another may indicate specimen-to-specimen contamination or another laboratory-associated issue. OBJECTIVES To design an informatic tool to rapidly identify potential contamination in the clinical laboratory using sequence analysis and to establish reference ranges for sequence variation in the HIV-1 protease and reverse transcriptase regions among a U.S. patient population. STUDY DESIGN We developed an open-source tool named HIV Contamination Detection (HIVCD). HIVCD was utilized to make pairwise comparisons of nearly 8000 partial HIV-1 pol gene sequences from patients across the United States and to calculate percent identities (PIDs) for each pair. ROC analysis and standard deviations of PID data were used to determine reference ranges for between-patient and within-patient comparisons and to guide selection of a threshold for identifying abnormally high PID between two unrelated sequences. RESULTS The PID reference range for between-patient comparisons ranged from 83.8 to 95.7% while within-patient comparisons ranged from 96 to 100%. Interestingly, 48% of between-patient sequence pairs with a PID>96.5 were geographically related. The selected threshold for abnormally high PIDs was 96 (AUC=0.993, sensitivity=0.980, specificity=0.999). During routine use, HIVCD identified a specimen mix-up and the source of contamination of a negative control. CONCLUSIONS In our experience, HIVCD is easily incorporated into laboratory workflow, useful for identifying potential laboratory errors, and contributes to quality testing. This type of analysis should be incorporated into routine laboratory practice.
Collapse
Affiliation(s)
- Mark T W Ebbert
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
14
|
Coverage of primary mother-to-child HIV transmission isolates by second-generation broadly neutralizing antibodies. AIDS 2013; 27:337-46. [PMID: 23296195 DOI: 10.1097/qad.0b013e32835cadd6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES AND DESIGN A vaccine capable of providing cross-clade, sterilizing protection has been the holy grail of HIV-1 prevention and control since the beginning of the pandemic. A major component of this effort has been the identification and characterization of broadly neutralizing antibodies (bNAbs). Recent advances in bNAb isolation, structure-based engineering, and vector-mediated gene transfer have led to increased interest in bypassing the immune system by expressing neutralizing antibodies directly in muscle. To assess the neutralization potency and coverage of a panel of second-generation bNAbs, we cloned and phenotypically characterized 227 primary HIV-1 envelopes from 23 mother-to-child transmission (MTCT) pairs. METHODS Viral envelopes were tested for in-vitro neutralization sensitivity using a standard pseudotype assay system. A 50% inhibitory concentration (IC50) at least 10 μg/ml was used to define neutralization resistance. RESULTS The combination of antibodies PG16 and NIH45-46 had the broadest activity with the highest neutralization potency, achieving full coverage of 87% of transmission pairs (at a median sampling depth of 10 envelopes per pair) and 96% of recently infected infants in a very conservative analysis. CONCLUSIONS Our data strongly support the inclusion of NIH45-46, or a more extensively modified variant, in future proof-of-principle immunoprophylaxis or gene therapy-based trials. Furthermore, until robust sequence-based resistance detection becomes available, it will be necessary to conduct deeper phenotypic screening of primary isolates in order to determine the prevalence of minor resistant variants to help in selecting the best reagents for clinical trials.
Collapse
|
15
|
Giorgi EE, Bhattacharya T. A note on two-sample tests for comparing intra-individual genetic sequence diversity between populations. Biometrics 2012; 68:1323-6; author reply 1326. [PMID: 23004569 DOI: 10.1111/j.1541-0420.2012.01775.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gilbert, Rossini, and Shankarappa (2005, Biometrics 61, 106-117) present four U-statistic based tests to compare genetic diversity between different samples. The proposed tests improved upon previously used methods by accounting for the correlations in the data. We find, however, that the same correlations introduce an unacceptable bias in the sample estimators used for the variance and covariance of the inter-sequence genetic distances for modest sample sizes. Here, we compute unbiased estimators for these and test the resulting improvement using simulated data. We also show that, contrary to the claims in Gilbert et al., it is not always possible to apply the Welch-Satterthwaite approximate t-test, and we provide explicit formulas for the degrees of freedom to be used when, on the other hand, such approximation is indeed possible.
Collapse
Affiliation(s)
- E E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
16
|
Duri K, Gumbo F, Kristiansen K, Mapingure M, Munjoma M, Chirenje M, Rusakaniko S, Stray-Pedersen B, Műller F. Phylogenetic analysis of human immunodeficiency virus type 1 subtype C env gp120 sequences among four drug-naive families following subsequent heterosexual and vertical transmissions. AIDS Res Hum Retroviruses 2012; 28:885-93. [PMID: 22206228 DOI: 10.1089/aid.2011.0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
To characterize phylogenetic relatedness of plasma HIV-1 RNA subtype C env gp120 viral variants capable of establishing an infection following heterosexual and subsequent vertical transmission events a 650-base pair fragment within the C2-V5 subregion was sequenced from four HIV-1-infected families each consisting of biological parent(s), index children (first), and subsequent (second) siblings. None of the family members had received antiretroviral therapy at the time of sample collection. Sequence alignment and analysis were done using Gene Doc, Clustal X, and MEGA software programs. Second siblings' sequences were homogeneous and clustered in a single branch while first siblings' sequences were more heterogeneous, clustering in separate branches, suggestive of more than one donor variants responsible for the infection or evolution from founder variant(s) could have occurred. While the directionality for heterosexual transmission could not be determined, homogeneous viral variants were a unique characteristic of maternal variants as opposed to the more heterogeneous paternal variants. Analysis of families' sequences demonstrated a localized expansion of the subtype C infection. We demonstrated that families' sequences clustered quite closely with other regional HIV-1 subtype C sequences supported by a bootstrap value of 86%, confirming the difficulty of classifying subtype C sequences on a geographic basis. Data are indicative of several mechanisms that may be involved in both vertical and heterosexual transmission. Larger studies are warranted to address the caveats of this study and build on the strengths. Our study could be the beginning of family-based HIV-1 intervention research in Zimbabwe.
Collapse
Affiliation(s)
- Kerina Duri
- Department of Immunology, University of Zimbabwe, Harare, Zimbabwe
| | - Felicity Gumbo
- Department of Pediatrics and Child Health, University of Zimbabwe, Harare, Zimbabwe
| | - Knut Kristiansen
- Department of Molecular Biology, University of Oslo, Oslo, Norway
| | - Munyaradzi Mapingure
- Department of Bioinformatics, Letten Foundation Research Centre, Harare, Zimbabwe
| | - Marshall Munjoma
- Department of Obstetrics and Gynecology, University of Zimbabwe, Harare, Zimbabwe
| | - Mike Chirenje
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe
| | | | - Babill Stray-Pedersen
- Division of Women and Children, Oslo University Hospital, Rikshospitalet and Institute of Clinical Medicine, Oslo, Norway
| | - Fredrik Műller
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
17
|
Virologic determinants of breast milk transmission of HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:69-80. [PMID: 22454342 DOI: 10.1007/978-1-4614-2251-8_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
18
|
HIV-1 resistance to antiretroviral agents: relevance to mothers and infants in the breastfeeding setting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012. [PMID: 22454343 DOI: 10.1007/978-1-4614-2251-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
Mahlokozera T, Kang HH, Goonetilleke N, Stacey AR, Lovingood RV, Denny TN, Kalilani L, Bunn JEG, Meshnick SR, Borrow P, Letvin NL, Permar SR. The magnitude and kinetics of the mucosal HIV-specific CD8+ T lymphocyte response and virus RNA load in breast milk. PLoS One 2011; 6:e23735. [PMID: 21886819 PMCID: PMC3160326 DOI: 10.1371/journal.pone.0023735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/23/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The risk of postnatal HIV transmission is associated with the magnitude of the milk virus load. While HIV-specific cellular immune responses control systemic virus load and are detectable in milk, the contribution of these responses to the control of virus load in milk is unknown. METHODS We assessed the magnitude of the immunodominant GagRY11 and subdominant EnvKY9-specific CD8+ T lymphocyte response in blood and milk of 10 A*3002+, HIV-infected Malawian women throughout the period of lactation and correlated this response to milk virus RNA load and markers of breast inflammation. RESULTS The magnitude and kinetics of the HIV-specific CD8+ T lymphocyte responses were discordant in blood and milk of the right and left breast, indicating independent regulation of these responses in each breast. However, there was no correlation between the magnitude of the HIV-specific CD8+ T lymphocyte response and the milk virus RNA load. Further, there was no correlation between the magnitude of this response and markers of breast inflammation. CONCLUSIONS The magnitude of the HIV-specific CD8+ T lymphocyte response in milk does not appear to be solely determined by the milk virus RNA load and is likely only one of the factors contributing to maintenance of low virus load in milk.
Collapse
Affiliation(s)
- Tatenda Mahlokozera
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helen H. Kang
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nilu Goonetilleke
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, England, United Kingdom
| | - Andrea R. Stacey
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire, England, United Kingdom
| | - Rachel V. Lovingood
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Linda Kalilani
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - James E. G. Bunn
- College of Medicine, University of Malawi, Blantyre, Malawi
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Steve R. Meshnick
- Department of Epidemiology, University of North Carolina School of Public Health, Chapel Hill, North Carolina, United States of America
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire, England, United Kingdom
| | - Norman L. Letvin
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sallie R. Permar
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
20
|
High cell-free virus load and robust autologous humoral immune responses in breast milk of simian immunodeficiency virus-infected african green monkeys. J Virol 2011; 85:9517-26. [PMID: 21734053 DOI: 10.1128/jvi.00796-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The design of immunologic interventions to prevent postnatal transmission of human immunodeficiency virus (HIV) will require identification of protective immune responses in this setting. Simian immunodeficiency virus (SIV)-infected rhesus monkeys (RMs), a species that develops an AIDS-like illness following experimental infection, transmit the virus at a high rate during breastfeeding. In contrast, postnatal transmission of SIV occurs rarely or not at all in natural, asymptomatic primate hosts of SIV. These contrasting transmission patterns provide a unique opportunity to study mechanisms that evolved to protect suckling infants from SIV infection. We compared the virologic and immunologic properties of milk of SIV-infected and uninfected natural hosts of SIV, African green monkeys (AGMs), to that of RMs. Interestingly, despite a low number of milk CD4(+) T lymphocytes in uninfected AGMs, milk virus RNA load in SIV-infected AGMs was comparable to that of SIV-infected RMs and that in AGM plasma. This observation is in contrast to the relatively low virus load in milk compared to that in plasma of SIV-infected RMs and HIV-infected women. Milk of SIV-infected AGMs also displayed robust virus-specific cellular immune responses. Importantly, an autologous challenge virus-specific neutralization response was detected in milk of five of six SIV-infected AGMs that was comparable in magnitude to that in plasma. In contrast, autologous challenge virus neutralization was not detectable in milk of SIV-infected RMs. The autologous virus-specific adaptive immune responses in breast milk of AGMs may contribute to impedance of virus transmission in the infant oral/gastrointestinal tract and the rarity of postnatal virus transmission in natural hosts of SIV.
Collapse
|
21
|
Kumar SB, Handelman SK, Voronkin I, Mwapasa V, Janies D, Rogerson SJ, Meshnick SR, Kwiek JJ. Different regions of HIV-1 subtype C env are associated with placental localization and in utero mother-to-child transmission. J Virol 2011; 85:7142-52. [PMID: 21543508 PMCID: PMC3126595 DOI: 10.1128/jvi.01955-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/13/2011] [Indexed: 01/22/2023] Open
Abstract
HIV infections are initiated by a limited number of variants that diverge into a diverse quasispecies swarm. During in utero mother-to-child transmission (IU MTCT), transmitted viral variants must pass through multiple unique environments, and our previously published data suggest a nonstochastic model of transmission. As an alternative to a stochastic model of viral transmission, we hypothesize that viral selection in the placental environment influences the character of the viral quasispecies when HIV-1 is transmitted in utero. To test this hypothesis, we used single-template amplification to isolate HIV-1 envelope gene (env) sequences from both peripheral plasma and the placentas of eight nontransmitting (NT) and nine IU-transmitting participants. Statistically significant compartmentalization between peripheral and placental HIV-1 env was detected in one of the eight NT cases and six of the nine IU MTCT cases. In addition, viral sequences isolated from IU MTCT placental tissue showed variation in env V1 loop lengths compared to matched maternal sequences, while NT placental env sequences did not. Finally, comparison of env sequences from NT and IU MTCT participants indicated statistically significant differences in Kyte-Doolittle hydropathy in the signal peptide, C2, V3, and C3 regions. Our working hypothesis is that the hydropathy differences in Env associated with IU MTCT alter viral cellular tropism or affinity, allowing HIV-1 to efficiently infect placentally localized cells.
Collapse
Affiliation(s)
- Surender B. Kumar
- Department of Veterinary Biosciences and Center for Retrovirus Research
| | | | | | - Victor Mwapasa
- Department of Community Health, Malawi College of Medicine, Blantyre, Malawi
| | | | - Stephen J. Rogerson
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Steven R. Meshnick
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jesse J. Kwiek
- Division of Infectious Diseases, and Department of Microbiology, Center for Microbial Interface Biology, and Center for Retrovirus Research, Ohio State University, Columbus, Ohio
| |
Collapse
|
22
|
The breadth and potency of passively acquired human immunodeficiency virus type 1-specific neutralizing antibodies do not correlate with the risk of infant infection. J Virol 2011; 85:5252-61. [PMID: 21411521 DOI: 10.1128/jvi.02216-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although a major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is to elicit broad and potent neutralizing antibodies (NAbs), there are no data that directly demonstrate a role for such NAbs in protection from HIV-1 infection in exposed humans. The setting of mother-to-child transmission provides an opportunity to examine whether NAbs provide protection from HIV-1 infection because infants acquire passive antibodies from their mothers prior to exposure to HIV-1 through breastfeeding. We evaluated the characteristics of HIV-1-specific NAbs in 100 breast-fed infants of HIV-1-positive mothers who were HIV-1 negative at birth and monitored them until age 2. A panel of eight viruses that included variants representative of those in the study region as well as more diverse strains was used to determine the breadth of the infant NAbs. From their mothers, infants acquired broad and potent NAbs that were capable of recognizing heterologous circulating HIV-1 variants of diverse subtypes, but the presence of NAbs of broad HIV-1 specificity was not associated with transmission risk. There was also no correlation between responses to any particular virus tested, which included a range of diverse variants that demonstrated different neutralization profiles, including recognition by specific antibodies with known epitope targets. The eight viruses tested exhibited neutralization profiles to a variety of monoclonal antibodies (2F5, PG9, and VRC01) similar to those of viruses present in pregnant women in the cohort. These results suggest that the breadth and potency of the heterologous antibody response in exposed infants, measured against a virus panel comprised of variants typical of those circulating in the population, does not predict protection.
Collapse
|
23
|
Abstract
DESIGN the origin and evolution of HIV-1 in breast milk is unclear, despite the continuing significance of this tissue as a transmitting compartment. To elucidate the evolutionary trajectory of viral populations in a transient mucosal compartment, longitudinal sequences of the envelope glycoprotein (gp120) region from plasma and breast milk spanning the first year after delivery were analyzed in six women infected by HIV-1 subtype C. METHODS multiple phylogenetic algorithms were used to elucidate the evolutionary history and spatial structure of virus populations between tissues. RESULTS overall persistent mixing of viral sequences between plasma and breast milk indicated that breast milk is not a distinct genetic viral compartment. Unexpectedly, longitudinal phylogenies showed multiple lineages defined by long branches that included virus from both the breast milk and the plasma. Plasma was unlikely the anatomical origin of the most recent common ancestor (MRCA) in at least three of the patients, although in other women, the temporal origin of the MRCA of the viral populations following delivery occurred well before the onset of breast milk production. CONCLUSIONS these findings suggest that during pregnancy/lactation, a viral variant distinct from the plasma virus initially seeds the breast milk, followed by subsequent gene flow between the plasma and breast milk tissues. This study indicates the potential for reactivation or reintroduction of distinct lineages during major immunological disruptions during the course of natural infection.
Collapse
|
24
|
Origin and evolution of HIV-1 in breast milk determined by single-genome amplification and sequencing. J Virol 2010; 85:2751-63. [PMID: 21191008 DOI: 10.1128/jvi.02316-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
HIV transmission via breastfeeding accounts for a considerable proportion of infant HIV acquisition. However, the origin and evolution of the virus population in breast milk, the likely reservoir of transmitted virus variants, are not well characterized. In this study, HIV envelope (env) genes were sequenced from virus variants amplified by single-genome amplification from plasmas and milk of 12 chronically HIV-infected, lactating Malawian women. Maximum likelihood trees and statistical tests of compartmentalization revealed interspersion of plasma and milk HIV env sequences in the majority of subjects, indicating limited or no compartmentalization of milk virus variants. However, phylogenetic tree analysis further revealed monotypic virus variants that were significantly more frequent in milk (median proportion of identical viruses, 29.5%; range, 0 to 61%) than in plasma (median proportion of identical viruses, 0%; range, 0 to 26%) (P = 0.002), suggesting local virus replication in the breast milk compartment. Moreover, clonally amplified virus env genes in milk produced functional virus Envs that were all CCR5 tropic. Milk and plasma virus Envs had similar predicted phenotypes and neutralization sensitivities to broadly neutralizing antibodies in both transmitting and nontransmitting mothers. Finally, phylogenetic comparison of longitudinal milk and plasma virus env sequences revealed synchronous virus evolution and new clonal amplification of evolved virus env genes in milk. The limited compartmentalization and the clonal amplification of evolving, functional viruses in milk indicate continual seeding of the mammary gland by blood virus variants, followed by transient local replication of these variants in the breast milk compartment.
Collapse
|
25
|
Bulterys PL, Dalai SC, Katzenstein DA. Viral sequence analysis from HIV-infected mothers and infants: molecular evolution, diversity, and risk factors for mother-to-child transmission. Clin Perinatol 2010; 37:739-50, viii. [PMID: 21078447 PMCID: PMC3175486 DOI: 10.1016/j.clp.2010.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Great progress has been made in understanding the pathogenesis, treatment, and transmission of HIV and the factors influencing the risk of mother-to-child transmission (MTCT). Many questions regarding the molecular evolution and genetic diversity of HIV in the context of MTCT remain unanswered. Further research to identify the selective factors governing which variants are transmitted, how the compartmentalization of HIV in different cells and tissues contributes to transmission, and the influence of host immunity, viral diversity, and recombination on MTCT may provide insight into new prevention strategies and the development of an effective HIV vaccine.
Collapse
Affiliation(s)
- Philip L Bulterys
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-4200, USA
| | | | | |
Collapse
|
26
|
Wilks AB, Christian EC, Seaman MS, Sircar P, Carville A, Gomez CE, Esteban M, Pantaleo G, Barouch DH, Letvin NL, Permar SR. Robust vaccine-elicited cellular immune responses in breast milk following systemic simian immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating rhesus monkeys. THE JOURNAL OF IMMUNOLOGY 2010; 185:7097-106. [PMID: 21041730 DOI: 10.4049/jimmunol.1002751] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Collapse
Affiliation(s)
- Andrew B Wilks
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Genetic analyses of HIV-1 env sequences demonstrate limited compartmentalization in breast milk and suggest viral replication within the breast that increases with mastitis. J Virol 2010; 84:10812-9. [PMID: 20660189 DOI: 10.1128/jvi.00543-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of human immunodeficiency virus type 1 (HIV-1) is generally lower in breast milk than in blood. Mastitis, or inflammation of the breast, is associated with increased levels of milk HIV-1 and risk of mother-to-child transmission through breastfeeding. We hypothesized that mastitis facilitates the passage of HIV-1 from blood into milk or stimulates virus production within the breast. HIV-1 env sequences were generated from single amplicons obtained from breast milk and blood samples in a cross-sectional study. Viral compartmentalization was evaluated using several statistical methods, including the Slatkin and Maddison (SM) test. Mastitis was defined as an elevated milk sodium (Na(+)) concentration. The association between milk Na(+) and the pairwise genetic distance between milk and blood viral sequences was modeled using linear regression. HIV-1 was compartmentalized within milk by SM testing in 6/17 (35%) specimens obtained from 9 women, but all phylogenetic clades included viral sequences from milk and blood samples. Monotypic sequences were more prevalent in milk samples than in blood samples (22% versus 13%; P = 0.012), which accounted for half of the compartmentalization observed. Mastitis was not associated with compartmentalization by SM testing (P = 0.621), but Na(+) was correlated with greater genetic distance between milk and blood HIV-1 populations (P = 0.041). In conclusion, local production of HIV-1 within the breast is suggested by compartmentalization of virus and a higher prevalence of monotypic viruses in milk specimens. However, phylogenetic trees demonstrate extensive mixing of viruses between milk and blood specimens. HIV-1 replication in breast milk appears to increase with inflammation, contributing to higher milk viral loads during mastitis.
Collapse
|
28
|
Limited contribution of mucosal IgA to Simian immunodeficiency virus (SIV)-specific neutralizing antibody response and virus envelope evolution in breast milk of SIV-infected, lactating rhesus monkeys. J Virol 2010; 84:8209-18. [PMID: 20519381 DOI: 10.1128/jvi.00656-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.
Collapse
|