1
|
Wernlé K, Thiel CS, Ullrich O. Increased H3K9me3 and F-Actin Reorganization in the Rapid Adaptive Response to Hypergravity in Human T Lymphocytes. Int J Mol Sci 2023; 24:17232. [PMID: 38139061 PMCID: PMC10743231 DOI: 10.3390/ijms242417232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.
Collapse
Affiliation(s)
- Kendra Wernlé
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
- Department of Industrial Engineering, Ernst-Abbe-Hochschule (EAH) Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Lee H, Kim S, Lee D. The versatility of the proteasome in gene expression and silencing: Unraveling proteolytic and non-proteolytic functions. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194978. [PMID: 37633648 DOI: 10.1016/j.bbagrm.2023.194978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 26S proteasome consists of a 20S core particle and a 19S regulatory particle and critically regulates gene expression and silencing through both proteolytic and non-proteolytic functions. The 20S core particle mediates proteolysis, while the 19S regulatory particle performs non-proteolytic functions. The proteasome plays a role in regulating gene expression in euchromatin by modifying histones, activating transcription, initiating and terminating transcription, mRNA export, and maintaining transcriptome integrity. In gene silencing, the proteasome modulates the heterochromatin formation, spreading, and subtelomere silencing by degrading specific proteins and interacting with anti-silencing factors such as Epe1, Mst2, and Leo1. This review discusses the proteolytic and non-proteolytic functions of the proteasome in regulating gene expression and gene silencing-related heterochromatin formation. This article is part of a special issue on the regulation of gene expression and genome integrity by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hyesu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sungwook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
3
|
Vats A, Chaturvedi P. The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis. Stem Cells Cloning 2023; 16:43-59. [PMID: 37719787 PMCID: PMC10505024 DOI: 10.2147/sccaa.s419474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with no known cure, characterized by the formation of scar tissue in the lungs, leading to respiratory failure. Although the exact cause of IPF remains unclear, the condition is thought to result from a combination of genetic and environmental factors. One of the most widely used animal models to study IPF is the bleomycin-induced lung injury model in mice. In this model, the administration of the chemotherapeutic agent bleomycin causes pulmonary inflammation and fibrosis, which closely mimics the pathological features of human IPF. Numerous recent investigations have explored the functions of various categories of stem cells in the healing process of lung injury induced by bleomycin in mice, documenting the beneficial effects and challenges of this approach. Differentiation of stem cells into various cell types and their ability to modulate tissue microenvironment is an emerging aspect of the regenerative therapies. This review article aims to provide a comprehensive overview of the role of stem cells in repairing bleomycin-induced lung injury. It delves into the mechanisms through which various types of stem cells, including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and lung resident stem cells, exert their therapeutic effects in this specific model. We have also discussed the unique set of intermediate markers and signaling factors that can influence the proliferation and differentiation of alveolar epithelial cells both during lung repair and homeostasis. Finally, we highlight the challenges and opportunities associated with translating stem cell therapy to the clinic for IPF patients. The novelty and implications of this review extend beyond the understanding of the potential of stem cells in treating IPF to the broader field of regenerative medicine. We believe that the review paves the way for further advancements in stem cell therapies, offering hope for patients suffering from this debilitating and currently incurable disease.
Collapse
Affiliation(s)
- Amrita Vats
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Lin XT, Zhang J, Liu ZY, Wu D, Fang L, Li CM, Yu HQ, Xie CM. Elevated FBXW10 drives hepatocellular carcinoma tumorigenesis via AR-VRK2 phosphorylation-dependent GAPDH ubiquitination in male transgenic mice. Cell Rep 2023; 42:112812. [PMID: 37450367 DOI: 10.1016/j.celrep.2023.112812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common liver cancer, occurs mainly in men, but the underlying mechanism remains to be further explored. Here, we report that ubiquitinated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is responsible for HCC tumorigenesis in males. Mechanistically, FBXW10 promotes GAPDH polyubiquitination and activation; VRK2-dependent phosphorylation of GAPDH Ser151 residue is critical for GAPDH ubiquitination and activation. Activated GAPDH interacts with TRAF2, leading to upregulation of the canonical and noncanonical NF-κB pathways, and increases PD-L1 and AR-VRK2 expression, followed by induction of immune evasion, HCC tumorigenesis, and metastasis. Notably, the GAPDH inhibitor koningic acid (KA) activates immune response and protects against FBXW10-driven HCC in vivo. In HCC clinical samples, the expression of active GAPDH is positively correlated with that of FBXW10 and VRK2. We propose that the FBXW10/AR/VRK2/GAPDH/NF-κB axis is critical for HCC tumorigenesis in males. Targeting this axis with KA is a potential therapeutic strategy for male HCC patients.
Collapse
Affiliation(s)
- Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ze-Yu Liu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chun-Ming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
6
|
Zhang ZY, Sun JH, Liang MJ, Wang XP, Guan J, Zhou ZQ. The E3 ubiquitin ligase SCF (FBXW10)-mediated LATS2 degradation regulates angiogenesis and liver metastasis in colorectal cancer. Int J Biochem Cell Biol 2023; 158:106408. [PMID: 36990424 DOI: 10.1016/j.biocel.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
F-box and WD repeat domain containing 10 (FBXW10) is a member of the FBXW subgroup that contains the WD40 domain. FBXW10 has been rarely reported in colorectal cancer (CRC) and its mechanism is unclear. To investigate the role of FBXW10 in CRC, we conducted in vitro and in vivo experiments. Through the database and our clinical samples, we found that FBXW10 expression was up-regulated in CRC, and it was positively correlated with CD31 expression. CRC patients with high FBXW10 expression levels had a poor prognosis. Overexpression of FBXW10 up-regulated cell proliferation, migration and vascular formation, while knockdown of FBXW10 had the opposite effects. Studies on the mechanism of FBXW10 in CRC showed that FBXW10 could ubiquitinate large tumor suppressor kinase 2 (LATS2) and promote its degradation with the Fbox region of FBXW10 played an essential role in this process. In vivo studies demonstrated that knockout of FBXW10 inhibited tumor proliferation and reduced liver metastasis. In conclusion, our study proved that FBXW10 was significantly overexpressed in CRC and was involved in the pathogenesis of CRC by affecting angiogenesis and liver metastasis. Mechanistically, FBXW10 degraded LATS2 through ubiquitination. Therefore, FBXW10-LATS2 can be used as a therapeutic target for CRC in subsequent studies.
Collapse
|
7
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
8
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Napoletano F, Ferrari Bravo G, Voto IAP, Santin A, Celora L, Campaner E, Dezi C, Bertossi A, Valentino E, Santorsola M, Rustighi A, Fajner V, Maspero E, Ansaloni F, Cancila V, Valenti CF, Santo M, Artimagnella OB, Finaurini S, Gioia U, Polo S, Sanges R, Tripodo C, Mallamaci A, Gustincich S, d'Adda di Fagagna F, Mantovani F, Specchia V, Del Sal G. The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep 2021; 36:109694. [PMID: 34525372 DOI: 10.1016/j.celrep.2021.109694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.
Collapse
Affiliation(s)
- Francesco Napoletano
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy.
| | - Gloria Ferrari Bravo
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Ilaria Anna Pia Voto
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Aurora Santin
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Lucia Celora
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Elena Campaner
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Clara Dezi
- Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Arianna Bertossi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Elena Valentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Mariangela Santorsola
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | | | - Elena Maspero
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Cesare Fabio Valenti
- Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Manuela Santo
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Ubaldo Gioia
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Simona Polo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Claudio Tripodo
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Tumor Immunology Unit, Department of Health Science, Human Pathology Section, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy
| | - Stefano Gustincich
- Area of Neuroscience, International School for Advanced Studies (SISSA), 34146 Trieste, Italy; Central RNA Laboratory, Italian Institute of Technology, 16163 Genova, Italy
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; Institute of Molecular Genetics, National Research Institute (CNR), Pavia, Italy
| | - Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Padriciano 99, 34149 Trieste, Italy; Department of Life Sciences (DSV), University of Trieste, 34127 Trieste, Italy; FIRC Institute of Molecular Oncology (IFOM), 20139 Milan, Italy.
| |
Collapse
|
10
|
Zhou S, Guo Y, Sun H, Liu L, Yao L, Liu C, He Y, Cao S, Zhou C, Li M, Cao Y, Wang C, Lu Q, Li W, Guo X, Huo R. Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos. Development 2021; 148:269079. [PMID: 34104941 DOI: 10.1242/dev.199426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Zygotic genomic activation (ZGA) is a landmark event in the maternal-to-zygotic transition (MZT), and the regulation of ZGA by maternal factors remains to be elucidated. In this study, the depletion of maternal ring finger protein 114 (RNF114), a ubiquitin E3 ligase, led to developmental arrest of two-cell mouse embryos. Using immunofluorescence and transcriptome analysis, RNF114 was proven to play a crucial role in major ZGA. To study the underlying mechanism, we performed protein profiling in mature oocytes and found a potential substrate for RNF114, chromobox 5 (CBX5), ubiquitylation and degradation of which was regulated by RNF114. The overexpression of CBX5 prevented embryonic development and impeded major ZGA. Furthermore, TAB1 was abnormally accumulated in mutant two-cell embryos, which was consistent with the result of in vitro knockdown of Rnf114. Knockdown of Cbx5 or Tab1 in maternal RNF114-depleted embryos partially rescued developmental arrest and the defect of major ZGA. In summary, our study reveals that maternal RNF114 plays a precise role in degrading some important substrates during the MZT, the misregulation of which may impede the appropriate activation of major ZGA in mouse embryos.
Collapse
Affiliation(s)
- Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China.,Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Lu Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Chao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Shanren Cao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Cheng Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yumeng Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Qianneng Lu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Sferra A, Fortugno P, Motta M, Aiello C, Petrini S, Ciolfi A, Cipressa F, Moroni I, Leuzzi V, Pieroni L, Marini F, Boespflug Tanguy O, Eymard-Pierre E, Danti FR, Compagnucci C, Zambruno G, Brusco A, Santorelli FM, Chiapparini L, Francalanci P, Loizzo AL, Tartaglia M, Cestra G, Bertini E. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness. Brain 2021; 144:3020-3035. [PMID: 33964137 DOI: 10.1093/brain/awab185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Antonella Sferra
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Paola Fortugno
- Department of Life, Health and Environmental Sciences University of L'Aquila, 00167 Rome, Italy.,Human Functional Genomics, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Chiara Aiello
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Cipressa
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, 00185 Rome, Italy
| | | | - Federica Marini
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Odile Boespflug Tanguy
- Service de Neurologie Pédiatrique, Centre de reference leucodystrophies et leucoencephalopathies de cause rare (LEUKOFRANCE), APHP Hopital Robert-Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, UMR 1141 INSERM 75651 Paris, France
| | - Eleonore Eymard-Pierre
- Service de Cytogénétique Médicale CHU de Clermont Ferrand, Hopital ESTAING 63003 CLERMONT FERRAND, France
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Anna Livia Loizzo
- DIDASCO Società Cooperativa Sociale- Centro di riabilitazione, 00185 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Gianluca Cestra
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy.,Santa Lucia IRCCS Foundation, 00179 Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) 00185 Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
12
|
Yi GZ, Huang G, Guo M, Zhang X, Wang H, Deng S, Li Y, Xiang W, Chen Z, Pan J, Li Z, Yu L, Lei B, Liu Y, Qi S. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 2020; 142:2352-2366. [PMID: 31347685 PMCID: PMC6658867 DOI: 10.1093/brain/awz202] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 01/05/2023] Open
Abstract
The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.
Collapse
Affiliation(s)
- Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen 518116, Guangdong, People's Republic of China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Xi'an Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Shengze Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Department of Neurosurgery, The First Affliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Ziyang Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Lei Yu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Bingxi Lei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Nanfang Glioma Center, Guangzhou 510515, Guangdong, People's Republic of China
| |
Collapse
|
13
|
E3 ubiquitin ligase HECW2 mediates the proteasomal degradation of HP1 isoforms. Biochem Biophys Res Commun 2018; 503:2478-2484. [DOI: 10.1016/j.bbrc.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
|
14
|
Krishnamoorthy V, Khanna R, Parnaik VK. E3 ubiquitin ligase HECW2 targets PCNA and lamin B1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1088-1104. [PMID: 29753763 DOI: 10.1016/j.bbamcr.2018.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Lamins constitute the major architectural proteins of the nuclear lamina that help in maintaining nuclear organization. Mutations in lamins are associated with diverse degenerative diseases, collectively termed laminopathies. HECW2, a HECT-type E3 ubiquitin ligase, is transcriptionally upregulated in HeLa cells expressing Emery-Dreifuss muscular dystrophy-causing-lamin A mutants. However, the role of HECW2 upregulation in mediating downstream effects in lamin mutant-expressing cells was previously unexplored. Here, we show that HECW2 interacts with two lamin A-binding proteins, proliferating cell nuclear antigen (PCNA), via a canonical PCNA-interacting protein (PIP) motif, and lamin B1. HECW2 mediates their ubiquitination and targets them for proteasomal degradation. Cells expressing lamin A mutants G232E and Q294P, in which HECW2 is upregulated, show increased proteasomal degradation of PCNA and lamin B1 most likely mediated by HECW2. Our findings establish HECW2 as an E3 ubiquitin ligase for PCNA and lamin B1 which regulates their levels in laminopathic cells. We also found that HECW2 interacts with wild-type lamin A and ubiquitinates it and this interaction is reduced in case of lamin mutants G232E and Q294P. Our findings suggest that interplay among HECW2, lamin A, PCNA, and lamin B1 determines their respective homeostatic levels in the cell and dysregulation of these interactions may contribute to the pathogenicity of laminopathies.
Collapse
Affiliation(s)
| | - Richa Khanna
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Veena K Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
15
|
Khanna R, Krishnamoorthy V, Parnaik VK. E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins. FEBS J 2018; 285:2243-2262. [PMID: 29676528 DOI: 10.1111/febs.14477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022]
Abstract
Lamins are key nuclear proteins which are important for maintaining nuclear structure and function. Mutations in lamins cause a spectrum of genetic diseases termed as laminopathies. RING finger containing E3 ubiquitin ligase, RNF123, is transcriptionally upregulated in cells expressing rod domain lamin A mutations. However, the functional relevance of RNF123 in laminopathic cells is not clear. Using a mass spectrometry-based approach, we identified lamins and lamin-binding proteins retinoblastoma protein (pRb), lamina-associated polypeptide 2α (LAP2α), and emerin as RNF123-interacting proteins. We determined that RNF123 mediated the ubiquitination of these proteins and caused the proteasomal degradation of pRb, LAP2α, and lamin B1. Furthermore, these proteins were also targeted for proteasomal degradation in cells expressing lamin A rod domain mutants G232E, Q294P, and R386K. Overexpression of RNF123 resulted in delayed transit through the S-phase which was alleviated by coexpression of pRb or LAP2α. Our findings imply that RNF123-mediated ubiquitination of lamin-binding proteins may contribute to disease-causing mechanisms in laminopathies by depletion of key nuclear proteins and defects in cell cycle kinetics.
Collapse
Affiliation(s)
- Richa Khanna
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Veena K Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
16
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
17
|
Bhattacharjee P, Dasgupta D, Sengupta K. DCM associated LMNA mutations cause distortions in lamina structure and assembly. Biochim Biophys Acta Gen Subj 2017; 1861:2598-2608. [PMID: 28844980 DOI: 10.1016/j.bbagen.2017.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A and B-type lamins are integral scaffolding components of the nuclear lamina which impart rigidity and shape to all metazoan nuclei. Over 450 mutations in A-type lamins are associated with 16 human diseases including dilated cardiomyopathy (DCM). Here, we show that DCM mutants perturb the self-association of lamin A (LA) and it's binding with lamin B1 (LB1). METHODS We used confocal and superresolution microscopy (NSIM) to study the effect of LA mutants on the nuclear lamina. We further used circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry (ITC) to probe the structural modulations, self-association and heteropolymeric association of mutant LA. RESULTS Transfection of mutants in cultured cell lines result in the formation of nuclear aggregates of varied size and distribution. Endogenous LB1 is sequestered into these aggregates. This is consistent with the ten-fold increase in association constant of the mutant proteins compared to the wild type. These mutants exhibit differential heterotypic interaction with LB1, along with significant secondary and tertiary structural alterations of the interacting proteins. Thermodynamic studies demonstrate that the mutants bind to LB1 with different stoichiometry, affinity and energetics. CONCLUSIONS In this report we show that increased self-association propensity of mutant LA modulates the LA-LB1 interaction and precludes the formation of an otherwise uniform laminar network. GENERAL SIGNIFICANCE Our results might highlight the role of homotypic and heterotypic interactions of LA in the pathogenesis of DCM and hence laminopathies in the broader sense.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
18
|
Mochizuki R, Tsugama D, Yamazaki M, Fujino K, Masuda K. Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure. Nucleus 2017; 8:312-322. [PMID: 28146370 PMCID: PMC5499906 DOI: 10.1080/19491034.2017.1280210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
NMCP/CRWN (NUCLEAR MATRIX CONSTITUENT PROTEIN/CROWDED NUCLEI) is a major component of a protein fibrous meshwork (lamina-like structure) on the plant inner nuclear membrane. NMCP/CRWN contributes to regulating nuclear shape and nuclear functions. An NMCP/CRWN protein in Daucus carota (DcNMCP1) is localized to the nuclear periphery in interphase cells, and surrounds chromosomes in cells in metaphase and anaphase. The N-terminal region and the C-terminal region of DcNMCP1 are both necessary for localizing DcNMCP1 to the nuclear periphery. Here candidate interacting partners of the amino acid position 975-1053 of DcNMCP1 (T975-1053), which is present in the C-terminal region and contains a conserved sequence that plays a role in localizing DcNMCP1 to the nuclear periphery, are screened for. Arabidopsis thaliana nuclear proteins were subjected to far-Western blotting with GST-fused T975-1053 as a probe, and signals were detected at the positions corresponding to ∼70, ∼40, and ∼18 kDa. These ∼70, ∼40, and ∼18 kDa nuclear proteins were identified by mass spectrometry, and subjected to a yeast 2-hybrid (Y2H) analysis with T975-1053 as bait. In this analysis, the ∼40 kDa protein ARP7, which is a nuclear actin-related protein possibly involved in regulating chromatin structures, was confirmed to interact with T975-1053. Independently of the far-Western blotting, a Y2H screen was performed using T975-1053 as bait. Targeted Y2H assays confirmed that 3 proteins identified in the screen, MYB3, SINAT1, and BIM1, interact with T975-1053. These proteins might have roles in NMCP/CRWN protein-mediated biologic processes.
Collapse
Affiliation(s)
- Ryota Mochizuki
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Daisuke Tsugama
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Michihiro Yamazaki
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Kaien Fujino
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| | - Kiyoshi Masuda
- a Laboratory of Crop Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo-shi , Hokkaido , Japan
| |
Collapse
|
19
|
Raurell-Vila H, Bosch-Presegue L, Gonzalez J, Kane-Goldsmith N, Casal C, Brown JP, Marazuela-Duque A, Singh PB, Serrano L, Vaquero A. An HP1 isoform-specific feedback mechanism regulates Suv39h1 activity under stress conditions. Epigenetics 2017; 12:166-175. [PMID: 28059589 DOI: 10.1080/15592294.2016.1278096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The presence of H3K9me3 and heterochromatin protein 1 (HP1) are hallmarks of heterochromatin conserved in eukaryotes. The spreading and maintenance of H3K9me3 is effected by the functional interplay between the H3K9me3-specific histone methyltransferase Suv39h1 and HP1. This interplay is complex in mammals because the three HP1 isoforms, HP1α, β, and γ, are thought to play a redundant role in Suv39h1-dependent deposition of H3K9me3 in pericentric heterochromatin (PCH). Here, we demonstrate that despite this redundancy, HP1α and, to a lesser extent, HP1γ have a closer functional link to Suv39h1, compared to HP1β. HP1α and γ preferentially interact in vivo with Suv39h1, regulate its dynamics in heterochromatin, and increase Suv39h1 protein stability through an inhibition of MDM2-dependent Suv39h1-K87 polyubiquitination. The reverse is also observed, where Suv39h1 increases HP1α stability compared HP1β and γ. The interplay between Suv39h1 and HP1 isoforms appears to be relevant under genotoxic stress. Specifically, loss of HP1α and γ isoforms inhibits the upregulation of Suv39h1 and H3K9me3 that is observed under stress conditions. Reciprocally, Suv39h1 deficiency abrogates stress-dependent upregulation of HP1α and γ, and enhances HP1β levels. Our work defines a specific role for HP1 isoforms in regulating Suv39h1 function under stress via a feedback mechanism that likely regulates heterochromatin formation.
Collapse
Affiliation(s)
- Helena Raurell-Vila
- a Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain
| | - Laia Bosch-Presegue
- a Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain.,b Tissue Repair and Regeneration Group , Department of Systems Biology , Universitat de Vic, Universitat Central de Catalunya , Vic , Spain
| | - Jessica Gonzalez
- a Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain
| | - Noriko Kane-Goldsmith
- c Department of Genetics , Human Genetics Institute, Rutgers University , Piscataway , NJ , USA
| | - Carmen Casal
- d Microcopy Unit, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain
| | - Jeremy P Brown
- e Fächerverbund Anatomie, Institut für Zell- und Neurobiologie, Charite - Universitätsmedizin , Berlin , Germany
| | - Anna Marazuela-Duque
- a Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain
| | - Prim B Singh
- e Fächerverbund Anatomie, Institut für Zell- und Neurobiologie, Charite - Universitätsmedizin , Berlin , Germany.,f Natural Sciences and Psychology, John Moores University , Liverpool , UK
| | - Lourdes Serrano
- c Department of Genetics , Human Genetics Institute, Rutgers University , Piscataway , NJ , USA
| | - Alejandro Vaquero
- a Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) , L'Hospitalet de Llobregat, Barcelona , Spain
| |
Collapse
|
20
|
Sakthivel KM, Sehgal P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol Rev 2016; 10:309. [PMID: 27994771 PMCID: PMC5136755 DOI: 10.4081/oncol.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression.
Collapse
Affiliation(s)
| | - Poonam Sehgal
- Chemical and Biomolecular Engineering, University of Illinois , Urbana-Champaign, IL, USA
| |
Collapse
|
21
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
22
|
Korfali N, Florens L, Schirmer EC. Isolation, Proteomic Analysis, and Microscopy Confirmation of the Liver Nuclear Envelope Proteome. Methods Mol Biol 2016; 1411:3-44. [PMID: 27147032 DOI: 10.1007/978-1-4939-3530-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nuclei can be relatively easily extracted from homogenized liver due to the softness of the tissue and crudely separated from other cellular organelles by low-speed centrifugation due to the comparatively large size of nuclei. However, further purification is complicated by nuclear envelope continuity with the endoplasmic reticulum, invaginations containing mitochondria, and connections to the cytoskeleton. Subsequent purification to nuclear envelopes is additionally confounded by connections of inner nuclear membrane proteins to chromatin. For these reasons, it is necessary to confirm proteomic identification of nuclear envelope proteins by testing targeting of individual proteins. The proteomic identification of nuclear envelope fractions is affected by the tendencies of transmembrane proteins to have extreme isoelectric points, strongly hydrophobic peptides, posttranslational modifications, and a propensity to aggregate, thus making proteolysis inefficient. To circumvent these problems, we have developed a MudPIT approach that uses multiple extractions and sequential proteolysis to increase identifications. Here we describe methods for isolating nuclear envelopes, determining their proteome by MudPIT, and confirming their targeting to the nuclear periphery by microscopy.
Collapse
Affiliation(s)
- Nadia Korfali
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Laurence Florens
- The Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
23
|
Wang J, Li J, Gu J, Yu J, Guo S, Zhu Y, Ye D. Abnormal methylation status of FBXW10 and SMPD3, and associations with clinical characteristics in clear cell renal cell carcinoma. Oncol Lett 2015; 10:3073-3080. [PMID: 26722292 DOI: 10.3892/ol.2015.3707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/12/2015] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to evaluate the use of the 27K methylation array to investigate abnormal methylation of two genes and their associations with clinical characteristics in clear cell renal cell carcinoma (ccRCC). Six differentially-methylated genes identified using the 27K methylation array were screened in the human RCC 786-0 cell line and normal kidney tissues by bisulfite sequencing polymerase chain reaction (PCR). Differentially-methylated regions (DMRs) that were abnormally hypermethylated in the cell line were further validated in renal tumor and paired normal tissues by pyrosequencing. The correlations between DMRs and differences (methylation rate of tumor minus that of paired normal tissue) according to gender, age, tumor size, Fuhrman grade and disease stage were assessed. Gene expression prior to and following 5-Aza-2'-deoxycytidine treatment was examined using reverse transcription quantitative PCR (RT-qPCR). Two DMRs located in the FBXW10 and SMPD3 genes were found to be hypermethylated in the 786-0 cells, but not in the normal kidney tissues. Pyrosequencing results showed that the average methylation rate of FBXW10 in the cancer tissues was significantly higher compared to that in the paired normal tissues (48.78 vs. 34.62%; P<0.001). The methylation rate of SMPD3 was also higher in the cancer tissues compared with the paired normal tissues (58.98 vs. 38.66%; P<0.001). In stage T1 RCC, the methylation rate of the tumor tissue was positively correlated with the Fuhrman grade (P=0.02). The difference in methylation between the tumor and normal tissues was significantly higher in the group with high Fuhrman grade for the two genes. Furthermore, the linear correlation between methylation difference and tumor size was also confirmed (P=0.01). The RT-qPCR analysis demonstrated that SMPD3 and FBXW10 mRNA expression was significantly upregulated following 5-Aza-2'-deoxycytidine treatment. The results identified two novel DMRs located in SMPD3 and FBXW10 that were hypermethylated in the ccRCC tissue samples. The methylation profile in ccRCC could potentially provide predictive information for clinical decisions.
Collapse
Affiliation(s)
- Jinyou Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China ; Department of Urology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China
| | - Jian Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China ; Department of Urology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China
| | - Jun Gu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yao Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China ; Department of Urology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China
| | - Dingwei Ye
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China ; Department of Urology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China
| |
Collapse
|
24
|
Camozzi D, Capanni C, Cenni V, Mattioli E, Columbaro M, Squarzoni S, Lattanzi G. Diverse lamin-dependent mechanisms interact to control chromatin dynamics. Focus on laminopathies. Nucleus 2015; 5:427-40. [PMID: 25482195 PMCID: PMC4164485 DOI: 10.4161/nucl.36289] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.
Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation.
Collapse
Affiliation(s)
- Daria Camozzi
- a CNR Institute for Molecular Genetics; Unit of Bologna and SC Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopedic Institute; Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Vadrot N, Duband-Goulet I, Cabet E, Attanda W, Barateau A, Vicart P, Gerbal F, Briand N, Vigouroux C, Oldenburg AR, Lund EG, Collas P, Buendia B. The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2014; 24:2096-109. [PMID: 25524705 DOI: 10.1093/hmg/ddu728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nuclear lamins are involved in many cellular functions due to their ability to bind numerous partners including chromatin and transcription factors, and affect their properties. Dunnigan type familial partial lipodystrophy (FPLD2; OMIM#151660) is caused in most cases by the A-type lamin R482W mutation. We report here that the R482W mutation affects the regulatory activity of sterol response element binding protein 1 (SREBP1), a transcription factor that regulates hundreds of genes involved in lipid metabolism and adipocyte differentiation. Using in situ proximity ligation assays (PLA), reporter assays and biochemical and transcriptomic approaches, we show that interactions of SREBP1 with lamin A and lamin C occur at the nuclear periphery and in the nucleoplasm. These interactions involve the Ig-fold of A-type lamins and are favored upon SREBP1 binding to its DNA target sequences. We show that SREBP1, LMNA and sterol response DNA elements form ternary complexes in vitro. In addition, overexpression of A-type lamins reduces transcriptional activity of SREBP1. In contrast, both overexpression of LMNA R482W in primary human preadipocytes and endogenous expression of A-type lamins R482W in FPLD2 patient fibroblasts, reduce A-type lamins-SREBP1 in situ interactions and upregulate a large number of SREBP1 target genes. As this LMNA mutant was previously shown to inhibit adipogenic differentiation, we propose that deregulation of SREBP1 by mutated A-type lamins constitutes one underlying mechanism of the physiopathology of FPLD2. Our data suggest that SREBP1 targeting molecules could be considered in a therapeutic context.
Collapse
Affiliation(s)
- Nathalie Vadrot
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Isabelle Duband-Goulet
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Eva Cabet
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Wikayatou Attanda
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Alice Barateau
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Patrick Vicart
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Fabien Gerbal
- Université Paris Diderot, Matière et Systèmes Complexes, CNRS UMR 7057, 10 rue Alice Domon et Leonie Duquet, Paris Cedex 13 75205, France, Physics Department, Université Pierre et Marie Curie, Paris UFR925, France
| | - Nolwenn Briand
- Faculté de Médecine Pierre et Marie Curie, Inserm, UMR S938, Centre de Recherche Saint-Antoine, 27 rue Chaligny, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 6, UMR S938, Paris F-75005, France, ICAN, Institute of Cardiometabolism and Nutrition, Paris F-75013, France
| | - Corinne Vigouroux
- Faculté de Médecine Pierre et Marie Curie, Inserm, UMR S938, Centre de Recherche Saint-Antoine, 27 rue Chaligny, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 6, UMR S938, Paris F-75005, France, ICAN, Institute of Cardiometabolism and Nutrition, Paris F-75013, France, Laboratoire Commun de Biologie et Génétique Moléculaires, AP-HP, Hôpital Saint-Antoine, Paris F-75012, France and
| | - Anja R Oldenburg
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Eivind G Lund
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Philippe Collas
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Brigitte Buendia
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France,
| |
Collapse
|
26
|
Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1α at chromatin. Mol Cell Biol 2014; 34:3662-74. [PMID: 25047840 DOI: 10.1128/mcb.00205-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methylation of histone H3 on lysine 9 or 27 is crucial for heterochromatin formation. Previously considered hallmarks of, respectively, constitutive and facultative heterochromatin, recent evidence has accumulated in favor of coexistence of these two marks and their cooperation in gene silencing maintenance. H3K9me2/3 ensures anchorage at chromatin of heterochromatin protein 1α (HP1α), a main component of heterochromatin. HP1α chromoshadow domain, involved in dimerization and interaction with partners, has additional but still unclear roles in HP1α recruitment to chromatin. Because of previously suggested links between polycomb repressive complex 2 (PRC2), which catalyzes H3K27 methylation, and HP1α, we tested whether PRC2 may regulate HP1α abundance at chromatin. We found that the EZH2 and SUZ12 subunits of PRC2 are required for HP1α stability, as knockdown of either protein led to HP1α degradation. Similar results were obtained upon overexpression of H3K27me2/3 demethylases. We further showed that binding of HP1α/β/γ to H3K9me3 peptides is greatly increased in the presence of H3K27me3, and this is dependent on PRC2. These data fit with recent proteomic studies identifying PRC2 as an indirect H3K9me3 binder in mouse tissues and suggest the existence of a cooperative mechanism of HP1α anchorage at chromatin involving H3 methylation on both K9 and K27 residues.
Collapse
|
27
|
Sehnalová P, Legartová S, Cmarko D, Kozubek S, Bártová E. Recruitment of HP1β to UVA-induced DNA lesions is independent of radiation-induced changes in A-type lamins. Biol Cell 2014; 106:151-65. [DOI: 10.1111/boc.201300076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology; The First Faculty of Medicine, Charles University in Prague; Prague 128 00 Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| |
Collapse
|
28
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
29
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
30
|
Eissenberg JC, Elgin SCR. HP1a: a structural chromosomal protein regulating transcription. Trends Genet 2014; 30:103-10. [PMID: 24555990 DOI: 10.1016/j.tig.2014.01.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 01/16/2023]
Abstract
Heterochromatin protein 1 (HP1a in Drosophila) is a conserved eukaryotic chromosomal protein that is prominently associated with pericentric heterochromatin and mediates the concomitant gene silencing. Mechanistic studies implicate HP1 family proteins as 'hub proteins,' able to interact with a variety of chromosomal proteins through the chromo-shadow domain (CSD), as well as to recognize key histone modification sites [primarily histone H3 di/trimethyl Lys9 (H3K9me2/3)] through the chromodomain (CD). Consequently, HP1 has many important roles in chromatin architecture and impacts both gene expression and gene silencing, utilizing a variety of mechanisms. Clearly, HP1 function is altered by context, and potentially by post-translational modifications (PTMs). Here, we report on recent ideas as to how this versatile protein accomplishes its diverse functions.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, Doisy Research Center, 1100 South Grand Boulevard, St Louis, MO 63104, USA
| | - Sarah C R Elgin
- Department of Biology, Washington University in St. Louis, Campus Box 1037, One Brookings Drive, St Louis, MO 63130-4899, USA.
| |
Collapse
|
31
|
Liu J, Yin X, Liu B, Zheng H, Zhou G, Gong L, Li M, Li X, Wang Y, Hu J, Krishnan V, Zhou Z, Wang Z. HP1α mediates defective heterochromatin repair and accelerates senescence in Zmpste24-deficient cells. Cell Cycle 2014; 13:1237-47. [PMID: 24584199 DOI: 10.4161/cc.28105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1) interacts with various proteins, including lamins, to play versatile functions within nuclei, such as chromatin remodeling and DNA repair. Accumulation of prelamin A leads to misshapen nuclei, heterochromatin disorganization, genomic instability, and premature aging in Zmpste24-null mice. Here, we investigated the effects of prelamin A on HP1α homeostasis, subcellular distribution, phosphorylation, and their contribution to accelerated senescence in mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice. The results showed that the level of HP1α was significantly increased in Zmpste24(-/-) cells. Although prelamin A interacted with HP1α in a manner similar to lamin A, HP1α associated with the nuclease-resistant nuclear matrix fraction was remarkably increased in Zmpste24(-/-) MEFs compared with that in wild-type littermate controls. In wild-type cells, HP1α was phosphorylated at Thr50, and the phosphorylation was maximized around 30 min, gradually dispersed 2 h after DNA damage induced by camptothecin. However, the peak of HP1α phosphorylation was significantly compromised and appeared until 2 h, which is correlated with the delayed maximal formation of γ-H2AX foci in Zmpste24(-/-) MEFs. Furthermore, knocking down HP1α by siRNA alleviated the delayed DNA damage response and accelerated senescence in Zmpste24(-/-) MEFs, evidenced by the rescue of the delayed γ-H2AX foci formation, downregulation of p16, and reduction of senescence-associated β-galactosidase activity. Taken together, these findings establish a functional link between prelamin A, HP1α, chromatin remodeling, DNA repair, and early senescence in Zmpste24-deficient mice, suggesting a potential therapeutic strategy for laminopathy-based premature aging via the intervention of HP1α.
Collapse
Affiliation(s)
- Jia Liu
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Xianhui Yin
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Baohua Liu
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China; Deparment of Biochemistry; LKS Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong
| | - Huiling Zheng
- Institute of Aging Research; Guangdong Medical College; Dong-guan, China
| | - Guangqian Zhou
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Liyun Gong
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Meng Li
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Xueqin Li
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Youya Wang
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Jingyi Hu
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| | - Vaidehi Krishnan
- Cancer Science Institute of Singapore; National University of Singapore; Singapore
| | - Zhongjun Zhou
- Deparment of Biochemistry; LKS Faculty of Medicine; The University of Hong Kong; Pokfulam, Hong Kong
| | - Zimei Wang
- Deparment of Biochemistry and Molecular Biology; Health Science Center; Shenzhen University, P.R. China
| |
Collapse
|
32
|
Legartová S, Stixová L, Laur O, Kozubek S, Sehnalová P, Bártová E. Nuclear Structures Surrounding Internal Lamin Invaginations. J Cell Biochem 2014; 115:476-87. [DOI: 10.1002/jcb.24681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Lenka Stixová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Oskar Laur
- Emory University School of Medicine; Emory University; Atlanta Georgia 30322
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| |
Collapse
|
33
|
Feng Z, Hui Y, Ling L, Xiaoyan L, Yuqiu W, Peng W, Lianwen Z. FBXW10 is negatively regulated in transcription and expression level by protein O-GlcNAcylation. Biochem Biophys Res Commun 2013; 438:427-32. [PMID: 23899520 DOI: 10.1016/j.bbrc.2013.07.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Intricate cross-talks exist among multiple post-translational modifications that play critical roles in various cellular events, such as the control of gene expression and regulation of protein function. Here, the cross-talk between O-GlcNAcylation and ubiquitination was investigated in HEK293T cells. By PCR array, 84 ubiquitination-related genes were explored in transcription level in response to the elevation of total protein O-GlcNAcylation due to over-expression of OGT, inhibition of OGA or GlcN treatment. Varied genes were transcriptionally regulated by using different method. But FBXW10, an F-box protein targeting specific proteins for ubiquitination, could be negatively regulated in all ways, suggesting its regulation by protein O-GlcNAcylation. By RT-PCR and Western blot analysis, it was found that FBXW10 could be sharply down-regulated in mRNA and protein level in GlcN-treated cells in a time-dependent way, in line with the enhancement of protein O-GlcNAcylation. It was also found that endogenous FBXW10 was modified by O-GlcNAc in HEK293T cells, implying O-GlcNAcylation might regulate FBXW10 in multiple levels. These findings indicate that O-GlcNAcylation is involved in the regulation of ubiquitination-related genes, and help us understand the cross-talk between O-GlcNAcylation and ubiquitination.
Collapse
Affiliation(s)
- Zhou Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Chaturvedi P, Khanna R, Parnaik VK. Ubiquitin ligase RNF123 mediates degradation of heterochromatin protein 1α and β in lamin A/C knock-down cells. PLoS One 2012; 7:e47558. [PMID: 23077635 PMCID: PMC3471868 DOI: 10.1371/journal.pone.0047558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin. This is accompanied by increased proteasomal degradation of certain nuclear proteins such as emerin, nesprin-1α, retinoblastoma protein and heterochromatin protein 1 (HP1). However, the pathways of proteasomal degradation have not been well characterized. Methodology/Principal Findings To investigate the mechanisms underlying the degradation of HP1 proteins upon lamin misexpression, we analyzed the effects of shRNA-mediated knock-down of lamins A and C in HeLa cells. Cells with reduced levels of expression of lamins A and C exhibited proteasomal degradation of HP1α and HP1β but not HP1γ. Since specific ubiquitin ligases are upregulated in lamin A/C knock-down cells, further studies were carried out with one of these ligases, RNF123, which has a putative HP1-binding motif. Ectopic expression of GFP-tagged RNF123 directly resulted in degradation of HP1α and HP1β. Mutational analysis showed that the canonical HP1-binding pentapeptide motif PXVXL in the N-terminus of RNF123 was required for binding to HP1 proteins and targeting them for degradation. The role of endogenous RNF123 in the degradation of HP1 isoforms was confirmed by RNF123 RNAi experiments. Furthermore, FRAP analysis suggested that HP1β was displaced from chromatin in laminopathic cells. Conclusions/Significance Our data support a role for RNF123 ubiquitin ligase in the degradation of HP1α and HP1β upon lamin A/C knock-down. Hence lamin misexpression can cause degradation of mislocalized proteins involved in key nuclear processes by induction of specific components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Richa Khanna
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
| | - Veena K. Parnaik
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
- * E-mail:
| |
Collapse
|
35
|
Martins RP, Finan JD, Guilak F, Lee DA. Mechanical regulation of nuclear structure and function. Annu Rev Biomed Eng 2012; 14:431-55. [PMID: 22655599 DOI: 10.1146/annurev-bioeng-071910-124638] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mechanical loading induces both nuclear distortion and alterations in gene expression in a variety of cell types. Mechanotransduction is the process by which extracellular mechanical forces can activate a number of well-studied cytoplasmic signaling cascades. Inevitably, such signals are transduced to the nucleus and induce transcription factor-mediated changes in gene expression. However, gene expression also can be regulated through alterations in nuclear architecture, providing direct control of genome function. One putative transduction mechanism for this phenomenon involves alterations in nuclear architecture that result from the mechanical perturbation of the cell. This perturbation is associated with direct mechanical strain or osmotic stress, which is transferred to the nucleus. This review describes the current state of knowledge relating the nuclear architecture and the transfer of mechanical forces to the nucleus mediated by the cytoskeleton, the nucleoskeleton, and the LINC (linker of the nucleoskeleton and cytoskeleton) complex. Moreover, remodeling of the nucleus induces alterations in nuclear stiffness, which may be associated with cell differentiation. These phenomena are discussed in relation to the potential influence of nuclear architecture-mediated mechanoregulation of transcription and cell fate.
Collapse
Affiliation(s)
- Rui P Martins
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
36
|
Lamin misexpression upregulates three distinct ubiquitin ligase systems that degrade ATR kinase in HeLa cells. Mol Cell Biochem 2012; 365:323-32. [PMID: 22382637 DOI: 10.1007/s11010-012-1272-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/16/2012] [Indexed: 12/27/2022]
Abstract
Lamins are the major structural components of the nucleus and mutations in the human lamin A gene cause a number of genetic diseases collectively termed laminopathies. At the cellular level, lamin A mutations cause aberrant nuclear morphology and defects in nuclear functions such as the response to DNA damage. We have investigated the mechanism of depletion of a key damage sensor, ATR (Ataxia-telangiectasia-mutated-and-Rad3-related) kinase, in HeLa cells expressing lamin A mutants or lamin A shRNA. The degradation of ATR kinase in these cells was through the proteasomal pathway as it was reversed by the proteasomal inhibitor MG132. Expression of lamin A mutants or shRNA led to transcriptional activation of three ubiquitin ligase components, namely, RNF123 (ring finger protein 123), HECW2 (HECT domain ligase W2) and the F-box protein FBXW10. Ectopic expression of RNF123, HECW2 or FBXW10 directly resulted in proteasomal degradation of ATR kinase and the ring domain of RNF123 was required for this degradation. However, these ligases did not alter the stability of DNA-dependent protein kinase, which is not depleted upon lamin misexpression. Although degradation of ATR kinase was reversed by MG132, it was not affected by the nuclear export inhibitor, leptomycin B, suggesting that ATR kinase is degraded within the nucleus. Our findings indicate that lamin misexpression can lead to deleterious effects on the stability of the key DNA damage sensor, ATR kinase by upregulation of specific components of the ubiquitination pathway.
Collapse
|
37
|
De La Garza-Rodea AS, Van Der Velde-Van Dijke I, Boersma H, Gonçalves MAFV, Van Bekkum DW, De Vries AAF, Knaän-Shanzer S. Myogenic Properties of Human Mesenchymal Stem Cells Derived from Three Different Sources. Cell Transplant 2012; 21:153-73. [DOI: 10.3727/096368911x580554] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) of mammals have been isolated from many tissues and are characterized by their aptitude to differentiate into bone, cartilage, and fat. Differentiation into cells of other lineages like skeletal muscle, tendon/ligament, nervous tissue, and epithelium has been attained with MSCs derived from some tissues. Whether such abilities are shared by MSCs of all tissues is unknown. We therefore compared for three human donors the myogenic properties of MSCs from adipose tissue (AT), bone marrow (BM), and synovial membrane (SM). Our data show that human MSCs derived from the three tissues differ in phenotype, proliferation capacity, and differentiation potential. The division rate of AT-derived MSCs (AT-MSCs) was distinctly higher than that of MSCs from the other two tissue sources. In addition, clear donor-specific differences in the long-term maintenance of MSC proliferation ability were observed. Although similar in their in vitro fusogenic capacity with murine myoblasts, MSCs of the three sources contributed to a different extent to skeletal muscle regeneration in vivo. Transplanting human AT-, BM-, or SM-MSCs previously transduced with a lentiviral vector encoding β-galactosidase into cardiotoxin-damaged tibialis anterior muscles (TAMs) of immunodeficient mice revealed that at 30 days after treatment the frequency of hybrid myofibers was highest in the TAMs treated with AT-MSCs. Our finding of human-specific β-spectrin and dystrophin in hybrid myofibers containing human nuclei argues for myogenic programming of MSCs in regenerating murine skeletal muscle. For the further development of MSC-based treatments of myopathies, AT-MSCs appear to be the best choice in view of their efficient contribution to myoregeneration, their high ex vivo expansion potential, and because their harvesting is less demanding than that of BM- or SM-MSCs.
Collapse
Affiliation(s)
| | | | - Hester Boersma
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Dirk W. Van Bekkum
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoine A. F. De Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shoshan Knaän-Shanzer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
38
|
Warren DT, Shanahan CM. Defective DNA-damage repair induced by nuclear lamina dysfunction is a key mediator of smooth muscle cell aging. Biochem Soc Trans 2011; 39:1780-5. [PMID: 22103525 DOI: 10.1042/bst20110703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of DNA damage is a major driving force of normal cellular aging and has recently been demonstrated to hasten the development of vascular diseases such as atherosclerosis. VSMCs (vascular smooth muscle cells) are essential for vessel wall integrity and repair, and maintenance of their proliferative capacity is essential for vascular health. The signalling pathways that determine VSMC aging remain poorly defined; however, recent evidence implicates persistent DNA damage and the A-type nuclear lamins as key regulators of this process. In the present review, we discuss the importance of the nuclear lamina in the spatial organization of nuclear signalling events, including the DNA-damage response. In particular, we focus on the evidence suggesting that prelamin A accumulation interferes with nuclear spatial compartmentalization by disrupting chromatin organization and DNA-damage repair pathways to promote VSMC aging and senescence.
Collapse
Affiliation(s)
- Derek T Warren
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | | |
Collapse
|
39
|
Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins. J Biosci 2011; 36:471-9. [DOI: 10.1007/s12038-011-9085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|