1
|
Sun B, Huang J, Kong L, Gao C, Zhao F, Shen J, Wang T, Li K, Wang L, Wang Y, Halterman DA, Dong S. Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity. THE PLANT CELL 2024; 36:3729-3750. [PMID: 38941447 PMCID: PMC11371151 DOI: 10.1093/plcell/koae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.
Collapse
Affiliation(s)
- Biying Sun
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Liang Kong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayong Shen
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangping Li
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen, Guangdong 518120, China
| | - Yuanchao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Dennis A Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- US Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706-1514, USA
| | - Suomeng Dong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Zarka KA, Jagd LM, Douches DS. T-DNA characterization of genetically modified 3-R-gene late blight-resistant potato events with a novel procedure utilizing the Samplix Xdrop ® enrichment technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1330429. [PMID: 38419775 PMCID: PMC10900525 DOI: 10.3389/fpls.2024.1330429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Before the commercialization of genetically modified crops, the events carrying the novel DNA must be thoroughly evaluated for agronomic, nutritional, and molecular characteristics. Over the years, polymerase chain reaction-based methods, Southern blot, and short-read sequencing techniques have been utilized for collecting molecular characterization data. Multiple genomic applications are necessary to determine the insert location, flanking sequence analysis, characterization of the inserted DNA, and determination of any interruption of native genes. These techniques are time-consuming and labor-intensive, making it difficult to characterize multiple events. Current advances in sequencing technologies are enabling whole-genomic sequencing of modified crops to obtain full molecular characterization. However, in polyploids, such as the tetraploid potato, it is a challenge to obtain whole-genomic sequencing coverage that meets the regulatory approval of the genetic modification. Here we describe an alternative to labor-intensive applications with a novel procedure using Samplix Xdrop® enrichment technology and next-generation Nanopore sequencing technology to more efficiently characterize the T-DNA insertions of four genetically modified potato events developed by the Feed the Future Global Biotech Potato Partnership: DIA_MSU_UB015, DIA_MSU_UB255, GRA_MSU_UG234, and GRA_MSU_UG265 (derived from regionally important varieties Diamant and Granola). Using the Xdrop® /Nanopore technique, we obtained a very high sequence read coverage within the T-DNA and junction regions. In three of the four events, we were able to use the data to confirm single T-DNA insertions, identify insert locations, identify flanking sequences, and characterize the inserted T-DNA. We further used the characterization data to identify native gene interruption and confirm the stability of the T-DNA across clonal cycles. These results demonstrate the functionality of using the Xdrop® /Nanopore technique for T-DNA characterization. This research will contribute to meeting regulatory safety and regulatory approval requirements for commercialization with small shareholder farmers in target countries within our partnership.
Collapse
Affiliation(s)
- Kelly A. Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Microbial interaction mediated programmed cell death in plants. 3 Biotech 2022; 12:43. [PMID: 35096500 PMCID: PMC8761208 DOI: 10.1007/s13205-021-03099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/26/2021] [Indexed: 02/03/2023] Open
Abstract
Food demand of growing population can only be met by finding solutions for sustaining the crop yield. The understanding of basic mechanisms employed by microorganisms for the establishment of parasitic relationship with plants is a complex phenomenon. Symbionts and biotrophs are dependent on living hosts for completing their life cycle, whereas necrotrophs utilize dead cells for their growth and establishment. Hemibiotrophs as compared to other microbes associate themselves with plants in two phase's, viz. early bio-phase and later necro-phase. Plants and microbes interact with each other using receptors present on host cell surface and elicitors (PAMPs and effectors) produced by microbes. Plant-microbe interaction either leads to compatible or incompatible reaction. In response to various biotic and abiotic stress factors, plant undergoes programmed cell death which restricts the growth of biotrophs or hemibiotrophs while necrotrophs as an opportunist starts growing on dead tissue for their own benefit. PCD regulation is an outcome of plant-microbe crosstalk which entirely depends on various biochemical events like generation of reactive oxygen species, nitric oxide, ionic efflux/influx, CLPs, biosynthesis of phytohormones, phytoalexins, polyamines and certain pathogenesis-related proteins. This phenomenon mostly occurs in resistant and non-host plants during invasion of pathogenic microbes. The compatible or incompatible host-pathogen interaction depends upon the presence or absence of host plant resistance and pathogenic race. In addition to host-pathogen interaction, the defense induction by beneficial microbes must also be explored and used to the best of its potential. This review highlights the mechanism of microbe- or symbiont-mediated PCD along with defense induction in plants towards symbionts, biotrophs, necrotrophs and hemibiotrophs. Here we have also discussed the possible use of beneficial microbes in inducing systemic resistance in plants against pathogenic microbes.
Collapse
|
4
|
Zhao J, Song J. NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. PLANT COMMUNICATIONS 2021; 2:100236. [PMID: 34778749 PMCID: PMC8577132 DOI: 10.1016/j.xplc.2021.100236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate immune responses by directly or indirectly sensing pathogen-derived effectors. Despite significant advances in the understanding of NLR-mediated immunity, the mechanisms by which pathogens evolve to suppress NLR activation triggered by cognate effectors and gain virulence remain largely unknown. The agronomically important immune receptor RB recognizes the ubiquitous and highly conserved IPI-O RXLR family members (e.g., IPI-O1) from Phytophthora infestans, and this process is suppressed by the rarely present and homologous effector IPI-O4. Here, we report that self-association of RB via the coiled-coil (CC) domain is required for RB activation and is differentially affected by avirulence and virulence effectors. IPI-O1 moderately reduces the self-association of RB CC, potentially leading to changes in the conformation and equilibrium of RB, whereas IPI-O4 dramatically impairs CC self-association to prevent RB activation. We also found that IPI-O1 associates with itself, whereas IPI-O4 does not. Notably, IPI-O4 interacts with IPI-O1 and disrupts its self-association, therefore probably blocking its avirulence function. Furthermore, IPI-O4 enhances the interaction between RB CC and IPI-O1, possibly sequestering RB and IPI-O1 and subsequently blocking their interactions with signaling components. Taken together, these findings considerably extend our understanding of the underlying mechanisms by which emerging virulent pathogens suppress the NLR-mediated recognition of cognate effectors.
Collapse
Affiliation(s)
- Jinping Zhao
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Bautista D, Guayazan-Palacios N, Buitrago MC, Cardenas M, Botero D, Duitama J, Bernal AJ, Restrepo S. Comprehensive Time-Series Analysis of the Gene Expression Profile in a Susceptible Cultivar of Tree Tomato ( Solanum betaceum) During the Infection of Phytophthora betacei. FRONTIERS IN PLANT SCIENCE 2021; 12:730251. [PMID: 34745164 PMCID: PMC8567061 DOI: 10.3389/fpls.2021.730251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 05/30/2023]
Abstract
Solanum betaceum is a tree from the Andean region bearing edible fruits, considered an exotic export. Although there has been renewed interest in its commercialization, sustainability, and disease management have been limiting factors. Phytophthora betacei is a recently described species that causes late blight in S. betaceum. There is no general study of the response of S. betaceum, particularly, in the changes in expression of pathogenesis-related genes. In this manuscript we present a comprehensive RNA-seq time-series study of the plant response to the infection of P. betacei. Following six time points of infection, the differentially expressed genes (DEGs) involved in the defense by the plant were contextualized in a sequential manner. We documented 5,628 DEGs across all time-points. From 6 to 24 h post-inoculation, we highlighted DEGs involved in the recognition of the pathogen by the likely activation of pattern-triggered immunity (PTI) genes. We also describe the possible effect of the pathogen effectors in the host during the effector-triggered response. Finally, we reveal genes related to the susceptible outcome of the interaction caused by the onset of necrotrophy and the sharp transcriptional changes as a response to the pathogen. This is the first report of the transcriptome of the tree tomato in response to the newly described pathogen P. betacei.
Collapse
Affiliation(s)
- Daniel Bautista
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Natalia Guayazan-Palacios
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
- Department of Biology, University of Washington, Seattle, WA, United States
| | | | - Martha Cardenas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - David Botero
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Department of Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Adriana J. Bernal
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Karki HS, Abdullah S, Chen Y, Halterman DA. Natural Genetic Diversity in the Potato Resistance Gene RB Confers Suppression Avoidance from Phytophthora Effector IPI-O4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1048-1056. [PMID: 33970667 DOI: 10.1094/mpmi-11-20-0313-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RB is a potato gene that provides resistance to a broad spectrum of genotypes of the late blight pathogen Phytophthora infestans. RB belongs to the CC-NB-LRR (coiled-coil, nucleotide-binding, leucine-rich repeat) class of resistance (R) genes, a major component of the plant immune system. The RB protein detects the presence of class I and II IPI-O effectors from P. infestans to initiate a hypersensitive resistance response, but this activity is suppressed in the presence of the Class III effector IPI-O4. Using natural genetic variation of RB within potato wild relatives, we identified two amino acids in the CC domain that alter interactions needed for suppression of resistance by IPI-O4. We have found that separate modification of these amino acids in RB can diminish or expand the resistance capability of this protein against P. infestans in both Nicotiana benthamiana and potato. Our results demonstrate that increased knowledge of the molecular mechanisms that determine resistance activation and R protein suppression by effectors can be utilized to tailor-engineer genes with the potential to provide increased durability.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hari S Karki
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Sidrat Abdullah
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Dennis A Halterman
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| |
Collapse
|
7
|
Xue D, Liu H, Wang D, Gao Y, Jia Z. Comparative transcriptome analysis of R3a and Avr3a-mediated defense responses in transgenic tomato. PeerJ 2021; 9:e11965. [PMID: 34434667 PMCID: PMC8359799 DOI: 10.7717/peerj.11965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Late blight caused by Phytophthora infestans is one of the most devastating diseases in potatoes and tomatoes. At present, several late blight resistance genes have been mapped and cloned. To better understand the transcriptome changes during the incompatible interaction process between R3a and Avr3a, in this study, after spraying DEX, the leaves of MM-R3a-Avr3a and MM-Avr3a transgenic plants at different time points were used for comparative transcriptome analysis. A total of 7,324 repeated DEGs were detected in MM-R3a-Avr3a plants at 2-h and 6-h, and 729 genes were differentially expressed at 6-h compared with 2-h. Only 1,319 repeated DEGs were found in MM-Avr3a at 2-h and 6-h, of which 330 genes have the same expression pattern. Based on GO, KEGG and WCGNA analysis of DEGs, the phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly up-regulated. Parts of the down-regulated DEGs were enriched in carbon metabolism and the photosynthesis process. Among these DEGs, most of the transcription factors, such as WRKY, MYB, and NAC, related to disease resistance or endogenous hormones SA and ET pathways, as well as PR, CML, SGT1 gene were also significantly induced. Our results provide transcriptome-wide insights into R3a and Avr3a-mediated incompatibility interaction.
Collapse
Affiliation(s)
- Dongqi Xue
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Han Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanna Gao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Martynov VV, Chizhik VK. The Study of Polymorphism of the ipiO Gene Family in Oomycete Phytophthora infestans (Mont.) De Bary in the Moscow Region Population Using SSCP Analysis. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gold KM, Townsend PA, Herrmann I, Gevens AJ. Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110316. [PMID: 32534618 DOI: 10.1016/j.plantsci.2019.110316] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/11/2023]
Abstract
Understanding plant disease resistance is important in the integrated management of Phytophthora infestans, causal agent of potato late blight. Advanced field-based methods of disease detection that can identify infection before the onset of visual symptoms would improve management by greatly reducing disease potential and spread as well as improve both the financial and environmental sustainability of potato farms. In-vivo foliar spectroscopy offers the capacity to rapidly and non-destructively characterize plant physiological status, which can be used to detect the effects of necrotizing pathogens on plant condition prior to the appearance of visual symptoms. Here, we tested differences in spectral response of four potato cultivars, including two cultivars with a shared genotypic background except for a single copy of a resistance gene, to inoculation with Phytophthora infestans clonal lineage US-23 using three statistical approaches: random forest discrimination (RF), partial least squares discrimination analysis (PLS-DA), and normalized difference spectral index (NDSI). We find that cultivar, or plant genotype, has a significant impact on spectral reflectance of plants undergoing P. infestans infection. The spectral response of four potato cultivars to infection by Phytophthora infestans clonal lineage US-23 was highly variable, yet with important shared characteristics that facilitated discrimination. Early disease physiology was found to be variable across cultivars as well using non-destructively derived PLS-regression trait models. This work lays the foundation to better understand host-pathogen interactions across a variety of genotypic backgrounds, and establishes that host genotype has a significant impact on spectral reflectance, and hence on biochemical and physiological traits, of plants undergoing pathogen infection.
Collapse
Affiliation(s)
- Kaitlin M Gold
- University of Wisconsin-Madison, Department of Plant Pathology, United States.
| | - Philip A Townsend
- University of Wisconsin-Madison, Department of Forestry and Wildlife Ecology, United States
| | - Ittai Herrmann
- The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Amanda J Gevens
- University of Wisconsin-Madison, Department of Plant Pathology, United States
| |
Collapse
|
10
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
11
|
Ghislain M, Byarugaba AA, Magembe E, Njoroge A, Rivera C, Román ML, Tovar JC, Gamboa S, Forbes GA, Kreuze JF, Barekye A, Kiggundu A. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1119-1129. [PMID: 30467980 PMCID: PMC6523587 DOI: 10.1111/pbi.13042] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 05/09/2023]
Abstract
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%-30% annual yield loss in sub-Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi-blb2 from Solanum bulbocastanum and Rpi-vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R-gene stack from the potato varieties 'Desiree' and 'Victoria' grew normally without showing pathogen damage and without any fungicide spray, whereas their non-transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long-lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from 'Desiree' and 'Victoria' grown without fungicide to reflect small-scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four-fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers' preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | | | | | - María Lupe Román
- International Potato CenterLimaPeru
- Present address:
Universidad Nacional Agraria La MolinaLima12Peru
| | - José Carlos Tovar
- International Potato CenterLimaPeru
- Present address:
Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | | | | | | | - Alex Barekye
- Kachwekano Zonal Agricultural Research and Development InstituteKabaleUganda
| | - Andrew Kiggundu
- National Agriculture Research Laboratories (NARL)KampalaUganda
| |
Collapse
|
12
|
Leesutthiphonchai W, Vu AL, Ah-Fong AMV, Judelson HS. How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. PHYTOPATHOLOGY 2018; 108:916-924. [PMID: 29979126 DOI: 10.1094/phyto-04-18-0130-ia] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The infamous oomycete Phytophthora infestans has been a persistent threat to potato and tomato production worldwide, causing the diseases known as late blight. This pathogen has proved to be remarkably adept at overcoming control strategies including host-based resistance and fungicides. This review describes the features of P. infestans that make it such a daunting challenge to agriculture. These include a stealthy lifestyle that helps P. infestans evade plant defenses, effectors that suppress host defenses and promote susceptibility, profuse sporulation with a short latent period that enables rapid dissemination, and a genome structure that promotes the adaptive evolution of P. infestans by fostering genetic diversity. Nevertheless, there is reason to be optimistic that accumulated knowledge about the biology of P. infestans and its hosts will lead to improved management of late blight.
Collapse
Affiliation(s)
| | - Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside 92521
| |
Collapse
|
13
|
Woods-Tör A, Studholme DJ, Cevik V, Telli O, Holub EB, Tör M. A Suppressor/Avirulence Gene Combination in Hyaloperonospora arabidopsidis Determines Race Specificity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:265. [PMID: 29545818 PMCID: PMC5838922 DOI: 10.3389/fpls.2018.00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 05/23/2023]
Abstract
The pathosystem of Arabidopsis thaliana and diploid biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) has been a model for investigating the molecular basis of Flor's gene-for-gene hypothesis. The isolates Hpa-Noks1 and Hpa-Cala2 are virulent on Arabidopsis accession RMX-A02 whilst an F1 generated from a cross between these two isolates was avirulent. The F2 progeny segregated 3,1 (avirulent, virulent), indicating a single major effect AVR locus in this pathogen. SNP-based linkage mapping confirmed a single AVR locus within a 14 kb map interval containing two genes encoding putative effectors. The Hpa-Cala2 allele of one gene, designated H. arabidopsidiscryptic1 (HAC1), encodes a protein with a signal peptide and an RxLR/dEER motif, and triggers a defense response in RMX-A02. The second gene is heterozygous in Hpa-Cala2. One allele, designated Suppressor ofHAC1Cala2 (S-HAC1Cala2 ) encodes a protein with a signal peptide and a dKEE motif with no RxLR motif; the other allele (s-hac1Cala2 ) encodes a protein with a signal peptide, a dEEE motif and is divergent in sequence from the S-HAC1Cala2 allele. In selfed progeny from Hpa-Cala2, dominant S-HAC1Cala2 allele carrying progeny correlates with virulence in RMX-A02, whereas homozygous recessive s-hac1Cala2 carrying progeny were avirulent. Genetic investigations suggested other heterozygous suppressor loci might exist in the Hpa-Cala2 genome.
Collapse
Affiliation(s)
- Alison Woods-Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Osman Telli
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Eric B. Holub
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mahmut Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
14
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
15
|
Chen Y, Halterman DA. Phytophthora infestans Effectors IPI-O1 and IPI-O4 Each Contribute to Pathogen Virulence. PHYTOPATHOLOGY 2017; 107:600-606. [PMID: 28350531 DOI: 10.1094/phyto-06-16-0240-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, because newly evolved pathogen strains have overcome major resistance genes quickly. The RB protein, from the diploid wild potato species Solanum bulbocastanum, confers partial resistance to most P. infestans strains through its recognition of members of the corresponding pathogen effector protein family IPI-O. IPI-O comprises a multigene family and while some variants are recognized by RB to elicit host resistance (e.g., IPI-O1 and IPI-O2), others are able to elude detection (e.g., IPI-O4). IPI-O1 is almost ubiquitous in global P. infestans strains while IPI-O4 is more rare. No direct experimental evidence has been shown to demonstrate the effect of IPI-O on pathogen virulence in the P. infestans-potato pathosystem. Here, our work has demonstrated that in planta expression of both IPI-O1 and IPI-O4 increases P. infestans aggressiveness resulting in enlarged lesions in potato leaflets. We have previously shown that IPI-O4 has gained the ability to suppress the hypersensitive response induced by IPI-O1 in the presence of RB. In this study, our work has shown that this gain-of-function of IPI-O4 does not compromise its virulence effect, as IPI-O4 overexpression results in larger lesions than IPI-O1. We have also found that higher expression of IPI-O effectors correlates with enlarged lesions, indicating that IPI-O can contribute to virulence quantitatively. In summary, this study has provided accurate and valuable information on IPI-O's virulence effect on the potato host.
Collapse
Affiliation(s)
- Yu Chen
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| | - Dennis A Halterman
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| |
Collapse
|
16
|
The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b. Int J Mol Sci 2017; 18:ijms18020409. [PMID: 28216607 PMCID: PMC5343943 DOI: 10.3390/ijms18020409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Phytopathogenic oomycetes, such as Phytophthora infestans, potentially secrete many RxLR effector proteins into plant cells to modulate plant immune responses and promote colonization. However, the molecular mechanisms by which these RxLR effectors suppress plant immune responses are largely unknown. Here we describe an RxLR effector PITG_22798 (Gene accession: XM_002998349) that was upregulated during early infection of potato by P. infestans. By employment of agroinfiltration, we observed that PITG_22798 triggers cell death in Nicotiana benthamiana. Confocal microscopic examination showed that PITG_22798-GFP (Green Fluorescent Protein) located in the host nucleus when expressed transiently in N. benthamiana leaves. A nuclear localization signal (NLS) domain of PITG_22798 is important for nuclear localization and cell death-inducing activity. Sequence alignment and transient expression showed that PITG_22798 from diverse P. infestans isolates are conserved, and transient expression of PITG_22798 enhances P. infestans colonization of N. benthamiana leaves, which suggests that PITG_22798 contributes to P. infestans infection. PITG_22798-triggered cell death is dependent on SGT1-mediated signaling and is suppressed by the P. infestans avirulence effector 3b (AVR3b). The present research provides a clue for further investigation of how P. infestans effector PITG_22798 associates with and modulates host immunity.
Collapse
|
17
|
Fry WE. Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:529-47. [PMID: 27359366 DOI: 10.1146/annurev-phyto-080615-095951] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
New tools have revealed that migrations of Phytophthora infestans have been a dominant feature of the population biology of this pathogen for the past 50 years, and maybe for the past 170 years. We now have accurate information on the composition of many P. infestans populations. However, migration followed by selection can lead and has led to dramatically rapid changes in populations over large regions. Except for the highlands of central Mexico, many populations of P. infestans have probably been in flux over the past several decades. There is some evidence that this pathogen has different characteristics in the field than it does in the lab, and early field phenotypic analyses of hypotheses concerning fitness and pathogenicity would be beneficial. The newly available capacity to acquire and process vast amounts of weather and weather forecast data in combination with advancements in molecular diagnostics enables much greater precision in late blight management to produce recommendations that are site, host, and pathogen specific.
Collapse
Affiliation(s)
- William E Fry
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850;
| |
Collapse
|
18
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Matas AJ, Patev S, Fry WE, Rose JKC. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2016; 17:42-54. [PMID: 25808779 PMCID: PMC6638369 DOI: 10.1111/mpp.12260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Antonio J Matas
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Ponnala L, Lee SJ, Matas AJ, Patev S, Fry WE, Rose JKC. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. MOLECULAR PLANT PATHOLOGY 2016; 17:29-41. [PMID: 25845484 PMCID: PMC6638332 DOI: 10.1111/mpp.12263] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holly Center for Agriculture and Health, USDA-ARS, Tower Road, Ithaca, NY, 14853, USA
| | - Lalit Ponnala
- Institute for Biotechnology and Life Science Technologies, Cornell University, Ithaca, NY, 14853, USA
| | - Sang Jik Lee
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Biotechnology Institute, Nongwoo Bio Co., Ltd, Gyeonggi, South Korea
| | - Antonio J Matas
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
Diaz-Granados A, Petrescu AJ, Goverse A, Smant G. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1575. [PMID: 27812363 DOI: 10.3389/fpls.2015.01575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 05/22/2023]
Abstract
Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.
Collapse
Affiliation(s)
| | - Andrei-José Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy Bucharest, Romania
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University Wageningen, Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
21
|
Diaz-Granados A, Petrescu AJ, Goverse A, Smant G. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1575. [PMID: 27812363 PMCID: PMC5071358 DOI: 10.3389/fpls.2016.01575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 05/03/2023]
Abstract
Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.
Collapse
Affiliation(s)
| | - Andrei-José Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian AcademyBucharest, Romania
| | - Aska Goverse
- Laboratory of Nematology, Wageningen UniversityWageningen, Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Geert Smant,
| |
Collapse
|
22
|
Du Y, Mpina MH, Birch PRJ, Bouwmeester K, Govers F. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. PLANT PHYSIOLOGY 2015; 169:1975-90. [PMID: 26336092 PMCID: PMC4634092 DOI: 10.1104/pp.15.01169] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/30/2015] [Indexed: 05/24/2023]
Abstract
Phytophthora infestans secretes numerous RXLR effectors that modulate host defense and thereby pave the way for successful invasion. Here, we show that the RXLR effector AVR1 is a virulence factor that promotes colonization and suppresses callose deposition, a hallmark of basal defense. To identify host targets of AVR1, we performed yeast two-hybrid screens and selected Sec5 as a candidate. Sec5 is a subunit of the exocyst, a protein complex that is involved in vesicle trafficking. AVR1-like (A-L), a close homolog of AVR1, also acts as a virulence factor, but unlike AVR1, A-L does not suppress CRINKLER2 (CRN2)-induced cell death or interact with Sec5. Compared with AVR1, A-L is shorter and lacks the carboxyl-terminal tail, the T-region that is crucial for CRN2-induced cell death suppression and Sec5 interaction. In planta analyses revealed that AVR1 and Sec5 are in close proximity, and coimmunoprecipitation confirmed the interaction. Sec5 is required for secretion of the pathogenesis-related protein PR-1 and callose deposition and also plays a role in CRN2-induced cell death. Our findings show that P. infestans manipulates an exocyst subunit and thereby potentially disturbs vesicle trafficking, a cellular process that is important for basal defense. This is a novel strategy that oomycete pathogens exploit to modulate host defense.
Collapse
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Mohamed H Mpina
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Paul R J Birch
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, The Netherlands (Y.D., M.H.M., K.B., F.G.);Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, United Kingdom (P.R.J.B.); andPlant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands (K.B.)
| |
Collapse
|
23
|
Xie Z, Si W, Gao R, Zhang X, Yang S. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Mol Genet Genomics 2015; 290:2173-86. [PMID: 26008792 DOI: 10.1007/s00438-015-1068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Late blight caused by the oomycete Phytophthora infestans is one of the most severe threats to potato production worldwide. Numerous studies suggest that the most effective protective strategy against the disease would be to provide potato cultivars with durable resistance (R) genes. However, little is known about the origin and evolutional history of these durable R-genes in potato. Addressing this might foster better understanding of the dynamics of these genes in nature and provide clues for identifying potential candidate R-genes. Here, a systematic survey was executed at RB/Rpi-blb1 locus, an exclusive broad-spectrum R-gene locus in potato. As indicated by synteny analysis, RB/Rpi-blb1 homologs were identified in all tested genomes, including potato, tomato, pepper, and Nicotiana, suggesting that the RB/Rpi-blb1 locus has an ancient origin. Two evolutionary patterns, similar to those reported on RGC2 in Lactuca, and Pi2/9 in rice, were detected at this locus. Type I RB/Rpi-blb1 homologs have frequent copy number variations and sequence exchanges, obscured orthologous relationships, considerable nucleotide divergence, and high non-synonymous to synonymous substitutions (Ka/Ks) between or within species, suggesting rapid diversification and balancing selection in response to rapid changes in the oomycete pathogen genomes. These characteristics may serve as signatures for cloning of late blight resistance genes.
Collapse
Affiliation(s)
- Zhengqing Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Weina Si
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Rongchao Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
24
|
Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS One 2014; 9:e89738. [PMID: 24586999 PMCID: PMC3933651 DOI: 10.1371/journal.pone.0089738] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022] Open
Abstract
The aim of this work was to map and identify the Phytophthora sojae Avr1c gene. Progeny from a cross of P. sojae strains ACR10×P7076 were tested for virulence on plants carrying Rps1c. Results indicate that avirulence segregates as a dominant trait. We mapped the Avr1c locus by performing whole genome re-sequencing of composite libraries created from pooled samples. Sequence reads from avirulent (Pool1) and virulent (Pool2) samples were aligned to the reference genome and single nucleotide polymorphisms (SNP) were identified for each pool. High quality SNPs were filtered to select for positions where SNP frequency was close to expected values for each pool. Only three SNP positions fit all requirements, and these occurred in close proximity. Additional DNA markers were developed and scored in the F₂ progeny, producing a fine genetic map that places Avr1c within the Avr1a gene cluster. Transient expression of Avr1c or Avr1a triggers cell death on Rps1c plants, but Avr1c does not trigger cell death on Rps1a plants. Sequence comparisons show that the RXLR effector genes Avr1c and Avr1a are closely related paralogs. Gain of virulence on Rps1c in P. sojae strain P7076 is achieved by gene deletion, but in most other strains this is accomplished by gene silencing. This work provides practical tools for crop breeding and diagnostics, as the Rps1c gene is widely deployed in commercial soybean cultivars.
Collapse
Affiliation(s)
- Ren Na
- Agriculture and Agri-Food Canada, London, Canada
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Dan Yu
- Agriculture and Agri-Food Canada, London, Canada
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Yun Zhang
- Agriculture and Agri-Food Canada, London, Canada
| | - Kuflom Kuflu
- Agriculture and Agri-Food Canada, London, Canada
| | - Ryan Austin
- Agriculture and Agri-Food Canada, London, Canada
| | - Dinah Qutob
- Agriculture and Agri-Food Canada, London, Canada
| | - Jun Zhao
- College of Agronomy, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Mark Gijzen
- Agriculture and Agri-Food Canada, London, Canada
| |
Collapse
|
25
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
26
|
Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DGO. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol 2013; 14:211. [PMID: 23809564 PMCID: PMC3706818 DOI: 10.1186/gb-2013-14-6-211] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences.
Collapse
|
27
|
Rietman H, Bijsterbosch G, Cano LM, Lee HR, Vossen JH, Jacobsen E, Visser RGF, Kamoun S, Vleeshouwers VGAA. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:910-9. [PMID: 22414442 DOI: 10.1094/mpmi-01-12-0010-r] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potato defends against Phytophthora infestans infection by resistance (R)-gene-based qualitative resistance as well as a quantitative field resistance. R genes are renowned to be rapidly overcome by this oomycete, and potato cultivars with a decent and durable resistance to current P. infestans populations are hardly available. However, potato cultivar Sarpo Mira has retained resistance in the field over several years. We dissected the resistance of 'Sarpo Mira' in a segregating population by matching the responses to P. infestans RXLR effectors with race-specific resistance to differential strains. The resistance is based on the combination of four pyramided qualitative R genes and a quantitative R gene that was associated with field resistance. The qualitative R genes include R3a, R3b, R4, and the newly identified Rpi-Smira1. The qualitative resistances matched responses to avirulence (AVR)3a, AVR3b, AVR4, and AVRSmira1 RXLR effectors and were overcome by particular P. infestans strains. The quantitative resistance was determined to be conferred by a novel gene, Rpi-Smira2. It was only detected under field conditions and was associated with responses to the RXLR effector AvrSmira2. We foresee that effector-based resistance breeding will facilitate selecting and combining qualitative and quantitative resistances that may lead to a more durable resistance to late blight.
Collapse
Affiliation(s)
- Hendrik Rietman
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Savory EA, Zou C, Adhikari BN, Hamilton JP, Buell CR, Shiu SH, Day B. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS One 2012; 7:e34701. [PMID: 22496844 PMCID: PMC3320632 DOI: 10.1371/journal.pone.0034701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.
Collapse
Affiliation(s)
- Elizabeth A. Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheng Zou
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Bishwo N. Adhikari
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - John P. Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
29
|
Chen Y, Liu Z, Halterman DA. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog 2012; 8:e1002595. [PMID: 22438813 PMCID: PMC3305431 DOI: 10.1371/journal.ppat.1002595] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Despite intensive breeding efforts, potato late blight, caused by the oomycete pathogen Phytophthora infestans, remains a threat to potato production worldwide because newly evolved pathogen strains have consistently overcome major resistance genes. The potato RB gene, derived from the wild species Solanum bulbocastanum, confers resistance to most P. infestans strains through recognition of members of the pathogen effector family IPI-O. While the majority of IPI-O proteins are recognized by RB to elicit resistance (e.g. IPI-O1, IPI-O2), some family members are able to elude detection (e.g. IPI-O4). In addition, IPI-O4 blocks recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death. Here, we report results that elucidate molecular mechanisms governing resistance elicitation or suppression of RB by IPI-O. Our data indicate self-association of the RB coiled coil (CC) domain as well as a physical interaction between this domain and the effectors IPI-O4 and IPI-O1. We identified four amino acids within IPI-O that are critical for interaction with the RB CC domain and one of these amino acids, at position 129, determines hypersensitive response (HR) elicitation in planta. IPI-O1 mutant L129P fails to induce HR in presence of RB while IPI-O4 P129L gains the ability to induce an HR. Like IPI-O4, IPI-O1 L129P is also able to suppress the HR mediated by RB, indicating a critical step in the evolution of this gene family. Our results point to a model in which IPI-O effectors can affect RB function through interaction with the RB CC domain.
Collapse
Affiliation(s)
- Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhenyu Liu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dennis A. Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
30
|
Goritschnig S, Krasileva KV, Dahlbeck D, Staskawicz BJ. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene. PLoS Genet 2012; 8:e1002502. [PMID: 22359513 PMCID: PMC3280963 DOI: 10.1371/journal.pgen.1002502] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph oomycete pathogen of the model plant Arabidopsis thaliana and contains a large set of effector proteins that are translocated to the host to exert virulence functions or trigger immune responses. These effectors are characterized by conserved amino-terminal translocation sequences and highly divergent carboxyl-terminal functional domains. The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis. In this study, we identified a novel effector ATR39-1 by computational methods, which was found to trigger a resistance response in the Arabidopsis ecotype Weiningen (Wei-0). The allelic variant of this effector, ATR39-2, is not recognized, and two amino acid residues were identified and shown to be critical for this loss of recognition. The resistance protein responsible for recognition of the ATR39-1 effector in Arabidopsis is RPP39 and was identified by map-based cloning. RPP39 is a member of the CC-NBS-LRR family of resistance proteins and requires the signaling gene NDR1 for full activity. Recognition of ATR39-1 in Wei-0 does not inhibit growth of Hpa strains expressing the effector, suggesting complex mechanisms of pathogen evasion of recognition, and is similar to what has been shown in several other cases of plant-oomycete interactions. Identification of this resistance gene/effector pair adds to our knowledge of plant resistance mechanisms and provides the basis for further functional analyses.
Collapse
Affiliation(s)
- Sandra Goritschnig
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Stassen JHM, Van den Ackerveken G. How do oomycete effectors interfere with plant life? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:407-14. [PMID: 21641854 DOI: 10.1016/j.pbi.2011.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/20/2011] [Accepted: 05/06/2011] [Indexed: 05/20/2023]
Abstract
Oomycete genomes have yielded a large number of predicted effector proteins that collectively interfere with plant life in order to create a favourable environment for pathogen infection. Oomycetes secrete effectors that can be active in the host's extracellular environment, for example inhibiting host defence enzymes, or inside host cells where they can interfere with plant processes, in particular suppression of defence. Two classes of effectors are known to be host-translocated: the RXLRs and Crinklers. Many effectors show defence-suppressive activity that is important for pathogen virulence. A striking example is AVR3a of Phytophthora infestans that targets an ubiquitin ligase, the stabilisation of which may prevent host cell death. The quest for other effector targets and mechanisms is in full swing.
Collapse
Affiliation(s)
- Joost H M Stassen
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
32
|
Vleeshouwers VGAA, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S. Understanding and exploiting late blight resistance in the age of effectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:507-31. [PMID: 21663437 DOI: 10.1146/annurev-phyto-072910-095326] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato (Solanum tuberosum) is the world's third-largest food crop. It severely suffers from late blight, a devastating disease caused by Phytophthora infestans. This oomycete pathogen secretes host-translocated RXLR effectors that include avirulence (AVR) proteins, which are targeted by resistance (R) proteins from wild Solanum species. Most Solanum R genes appear to have coevolved with P. infestans at its center of origin in central Mexico. Various R and Avr genes were recently cloned, and here we catalog characterized R-AVR pairs. We describe the mechanisms that P. infestans employs for evading R protein recognition and discuss partial resistance and partial virulence phenotypes in the context of our knowledge of effector diversity and activity. Genome-wide catalogs of P. infestans effectors are available, enabling effectoromics approaches that accelerate R gene cloning and specificity profiling. Engineering R genes with expanded pathogen recognition has also become possible. Importantly, monitoring effector allelic diversity in pathogen populations can assist in R gene deployment in agriculture.
Collapse
|