1
|
Navarrete-Meneses MP, Ochoa-Mellado I, Gutiérrez-Álvarez R, Martínez-Anaya D, Juárez-Figueroa U, Durán-McKinster C, Lieberman-Hernández E, Yokoyama-Rebollar E, Gómez-Carmona S, Del Castillo-Ruiz V, Pérez-Vera P, Salas-Labadía C. Cytogenomic characterization of small supernumerary marker chromosomes in patients with pigmentary mosaicism. Front Genet 2024; 15:1356786. [PMID: 38711916 PMCID: PMC11071077 DOI: 10.3389/fgene.2024.1356786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The combination of gene content on the marker chromosome, chromosomal origin, level of mosaicism, origin mechanism (chromothripsis), and uniparental disomy can influence the final characterization of sSMCs. Several chromosomal aberrations, including sSMCs, have been observed in 30%-60% of patients with pigmentary mosaicism, and in more than 80%, chromosomal abnormalities are present in the mosaic state. In patients with pigmentary mosaicism the most representative chromosomes involved in sSMCs are 3, 5, 6, 9, 10, 13, 15, 18, 20, and X. In this study, we included the complete clinical, cytogenetic, and molecular characterization of seven patients with pigmentary mosaicism associated with the presence of SMCs of different chromosomal origins. Methods The patients were diagnosed by the Genetics and Dermatology Department of three different hospitals. Cytogenetic and FISH analyses were performed on peripheral blood, light skin, and dark skin. FISH analysis was performed using different probes, depending on the marker chromosome description. Different array analysis was performed. Results To date, of the seven cases studied, the chromosomal origins of six were successfully identified by FISH or array analysis. The chromosomes involved in SMCs were 6, 9, 15, and 18, X. The most frequently found was the centric minute structure. Discussion To date, this group of seven patients constitutes the largest clinical and cytogenetically finely described study of cases with pigmentary mosaicism associated with sSMCs. Undoubtedly, analysis of the two skin types is a fundamental part of our study, as numerical differences may occur in the cell lines found in each skin type. The knowledge generated in this study will help delineate a very heterogeneous entity more accurately, and in the future, analyzing more patients with PM will likely establish a more definite association with the presence of this genetic alteration.
Collapse
Affiliation(s)
- M. P. Navarrete-Meneses
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - I. Ochoa-Mellado
- Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - R. Gutiérrez-Álvarez
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - D. Martínez-Anaya
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - U. Juárez-Figueroa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - C. Durán-McKinster
- Departamento de Dermatología, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | - S. Gómez-Carmona
- Departamento de Genética Médica, Centro de Rehabilitación e Inclusión Infantil Teletón, Cancún, México
| | | | - P. Pérez-Vera
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| | - C. Salas-Labadía
- Genetic and cancer Laboratory, National Institute of Pediatrics (Mexico), Mexico City, Mexico
| |
Collapse
|
2
|
Siguero-Álvarez M, Salguero-Jiménez A, Grego-Bessa J, de la Barrera J, MacGrogan D, Prados B, Sánchez-Sáez F, Piñeiro-Sabarís R, Felipe-Medina N, Torroja C, Gómez MJ, Sabater-Molina M, Escribá R, Richaud-Patin I, Iglesias-García O, Sbroggio M, Callejas S, O'Regan DP, McGurk KA, Dopazo A, Giovinazzo G, Ibañez B, Monserrat L, Pérez-Pomares JM, Sánchez-Cabo F, Pendas AM, Raya A, Gimeno-Blanes JR, de la Pompa JL. A Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve. Circulation 2023; 147:47-65. [PMID: 36325906 DOI: 10.1161/circulationaha.121.058767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.
Collapse
Affiliation(s)
- Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Center for Chromosome Stability and Institut for Cellulær og Molekylær Medicin, University of Copenhagen, Denmark (M.S.)
| | - Alejandro Salguero-Jiménez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Joaquim Grego-Bessa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Jorge de la Barrera
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Rebeca Piñeiro-Sabarís
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Carlos Torroja
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Manuel José Gómez
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - María Sabater-Molina
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Rubén Escribá
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Ivonne Richaud-Patin
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
- Regenerative Medicine Program, Cima Universidad de Navarra, Navarra Institute for Health Research, Pamplona, Spain (O.I.-G.)
| | - Mauro Sbroggio
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| | - Sergio Callejas
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Declan P O'Regan
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
| | - Kathryn A McGurk
- Medical Research Council London Institute of Medical Sciences (D.P.O.' K.A.M.), Imperial College London, United Kingdom
- National Heart and Lung Institute (K.A.M.), Imperial College London, United Kingdom
| | - Ana Dopazo
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Genomics Unit (S.C., A.D.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit (B.P., G.G.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Borja Ibañez
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Translational Laboratory (B.I.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Cardiology Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz Hospital, Madrid, Spain (B.I.)
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña and Departamento Científico, Health in Code S.L., A Coruña, Spain (L.M.)
| | - José María Pérez-Pomares
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
- Department of Animal Biology, Faculty of Sciences, Instituto de Investigación Biomédica de Málaga and Centro Andaluz de Nanomedicina y Biotecnología, Universidad de Málaga, Spain (J.M.P.-P.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (J.d.l.B., C.T., M.J.G., F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer Universidad de Salamanca, Spain (F.S.-S., N.F.-M., A.M.P.)
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research, Program for Clinical Translation of Regenerative Medicine in Catalonia, Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine and Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (R.E., I.R.-P., O.I.-G., A.R.)
| | - Juan R Gimeno-Blanes
- Laboratorio de Cardiogenética, Instituto Murciano de Investigación Biosanitaria, European Reference Networks and Unidad de Referencia-European Reference Networks Guard Heart de Cardiopatias Familiares, Hospital Universitario Virgen de la Arrixaca-Universidad de Murcia, El Palmar, Spain (M.S.-M., J.R.G.-B.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares and Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain (M.S.-A., A.S.-J., J.G.-B., D.M., B.P., R.P.-S., M.S., S.C.' A.D.' B.I., J.L.d.l.P.)
| |
Collapse
|
3
|
Li J, Yang W, Wang YJ, Ma C, Curry CJ, McGoldrick D, Nickerson DA, Chong JX, Blue EE, Mullikin JC, Reefhuis J, Nembhard WN, Romitti PA, Werler MM, Browne ML, Olshan AF, Finnell RH, Feldkamp ML, Pangilinan F, Almli LM, Bamshad MJ, Brody LC, Jenkins MM, Shaw GM. Exome sequencing identifies genetic variants in anophthalmia and microphthalmia. Am J Med Genet A 2022; 188:2376-2388. [PMID: 35716026 PMCID: PMC9283271 DOI: 10.1002/ajmg.a.62874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Abstract
Anophthalmia and microphthalmia (A/M) are rare birth defects affecting up to 2 per 10,000 live births. These conditions are manifested by the absence of an eye or reduced eye volumes within the orbit leading to vision loss. Although clinical case series suggest a strong genetic component in A/M, few systematic investigations have been conducted on potential genetic contributions owing to low population prevalence. To overcome this challenge, we utilized DNA samples and data collected as part of the National Birth Defects Prevention Study (NBDPS). The NBDPS employed multi-center ascertainment of infants affected by A/M. We performed exome sequencing on 67 family trios and identified numerous genes affected by rare deleterious nonsense and missense variants in this cohort, including de novo variants. We identified 9 nonsense changes and 86 missense variants that are absent from the reference human population (Genome Aggregation Database), and we suggest that these are high priority candidate genes for A/M. We also performed literature curation, single cell transcriptome comparisons, and molecular pathway analysis on the candidate genes and performed protein structure modeling to determine the potential pathogenic variant consequences on PAX6 in this disease.
Collapse
Affiliation(s)
- Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Chen Ma
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cynthia J. Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Faith Pangilinan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Lawrence C. Brody
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
4
|
Matsuo Y. Introducing Thioredoxin-Related Transmembrane Proteins: Emerging Roles of Human TMX and Clinical Implications. Antioxid Redox Signal 2022; 36:984-1000. [PMID: 34465218 PMCID: PMC9127828 DOI: 10.1089/ars.2021.0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: The presence of a large number of thioredoxin superfamily members suggests a complex mechanism of redox-based regulation in mammalian cells. However, whether these members are functionally redundant or play separate and distinct roles in each cellular compartment remains to be elucidated. Recent Advances: In the mammalian endoplasmic reticulum (ER), ∼20 thioredoxin-like proteins have been identified. Most ER oxidoreductases are soluble proteins located in the luminal compartment, whereas a small family of five thioredoxin-related transmembrane proteins (TMX) also reside in the ER membrane and play crucial roles with specialized functions. Critical Issues: In addition to the predicted function of ER protein quality control, several independent studies have suggested the diverse roles of TMX family proteins in the regulation of cellular processes, including calcium homeostasis, bioenergetics, and thiol-disulfide exchange in the extracellular space. Moreover, recent studies have provided evidence of their involvement in the pathogenesis of various diseases. Future Directions: Extensive research is required to unravel the physiological roles of TMX family proteins. Given that membrane-associated proteins are prime targets for drug discovery in a variety of human diseases, expanding our knowledge on the mechanistic details of TMX action on the cell membrane will provide the molecular basis for developing novel diagnostic and therapeutic approaches as a potent molecular target in a clinical setting. Antioxid. Redox Signal. 36, 984-1000.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
5
|
Owen N, Toms M, Young RM, Eintracht J, Sarkar H, Brooks BP, Moosajee M. Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis. Genet Med 2022; 24:1073-1084. [PMID: 35034853 PMCID: PMC11505079 DOI: 10.1016/j.gim.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. METHODS Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. RESULTS Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. CONCLUSION We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis.
Collapse
Affiliation(s)
- Nicholas Owen
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Rodrigo M Young
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Jonathan Eintracht
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Hajrah Sarkar
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London, United Kingdom; Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Ocular Genomics and Therapeutics, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
6
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
7
|
Thioredoxin-Related Transmembrane Proteins: TMX1 and Little Brothers TMX2, TMX3, TMX4 and TMX5. Cells 2020; 9:cells9092000. [PMID: 32878123 PMCID: PMC7563315 DOI: 10.3390/cells9092000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is site of synthesis and maturation of membrane and secretory proteins in eukaryotic cells. The ER contains more than 20 members of the Protein Disulfide Isomerase (PDI) family. These enzymes regulate formation, isomerization and disassembly of covalent bonds between cysteine residues. As such, PDIs ensure protein folding, which is required to attain functional and transport-competent structure, and protein unfolding, which facilitates dislocation of defective gene products across the ER membrane for ER-associated degradation (ERAD). The PDI family includes over a dozen of soluble members and few membrane-bound ones. Among these latter, there are five PDIs grouped in the thioredoxin-related transmembrane (TMX) protein family. In this review, we summarize the current knowledge on TMX1, TMX2, TMX3, TMX4 and TMX5, their structural features, regulation and roles in biogenesis and control of the mammalian cell’s proteome.
Collapse
|
8
|
Cody JD. The Consequences of Abnormal Gene Dosage: Lessons from Chromosome 18. Trends Genet 2020; 36:764-776. [PMID: 32660784 DOI: 10.1016/j.tig.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Accurate interpretation of genomic copy number variation (CNV) remains a challenge and has important consequences for both congenital and late-onset disease. Hemizygosity dosage characterization of the genes on chromosome 18 reveals a spectrum of outcomes ranging from no clinical effect, to risk factors for disease, to both low- and high-penetrance disease. These data are important for accurate and predictive clinical management. Additionally, the potential mechanisms of reduced penetrance due to dosage compensation are discussed as a key to understanding avenues for potential treatment. This review describes the chromosome 18 findings, and discusses the molecular mechanisms that allow haploinsufficiency, reduced penetrance, and dosage compensation.
Collapse
Affiliation(s)
- Jannine DeMars Cody
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Chromosome 18 Registry and Research Society, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
TMX2 Is a Crucial Regulator of Cellular Redox State, and Its Dysfunction Causes Severe Brain Developmental Abnormalities. Am J Hum Genet 2019; 105:1126-1147. [PMID: 31735293 DOI: 10.1016/j.ajhg.2019.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
Collapse
|
10
|
Oguro A, Imaoka S. Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport. Sci Rep 2019; 9:15296. [PMID: 31653923 PMCID: PMC6814788 DOI: 10.1038/s41598-019-51773-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
TMX2 is a thioredoxin family protein, but its functions have not been clarified. To elucidate the function of TMX2, we explored TMX2-interacting proteins by LC-MS. As a result, importin-β, Ran GTPase (Ran), RanGAP, and RanBP2 were identified. Importin-β is an adaptor protein which imports cargoes from cytosol to the nucleus, and is exported into the cytosol by interaction with RanGTP. At the cytoplasmic nuclear pore, RanGAP and RanBP2 facilitate hydrolysis of RanGTP to RanGDP and the disassembly of the Ran-importin-β complex, which allows the recycling of importin-β and reentry of Ran into the nucleus. Despite its interaction of TMX2 with importin-β, we showed that TMX2 is not a transport cargo. We found that TMX2 localizes in the outer nuclear membrane with its N-terminus and C-terminus facing the cytoplasm, where it co-localizes with importin-β and Ran. Ran is predominantly distributed in the nucleus, but TMX2 knockdown disrupted the nucleocytoplasmic Ran gradient, and the cysteine 112 residue of Ran was important in its regulation by TMX2. In addition, knockdown of TMX2 suppressed importin-β-mediated transport of protein. These results suggest that TMX2 works as a regulator of protein nuclear transport, and that TMX2 facilitates the nucleocytoplasmic Ran cycle by interaction with nuclear pore proteins.
Collapse
Affiliation(s)
- Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan. .,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| |
Collapse
|
11
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
12
|
Biallelic sequence variants in INTS1 in patients with developmental delays, cataracts, and craniofacial anomalies. Eur J Hum Genet 2019; 27:582-593. [PMID: 30622326 DOI: 10.1038/s41431-018-0298-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/25/2018] [Indexed: 12/24/2022] Open
Abstract
The Integrator complex subunit 1 (INTS1) is a component of the integrator complex that comprises 14 subunits and associates with RPB1 to catalyze endonucleolytic cleavage of nascent snRNAs and assist RNA polymerase II in promoter-proximal pause-release on protein-coding genes. We present five patients, including two sib pairs, with biallelic sequence variants in INTS1. The patients manifested absent or severely limited speech, an abnormal gait, hypotonia and cataracts. Exome sequencing revealed biallelic variants in INTS1 in all patients. One sib pair demonstrated a missense variant, p.(Arg77Cys), and a frameshift variant, p.(Arg1800Profs*20), another sib pair had a homozygous missense variant, p.(Pro1874Leu), and the fifth patient had a frameshift variant, p.(Leu1764Cysfs*16) and a missense variant, p.(Leu2164Pro). We also report additional clinical data on three previously described individuals with a homozygous, loss of function variant, p.(Ser1784*) in INTS1 that shared cognitive delays, cataracts and dysmorphic features with these patients. Several of the variants affected the protein C-terminus and preliminary modeling showed that the p.(Pro1874Leu) and p.(Leu2164Pro) variants may interfere with INTS1 helix folding. In view of the cataracts observed, we performed in-situ hybridization and demonstrated expression of ints1 in the zebrafish eye. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make larvae with biallelic insertion/deletion (indel) variants in ints1. The mutant larvae developed typically through gastrulation, but sections of the eye showed abnormal lens development. The distinctive phenotype associated with biallelic variants in INTS1 points to dysfunction of the integrator complex as a mechanism for intellectual disability, eye defects and craniofacial anomalies.
Collapse
|
13
|
Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Shimada N, Zhao W, Oishi A, Nakanishi H, Hata M, Akagi T, Ooto S, Nagaoka N, Fang Y, Ohno-Matsui K, Cheng CY, Saw SM, Yamada R, Matsuda F, Tsujikawa A, Yamashiro K. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun 2018; 9:1782. [PMID: 29725004 PMCID: PMC5934384 DOI: 10.1038/s41467-018-03649-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
The incidence of high myopia is increasing worldwide with myopic maculopathy, a complication of myopia, often progressing to blindness. Our two-stage genome-wide association study of myopic maculopathy identifies a susceptibility locus at rs11873439 in an intron of CCDC102B (P = 1.77 × 10−12 and Pcorr = 1.61 × 10−10). In contrast, this SNP is not significantly associated with myopia itself. The association between rs11873439 and myopic maculopathy is further confirmed in 2317 highly myopic patients (P = 2.40 × 10−6 and Pcorr = 1.72 × 10−4). CCDC102B is strongly expressed in the retinal pigment epithelium and choroids, where atrophic changes initially occur in myopic maculopathy. The development of myopic maculopathy thus likely exhibits a unique background apart from the development of myopia itself; elucidation of the roles of CCDC102B in myopic maculopathy development may thus provide insights into preventive methods for blindness in patients with high myopia. Myopic maculopathy is a complication of myopia that often progresses to blindness. Here, in a genome-wide association study, Hosoda et al. find that rs11873439 intronic to CCDC102B is associated with myopic maculopathy, but not with myopia, thus representing a risk factor independent of myopia.
Collapse
Affiliation(s)
- Yoshikatsu Hosoda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Munemitsu Yoshikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan.,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Noriaki Shimada
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Hideo Nakanishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Masayuki Hata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Tadamichi Akagi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Sotaro Ooto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Natsuko Nagaoka
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Yuxin Fang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | | | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, 1138510, Japan
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 199228, Singapore
| | - Seang Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 199228, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 6068503, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 6068507, Japan. .,Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, 5208511, Japan.
| |
Collapse
|
14
|
A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Hum Genet 2018; 137:315-328. [PMID: 29713869 DOI: 10.1007/s00439-018-1884-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
The Forkhead box E3 (FOXE3) gene encodes a transcription factor with a forkhead/winged helix domain that is critical for development of the lens and anterior segment of the eye. Monoallelic and biallelic deleterious sequence variants in FOXE3 cause aphakia, cataracts, sclerocornea and microphthalmia in humans. We used clustered regularly interspaced short palindromic repeats/Cas9 injections to target the foxe3 transcript in zebrafish in order to create an experimental model of loss of function for this gene. Larvae that were homozygous for an indel variant, c.296_300delTGCAG, predicting p.(Val99Alafs*2), demonstrated severe eye defects, including small or absent lenses and microphthalmia. The lenses of the homozygous foxe3 indel mutants showed more intense staining with zl-1 antibody compared to control lenses, consistent with increased lens fiber cell differentiation. Whole genome transcriptome analysis (RNA-Seq) on RNA isolated from wildtype larvae and larvae with eye defects that were putative homozygotes for the foxe3 indel variant found significant dysregulation of genes expressed in the lens and eye whose orthologues are associated with cataracts in human patients, including cryba2a, cryba1l1, mipa and hsf4. Comparative analysis of this RNA-seq data with iSyTE data identified several lens-enriched genes to be down-regulated in foxe3 indel mutants. We also noted upregulation of lgsn and crygmxl2 and downregulation of fmodb and cx43.4, genes that are expressed in the zebrafish lens, but that are not yet associated with an eye phenotype in humans. These findings demonstrate that this new zebrafish foxe3 mutant model is highly relevant to the study of the gene regulatory networks conserved in vertebrate lens and eye development.
Collapse
|
15
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
16
|
Hahn C, Genner MJ, Turner GF, Joyce DA. The genomic basis of cichlid fish adaptation within the deepwater "twilight zone" of Lake Malawi. Evol Lett 2017; 1:184-198. [PMID: 30283648 PMCID: PMC6124600 DOI: 10.1002/evl3.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Deepwater environments are characterized by low levels of available light at narrow spectra, great hydrostatic pressure, and low levels of dissolved oxygen—conditions predicted to exert highly specific selection pressures. In Lake Malawi over 800 cichlid species have evolved, and this adaptive radiation extends into the “twilight zone” below 50 m. We use population‐level RAD‐seq data to investigate whether four endemic deepwater species (Diplotaxodon spp.) have experienced divergent selection within this environment. We identify candidate genes including regulators of photoreceptor function, photopigments, lens morphology, and haemoglobin, many not previously implicated in cichlid adaptive radiations. Colocalization of functionally linked genes suggests coadapted “supergene” complexes. Comparisons of Diplotaxodon to the broader Lake Malawi radiation using genome resequencing data revealed functional substitutions and signatures of positive selection in candidate genes. Our data provide unique insights into genomic adaptation within deepwater habitats, and suggest genome‐level specialization for life at depth as an important process in cichlid radiation.
Collapse
Affiliation(s)
- Christoph Hahn
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences University of Hull Hull HU5 7RX United Kingdom.,Institute of Zoology University of Graz A-8010 Graz Austria
| | - Martin J Genner
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ United Kingdom
| | - George F Turner
- School of Biological Sciences Bangor University Bangor Gwynedd LL57 2UW Wales United Kingdom
| | - Domino A Joyce
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences University of Hull Hull HU5 7RX United Kingdom
| |
Collapse
|
17
|
Lateral thinking - Interocular symmetry and asymmetry in neurovascular patterning, in health and disease. Prog Retin Eye Res 2017; 59:131-157. [PMID: 28457789 DOI: 10.1016/j.preteyeres.2017.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
No biological system or structure is likely to be perfectly symmetrical, or have identical right and left forms. This review explores the evidence for eye and visual pathway asymmetry, in health and in disease, and attempts to provide guidance for those studying the structure and function of the visual system, where recognition of symmetry or asymmetry may be essential. The principal question with regards to asymmetry is not 'are the eyes the same?', for some degree of asymmetry is pervasive, but 'when are they importantly different?'. Knowing if right and left eyes are 'importantly different' could have significant consequences for deciding whether right or left eyes are included in an analysis or for examining the association between a phenotype and ocular parameter. The presence of significant asymmetry would also have important implications for the design of normative databases of retinal and optic nerve metrics. In this review, we highlight not only the universal presence of asymmetry, but provide evidence that some elements of the visual system are inherently more asymmetric than others, pointing to the need for improved normative data to explain sources of asymmetry and their impact on determining associations with genetic, environmental or health-related factors and ultimately in clinical practice.
Collapse
|
18
|
Clinical utility gene card for: Non-Syndromic Microphthalmia Including Next-Generation Sequencing-Based Approaches. Eur J Hum Genet 2017; 25:ejhg2016201. [PMID: 28098148 DOI: 10.1038/ejhg.2016.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/28/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
|
19
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
20
|
Srilekha S, Rao B, Rao DM, Sudha D, Chandrasekar SP, Pandian AJ, Soumittra N, Sripriya S. Strategies for Gene Mapping in Inherited Ophthalmic Diseases. Asia Pac J Ophthalmol (Phila) 2016; 5:282-92. [PMID: 27488070 DOI: 10.1097/apo.0000000000000228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Gene mapping of inherited ophthalmic diseases such as congenital cataracts, retinal degeneration, glaucoma, age-related macular degeneration, myopia, optic atrophy, and eye malformations has shed more light on the disease pathology, identified targets for research on therapeutics, earlier detection, and treatment options for disease management and patient care. This article details the different approaches to gene identification for both Mendelian and complex eye disorders.
Collapse
Affiliation(s)
- Sundar Srilekha
- From the SNONGC Department of Genetics and Molecular Biology, Kamal Nayan Bajaj Institute for Research in Vision and Ophthalmology (KNBIRVO), Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhou LS, Li J, Yang J, Liu CL, Xie XH, He YN, Liu XX, Xin WS, Zhang WC, Ren J, Ma JW, Huang LS. Genome-wide mapping of copy number variations in commercial hybrid pigs using a high-density SNP genotyping array. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795415120145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Fox J, Lu Z, Barrows L. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington's Disease. PLOS CURRENTS 2015; 7. [PMID: 26664998 PMCID: PMC4650837 DOI: 10.1371/currents.hd.b966ec2eca8e2d89d2bb4d020be4351e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Huntington’s disease (HD) is caused by a trinucleotide CAG repeat in the
huntingtin gene (HTT) that results in expression of a polyglutamine-expanded
mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in
brain neurons and glia as soluble monomeric and oligomeric species as well as
insoluble protein aggregates and drive the disease process. Decreasing mHTT
levels in brain provides protection and reversal of disease signs in HD mice
making mHTT a prime target for disease modification. There is evidence for
aberrant thiol oxidation within mHTT and other proteins in HD models. Based on
this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that
decreases mHTT levels in cells and provides protection in HD mice. We undertook
an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed
secondary screens to identify those with mHTT decreasing properties. Our
in-vitro experiments identified thioredoxin 1 and thioredoxin-related
transmembrane protein 3 as proteins that decrease soluble mHTT levels in
cultured cells. Using a lentiviral mouse model of HD we tested the effect of
these proteins in striatum. Both proteins decreased mHTT-induced striatal
neuronal atrophy. Findings provide evidence for a role of dysregulated
protein-thiol homeostasis in the pathogenesis of HD.
Collapse
Affiliation(s)
- Jonathan Fox
- Neuroscience Graduate Program, Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA
| | - Zhen Lu
- Neuroscience Graduate Program, Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, USA
| | | |
Collapse
|
23
|
Establishing a reference group for distal 18q-: clinical description and molecular basis. Hum Genet 2013; 133:199-209. [PMID: 24092497 DOI: 10.1007/s00439-013-1364-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022]
Abstract
Although constitutional chromosome abnormalities have been recognized since the 1960s, clinical characterization and development of treatment options have been hampered by their obvious genetic complexity and relative rarity. Additionally, deletions of 18q are particularly heterogeneous, with no two people having the same breakpoints. We identified 16 individuals with deletions that, despite unique breakpoints, encompass the same set of genes within a 17.6-Mb region. This group represents the most genotypically similar group yet identified with distal 18q deletions. As the deletion is of average size when compared with other 18q deletions, this group can serve as a reference point for the clinical and molecular description of this condition. We performed a thorough medical record review as well as a series of clinical evaluations on 14 of the 16 individuals. Common functional findings included developmental delays, hypotonia, growth hormone deficiency, and hearing loss. Structural anomalies included foot anomalies, ear canal atresia/stenosis, and hypospadias. The majority of individuals performed within the low normal range of cognitive ability but had more serious deficits in adaptive abilities. Of interest, the hemizygous region contains 38 known genes, 26 of which are sufficiently understood to tentatively determine dosage sensitivity. Published data suggest that 20 are unlikely to cause an abnormal phenotype in the hemizygous state and five are likely to be dosage sensitive: TNX3, NETO1, ZNF407, TSHZ1, and NFATC. A sixth gene, ATP9B, may be conditionally dosage sensitive. Not all distal 18q- phenotypes can be attributed to these six genes; however, this is an important advance in the molecular characterization of 18q deletions.
Collapse
|
24
|
Mice move smoothly: irrelevant object variation affects perception, but not computer mouse actions. Exp Brain Res 2013; 231:97-106. [PMID: 23955104 DOI: 10.1007/s00221-013-3671-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Human-Computer Interactions pose special demands on the motor system, especially regarding the virtual tool transformations underlying typical mouse movements. We investigated whether such virtual tool-transformed movements are similarly resistant to irrelevant variation of a target object as skilled natural movements are. Results show that such irrelevant information deteriorates performance in perceptual tasks, whereas movement parameters remain unaffected, suggesting that the control of virtual tools draws on the same mechanisms as natural actions do. The results are discussed in terms of their practical utility and recent findings investigating unskilled and transformed movements in the framework of the action/perception model and the integration of tools into the body schema.
Collapse
|
25
|
Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T, Bardakjian T, Schneider A, Choi A, Jorgenson E, Baier H, El Sada M, Schorderet DF, Slavotinek AM. ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 2013; 22:3250-8. [PMID: 23591992 DOI: 10.1093/hmg/ddt179] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.
Collapse
Affiliation(s)
- Mani Yahyavi
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143-0748, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Galligan JJ, Petersen DR. The human protein disulfide isomerase gene family. Hum Genomics 2012; 6:6. [PMID: 23245351 PMCID: PMC3500226 DOI: 10.1186/1479-7364-6-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/14/2012] [Indexed: 01/27/2023] Open
Abstract
Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs). These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX). As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR). Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To summarize recent breakthroughs regarding the genes known to play a role in normal ocular development in humans and to elucidate the role mutations in these genes play in anophthalmia and microphthalmia. RECENT FINDINGS The main themes discussed within this article are the various documented genetic advances in identifying the various causes of anophthalmia and microphthalmia. In addition, the complex interplay of these genes during critical embryonic development will be addressed. SUMMARY The recent identification of many eye development genes has changed the ability to identify a cause of anophthalmia and microphthalmia in many individuals. Syndrome identification and the availability of genetic testing underscores the desirability of evaluation by a geneticist for all individuals with anophthalmia and microphthalmia in order to provide appropriate management, long-term guidance, and genetic counseling.
Collapse
|
28
|
News Briefs. Genet Med 2012. [DOI: 10.1038/gim.2011.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Array comparative genomic hybridization analysis in patients with anophthalmia, microphthalmia, and coloboma. Genet Med 2011; 13:437-42. [PMID: 21285886 DOI: 10.1097/gim.0b013e318204cfd2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The goal of our study was to determine whether genomic copy number abnormalities (deletions and duplications) affecting genes involved in eye development contributed to the etiology of anophthalmia, microphthalmia, and coloboma. METHODS The affected individuals were evaluated for the presence of deletions and duplications in genomic DNA by a very high-resolution array comparative genomic hybridization. RESULTS Array analysis of 32 patients detected one case with a deletion encompassing the renal-coloboma syndrome associated gene PAX2. Nonpolymorphic copy number changes were also observed at several candidate chromosomal regions, including 6p12.3, 8q23.1q23.2, 13q31.3, 15q11.2q13.1, 16p13.13, and 20q13.13. CONCLUSIONS This study identified the first patient with the typical phenotype of the renal-coloboma syndrome caused by a submicroscopic deletion of the coding region of the PAX2 gene. The finding suggests that PAX2 deletion testing should be performed in addition to gene sequencing as a part of molecular evaluation for the renal-coloboma syndrome. Array comparative genomic hybridization testing of 32 affected individuals showed that genomic deletions and duplications are not a common cause of nonsyndromic anophthalmia, microphthalmia, or coloboma but undoubtedly contribute to the etiology of these eye anomalies. Therefore, array comparative genomic hybridization testing represents an important and valuable addition to candidate gene sequencing in research and diagnostics of ocular birth defects.
Collapse
|
30
|
Abouzeid H, Boisset G, Favez T, Youssef M, Marzouk I, Shakankiry N, Bayoumi N, Descombes P, Agosti C, Munier FL, Schorderet DF. Mutations in the SPARC-related modular calcium-binding protein 1 gene, SMOC1, cause waardenburg anophthalmia syndrome. Am J Hum Genet 2011; 88:92-8. [PMID: 21194680 DOI: 10.1016/j.ajhg.2010.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022] Open
Abstract
Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.
Collapse
Affiliation(s)
- Hana Abouzeid
- IRO - Institute for Research in Ophthalmology, 1950 Sion, Switzerland; Jules-Gonin Eye Hospital, University of Lausanne, 1003 Lausanne
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
32
|
Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, Danio rerio. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:287-330. [PMID: 21377629 DOI: 10.1016/b978-0-12-384878-9.00007-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Visual impairment and blindness is widespread across the human population, and the development of therapies for ocular pathologies is of high priority. The zebrafish represents a valuable model organism for studying human ocular disease; it is utilized in eye research to understand underlying developmental processes, to identify potential causative genes for human disorders, and to develop therapies. Zebrafish eyes are similar in morphology, physiology, gene expression, and function to human eyes. Furthermore, zebrafish are highly amenable to laboratory research. This review outlines the use of zebrafish as a model for human ocular diseases such as colobomas, glaucoma, cataracts, photoreceptor degeneration, as well as dystrophies of the cornea and retinal pigmented epithelium.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Austin, Texas, USA
| | | | | |
Collapse
|
33
|
Zayed H, Chao R, Moshrefi A, Lopezjimenez N, Delaney A, Chen J, Shaw GM, Slavotinek AM. A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect. Am J Med Genet A 2010; 152A:916-23. [PMID: 20358601 DOI: 10.1002/ajmg.a.33341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using an Affymetrix GeneChip(R) Human Mapping 100K Set to study a patient with a late-presenting, right-sided diaphragmatic hernia and microphthalmia, we found a maternally inherited deletion that was 2.7 Mb in size at chromosome 18q22.1. Mapping of this deletion using fluorescence in situ hybridization revealed three deleted genes-CDH19, DSEL, and TXNDC10, and one gene that contained the deletion breakpoint, CCDC102B. We selected DSEL for further study in 125 patients with diaphragmatic hernias, as it is involved in the synthesis of decorin, a protein that is required for normal collagen formation and that is upregulated during myogenesis. We found p.Met14Ile in an unrelated patient with a late-presenting, anterior diaphragmatic hernia. In the murine diaphragm, Dsel was only weakly expressed at the time of diaphragm closure and its expression in C2C12 myoblast cells did not change significantly during myoblast differentiation, thus reducing the likelihood that the gene is involved in myogenesis of the diaphragm. Although it is possible that the 18q22.1 deletion and haploinsufficiency for DSEL contributed to the diaphragmatic defect in the patient, a definite role for DSEL and decorin in the formation of the collagen-containing, central tendon of the diaphragm has not yet been established.
Collapse
Affiliation(s)
- Hatem Zayed
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California 94143-0748, USA
| | | | | | | | | | | | | | | |
Collapse
|