1
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Lee DH, Park EG, Kim JM, Shin HJ, Lee YJ, Jeong HS, Roh HY, Kim WR, Ha H, Kim SW, Choi YH, Kim HS. Genomic analyses of intricate interaction of TE-lncRNA overlapping genes with miRNAs in human diseases. Genes Genomics 2024:10.1007/s13258-024-01547-1. [PMID: 39215947 DOI: 10.1007/s13258-024-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Transposable elements (TEs) are known to be inserted into genome to create transcript isoforms or to generate long non-coding RNA (lncRNA) sequences. The insertion of TEs generates a gene protein sequence within the genome, but also provides a microRNA (miRNA) regulatory region. OBJECTIVE To determine the effect of gene sequence changes caused by TE insertion on miRNA binding and to investigate the formation of an overlapping lncRNA that represses it. METHODS The distribution of overlapping regions between exons and TE regions with lncRNA was examined using the Bedtools. miRNAs that can bind to those overlapping regions were identified through the miRDB web program. For TE-lncRNA overlapping genes, bioinformatic analysis was conducted using DAVID web database. Differential expression analysis was conducted using data from the GEO dataset and TCGA. RESULTS Most TEs were distributed more frequently in untranslated regions than open reading frames. There were 30 annotated TE-lncRNA overlapping genes with same strand that could bind to the same miRNA. As a result of identifying the association between these 30 genes and diseases, TGFB2, FCGR2A, DCTN5, and IFI6 were associated with breast cancer, and HMGCS1, FRMD4A, EDNRB, and SNCA were associated with Alzheimer's disease. Analysis of the GEO and TCGA data showed that the relevant expression of miR-891a and miR-28, which bind to the TE overlapping region of DCTN5 and HMGCS1, decreased. CONCLUSION This study indicates that the interaction between TE-lncRNA overlapping genes and miRNAs can affect disease progression.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Disease, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Oliveira DS, Fablet M, Larue A, Vallier A, Carareto CA, Rebollo R, Vieira C. ChimeraTE: a pipeline to detect chimeric transcripts derived from genes and transposable elements. Nucleic Acids Res 2023; 51:9764-9784. [PMID: 37615575 PMCID: PMC10570057 DOI: 10.1093/nar/gkad671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Transposable elements (TEs) produce structural variants and are considered an important source of genetic diversity. Notably, TE-gene fusion transcripts, i.e. chimeric transcripts, have been associated with adaptation in several species. However, the identification of these chimeras remains hindered due to the lack of detection tools at a transcriptome-wide scale, and to the reliance on a reference genome, even though different individuals/cells/strains have different TE insertions. Therefore, we developed ChimeraTE, a pipeline that uses paired-end RNA-seq reads to identify chimeric transcripts through two different modes. Mode 1 is the reference-guided approach that employs canonical genome alignment, and Mode 2 identifies chimeras derived from fixed or insertionally polymorphic TEs without any reference genome. We have validated both modes using RNA-seq data from four Drosophila melanogaster wild-type strains. We found ∼1.12% of all genes generating chimeric transcripts, most of them from TE-exonized sequences. Approximately ∼23% of all detected chimeras were absent from the reference genome, indicating that TEs belonging to chimeric transcripts may be recent, polymorphic insertions. ChimeraTE is the first pipeline able to automatically uncover chimeric transcripts without a reference genome, consisting of two running Modes that can be used as a tool to investigate the contribution of TEs to transcriptome plasticity.
Collapse
Affiliation(s)
- Daniel S Oliveira
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Institut Universitaire de France (IUF), Paris, Île-de-FranceF-75231, France
| | - Anaïs Larue
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Claudia M A Carareto
- São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, Rhone-Alpes, 69100, France
| |
Collapse
|
4
|
Mezzasalma M, Capriglione T, Kupriyanova L, Odierna G, Pallotta MM, Petraccioli A, Picariello O, Guarino FM. Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae). Life (Basel) 2023; 13:life13030637. [PMID: 36983793 PMCID: PMC10058329 DOI: 10.3390/life13030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Correspondence: (M.M.); (G.O.)
| | - Teresa Capriglione
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Larissa Kupriyanova
- Zoological Institute, Russian Academy of Sciences, 190121 St. Petersburg, Russia
| | - Gaetano Odierna
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
- Correspondence: (M.M.); (G.O.)
| | | | - Agnese Petraccioli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Orfeo Picariello
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Fabio M. Guarino
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| |
Collapse
|
5
|
Li SF, She HB, Yang LL, Lan LN, Zhang XY, Wang LY, Zhang YL, Li N, Deng CL, Qian W, Gao WJ. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Int J Mol Sci 2022; 23:ijms231710158. [PMID: 36077556 PMCID: PMC9456015 DOI: 10.3390/ijms231710158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G.pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Hong-Bing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long-Long Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xin-Yu Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Li-Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (W.Q.); (W.-J.G.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Correspondence: (W.Q.); (W.-J.G.)
| |
Collapse
|
6
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
8
|
Keegan NP, Fletcher S. A spotter's guide to SNPtic exons: The common splice variants underlying some SNP-phenotype correlations. Mol Genet Genomic Med 2021; 10:e1840. [PMID: 34708937 PMCID: PMC8801146 DOI: 10.1002/mgg3.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryptic exons are typically characterised as deleterious splicing aberrations caused by deep intronic mutations. However, low-level splicing of cryptic exons is sometimes observed in the absence of any pathogenic mutation. Five recent reports have described how low-level splicing of cryptic exons can be modulated by common single-nucleotide polymorphisms (SNPs), resulting in phenotypic differences amongst different genotypes. METHODS We sought to investigate whether additional 'SNPtic' exons may exist, and whether these could provide an explanatory mechanism for some of the genotype-phenotype correlations revealed by genome-wide association studies. We thoroughly searched the literature for reported cryptic exons, cross-referenced their genomic coordinates against the dbSNP database of common SNPs, then screened out SNPs with no reported phenotype associations. RESULTS This method discovered five probable SNPtic exons in the genes APC, FGB, GHRL, MYPBC3 and OTC. For four of these five exons, we observed that the phenotype associated with the SNP was compatible with the predicted splicing effect of the nucleotide change, whilst the fifth (in GHRL) likely had a more complex splice-switching effect. CONCLUSION Application of our search methods could augment the knowledge value of future cryptic exon reports and aid in generating better hypotheses for genome-wide association studies.
Collapse
Affiliation(s)
- Niall Patrick Keegan
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,Perron Institute, Perth, Western Australia, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
10
|
Conboy JG. Unannotated splicing regulatory elements in deep intron space. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1656. [PMID: 33887804 DOI: 10.1002/wrna.1656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- John G Conboy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA
| |
Collapse
|
11
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
12
|
Walid AHD, Al-Bdour MD, El-Khateeb M. Lack of relationship between Alu repetitive elements in angiotensin converting enzyme and the severity of diabetic retinopathy. J Med Biochem 2021; 40:302-309. [PMID: 34177375 PMCID: PMC8199535 DOI: 10.5937/jomb0-27885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Background Angiotensin-converting enzyme (ACE) stimulates angiogenesis that leads to the development of diabetic retinopathy (DR). Alu repetitive elements in ACE gene increase the expression of this enzyme. We investigated the frequency of Alu repetitive elements, insertion/deletion (I/D) polymorphism, in angiotensin-converting enzyme among diabetic retinopathy patients and whether this polymorphism is associated with the severity of retinopathy in Jordanians with type 2 diabetes. Methods A total of 277 subjects participated in this case/ control study (100 diabetic patients without DR, 82 diabetic patients with DR, and 95 healthy control). Blood samples were withdrawn, followed by DNA extraction. Alu repetitive elements were examined by polymerase chain reaction followed by gel electrophoresis. Results The genotype and allele frequencies among diabetic patients, were close to healthy controls (genotypes, II 44.4 vs. 44.7%, ID 44.4 vs. 42.6%, DD 12.2 vs. 12.8%, P = 0.402 and 0.677 respectively, alleles, I 65.6 vs. 66%, D 34.4 vs. 34%, P=0.863). Complicated diabetics with retinopathy showed similar genotype and allele frequency to those without complications. The severity of diabetic retinopathy in affected individuals was not correlated with I/D polymorphism (P=0.862). Conclusions We conclude that the presence of Alu repetitive elements did not increase the development or progression risk to retinopathy in Jordanian type 2 diabetic patients. No association between I or D alleles with the severity of DR was detected.
Collapse
Affiliation(s)
- Abu-Hassan Diala Walid
- University of Jordan, School of Medicine, Department of Physiology and Biochemistry, Amman, Jordan
| | - Muawyah D Al-Bdour
- University of Jordan, School of Medicine, Department of Ophthalmology, Amman, Jordan
| | | |
Collapse
|
13
|
Abstract
Understanding the genetic mechanisms underlying particular adaptations/phenotypes of organisms is one of the core issues of evolutionary biology. The use of genomic data has greatly advanced our understandings on this issue, as well as other aspects of evolutionary biology, including molecular adaptation, speciation, and even conservation of endangered species. Despite the well-recognized advantages, usages of genomic data are still limited to non-mammal vertebrate groups, partly due to the difficulties in assembling large or highly heterozygous genomes. Although this is particularly the case for amphibians, nonetheless, several comparative and population genomic analyses have shed lights into the speciation and adaptation processes of amphibians in a complex landscape, giving a promising hope for a wider application of genomics in the previously believed challenging groups of organisms. At the same time, these pioneer studies also allow us to realize numerous challenges in studying the molecular adaptations and/or phenotypic evolutionary mechanisms of amphibians. In this review, we first summarize the recent progresses in the study of adaptive evolution of amphibians based on genomic data, and then we give perspectives regarding how to effectively identify key pathways underlying the evolution of complex traits in the genomic era, as well as directions for future research.
Collapse
Affiliation(s)
- Yan-Bo Sun
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Yi Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Kai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma 73072, USA
| |
Collapse
|
14
|
Chang ZX, Ajayi OE, Guo DY, Wu QF. Genome-wide characterization and developmental expression profiling of long non-coding RNAs in Sogatella furcifera. INSECT SCIENCE 2020; 27:987-997. [PMID: 31264303 DOI: 10.1111/1744-7917.12707] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The genome-wide characterization of long non-coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in-depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein-coding genes. More up-regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome-wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.
Collapse
Affiliation(s)
- Zhao-Xia Chang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong-Yang Guo
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Carducci F, Biscotti MA, Barucca M, Canapa A. Transposable elements in vertebrates: species evolution and environmental adaptation. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1695967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
16
|
|
17
|
Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, Bruhn Pedersen L, Naesborg-Nielsen C, Sinding MHS, Fredensborg Rath M, Li Z, Petersen B, Gilbert MTP, Bunce M, Mourier T, Hansen AJ. MobiSeq: De novo SNP discovery in model and non-model species through sequencing the flanking region of transposable elements. Mol Ecol Resour 2019; 19:512-525. [PMID: 30575257 DOI: 10.1111/1755-0998.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
Collapse
Affiliation(s)
- Alba Rey-Iglesia
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishan
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David E Alquezar-Planas
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Anne Ahlmann Nielsen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Timo Röder
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bruhn Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel-Holger S Sinding
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Zhipeng Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Faculty of Applied Sciences, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
18
|
Abstract
Transposable elements (TEs) are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in molecular functions that influence genomic plasticity and gene expression regulation. With the advent of next-generation sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. In this chapter, the Authors comprehensively summarize the state-of the-art of TE research in animal models and humans supporting a framework in which TEs play a functional role in mechanisms affecting a variety of behaviors, including neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Finally, the Authors discuss recent therapeutic applications raised from the increasing experimental evidence on TE functional mechanisms.
Collapse
Affiliation(s)
- G Guffanti
- McLean Hospital - Harvard Medical School, Belmont, MA, USA.
| | - A Bartlett
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - P DeCrescenzo
- McLean Hospital - Harvard Medical School, Belmont, MA, USA
| | - F Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - R Hunter
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| |
Collapse
|
19
|
Kitano S, Kurasawa H, Aizawa Y. Transposable elements shape the human proteome landscape via formation of cis-acting upstream open reading frames. Genes Cells 2018; 23:274-284. [PMID: 29446201 DOI: 10.1111/gtc.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Transposons are major drivers of mammalian genome evolution. To obtain new insights into the contribution of transposons to the regulation of protein translation, we here examined how transposons affected the genesis and function of upstream open reading frames (uORFs), which serve as cis-acting elements to regulate translation from annotated ORFs (anORFs) located downstream of the uORFs in eukaryotic mRNAs. Among 39,786 human uORFs, 3,992 had ATG trinucleotides of a transposon origin, termed "transposon-derived upstream ATGs" or TuATGs. Luciferase reporter assays suggested that many TuATGs modulate translation from anORFs. Comparisons with transposon consensus sequences revealed that most TuATGs were generated by nucleotide substitutions in non-ATG trinucleotides of integrated transposons. Among these non-ATG trinucleotides, GTG and ACG were converted into TuATGs more frequently, indicating a CpG methylation-mediated process of TuATG formation. Interestingly, it is likely that this process accelerated human-specific upstream ATG formation within transposon sequences in 5' untranslated regions after divergence between human and nonhuman primates. Methylation-mediated TuATG formation seems to be ongoing in the modern human population and could alter the expression of disease-related proteins. This study shows that transposons have potentially been shaping the human proteome landscape via cis-acting uORF creation.
Collapse
Affiliation(s)
- Shohei Kitano
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Hikaru Kurasawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasunori Aizawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
20
|
Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, Kim J, Kim H, Kim DS. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 2018; 111:159-166. [PMID: 29366860 DOI: 10.1016/j.ygeno.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minah Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeongkil Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - HyeRan Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Plant Systems Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci 2017; 18:E974. [PMID: 28471386 PMCID: PMC5454887 DOI: 10.3390/ijms18050974] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
| | - Wahyu Wulaningsih
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
- MRC (Medical Research Council) Unit for Lifelong Health and Ageing, University College London, London WC1B 5JU, UK.
- Division of Haematology/Oncology, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
| |
Collapse
|
23
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
24
|
Iurescia S, Seripa D, Rinaldi M. Looking Beyond the 5-HTTLPR Polymorphism: Genetic and Epigenetic Layers of Regulation Affecting the Serotonin Transporter Gene Expression. Mol Neurobiol 2016; 54:8386-8403. [DOI: 10.1007/s12035-016-0304-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
25
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
26
|
Wei B, Liu H, Liu X, Xiao Q, Wang Y, Zhang J, Hu Y, Liu Y, Yu G, Huang Y. Genome-wide characterization of non-reference transposons in crops suggests non-random insertion. BMC Genomics 2016; 17:536. [PMID: 27485608 PMCID: PMC4971691 DOI: 10.1186/s12864-016-2847-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Transposons (transposable elements or TEs) are DNA sequences that can change their position within the genome. A large number of TEs have been identified in reference genome of each crop(named accumulated TEs), which are the important part of genome. However, whether there existed TEs with different insert positions in resequenced crop accession genomes from those of reference genome (named non-reference transposable elements, non-ref TEs), and what the characteristics (such as the number, type and distribution) are. To identify and characterize crop non-ref TEs, we analyzed non-ref TEs in more than 125 accessions from rice (Oryza sativa), maize (Zea mays) and sorghum (Sorghum bicolor) using resequenced data with paired-end mapping methods. RESULTS We identified 13,066, 23,866 and 35,679 non-ref TEs in rice, maize and sorghum, respectively. Genome-wide characterization analysis shows that most of non-ref TEs were unique and non-ref TE classes shows different among rice, maize and sorghum. We found that non-ref TEs have a strong positive correlation with gene number and have a bias toward insertion near genes, but with a preference for avoiding coding regions in maize and sorghum. The genes affected by non-ref TE insertion were functionally enriched for stress response mechanisms in all three crops. CONCLUSIONS These observations suggest that transposon insertion is not a random event and it makes genomic diversity, which may affect the intraspecific adaption and evolution of crops.
Collapse
Affiliation(s)
- Bin Wei
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xin Liu
- Beijing Genome Institute and the Key Laboratory of Genomics of the Minister of Agriculture, Shenzhen, 518083, China
| | - Qianlin Xiao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongbin Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yubi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci U S A 2016; 113:E1625-34. [PMID: 26957605 DOI: 10.1073/pnas.1519292113] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
C/D box small nucleolar RNAs (SNORDs) are small noncoding RNAs, and their best-understood function is to target the methyltransferase fibrillarin to rRNA (for example, SNORD27 performs 2'-O-methylation of A27 in 18S rRNA). Unexpectedly, we found a subset of SNORDs, including SNORD27, in soluble nuclear extract made under native conditions, where fibrillarin was not detected, indicating that a fraction of the SNORD27 RNA likely forms a protein complex different from canonical snoRNAs found in the insoluble nuclear fraction. As part of this previously unidentified complex,SNORD27 regulates the alternative splicing of the transcription factor E2F7p re-mRNA through direct RNA-RNA interaction without methylating the RNA, likely by competing with U1 small nuclear ribonucleoprotein (snRNP). Furthermore, knockdown of SNORD27 activates previously "silent" exons in several other genes through base complementarity across the entire SNORD27 sequence, not just the antisense boxes. Thus, some SNORDs likely function in both rRNA and pre-mRNA processing, which increases the repertoire of splicing regulators and links both processes.
Collapse
|
29
|
Kim YH, Choe SH, Song BS, Park SJ, Kim MJ, Park YH, Yoon SB, Lee Y, Jin YB, Sim BW, Kim JS, Jeong KJ, Kim SU, Lee SR, Park YI, Huh JW, Chang KT. Macaca specific exon creation event generates a novel ZKSCAN5 transcript. Gene 2015; 577:236-43. [PMID: 26657034 DOI: 10.1016/j.gene.2015.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/20/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
ZKSCAN5 (also known as ZFP95) is a zinc-finger protein belonging to the Krűppel family. ZKSCAN5 contains a SCAN box and a KRAB A domain and is proposed to play a distinct role during spermatogenesis. In humans, alternatively spliced ZKSCAN5 transcripts with different 5'-untranslated regions (UTRs) have been identified. However, investigation of our Macaca UniGene Database revealed novel alternative ZKSCAN5 transcripts that arose due to an exon creation event. Therefore, in this study, we identified the full-length sequences of ZKSCAN5 and its alternative transcripts in Macaca spp. Additionally, we investigated different nonhuman primate sequences to elucidate the molecular mechanism underlying the exon creation event. We analyzed the evolutionary features of the ZKSCAN5 transcripts by reverse transcription polymerase chain reaction (RT-PCR) and genomic PCR, and by sequencing various nonhuman primate DNA and RNA samples. The exon-created transcript was only detected in the Macaca lineage (crab-eating monkey and rhesus monkey). Full-length sequence analysis by rapid amplification of cDNA ends (RACE) identified ten full-length transcripts and four functional isoforms of ZKSCAN5. Protein sequence analyses revealed the presence of two groups of isoforms that arose because of differences in start-codon usage. Together, our results demonstrate that there has been specific selection for a discrete set of ZKSCAN5 variants in the Macaca lineage. Furthermore, study of this locus (and perhaps others) in Macaca spp. might facilitate our understanding of the evolutionary pressures that have shaped the mechanism of exon creation in primates.
Collapse
Affiliation(s)
- Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Myung-Jin Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea
| | - Young-Il Park
- Graduate School Department of Digital Media, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea.
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 363-883, Republic of Korea; University of Science & Technology, National Primate Research Center, KRIBB, Cheongju 363-883, Republic of Korea.
| |
Collapse
|
30
|
Park SJ, Kim YH, Lee SR, Choe SH, Kim MJ, Kim SU, Kim JS, Sim BW, Song BS, Jeong KJ, Jin YB, Lee Y, Park YH, Park YI, Huh JW, Chang KT. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution. Mol Cells 2015; 38:950-8. [PMID: 26537194 PMCID: PMC4673409 DOI: 10.14348/molcells.2015.0121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022] Open
Abstract
BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crab-eating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3' splice site. Intriguingly, in rhesus and crab-eating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5' splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates.
Collapse
Affiliation(s)
- Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Myung-Jin Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Yeung-Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Young Il Park
- Graduate School Department of Digital Media, Ewha Womans University, Seoul 120-750,
Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
- University of Science & Technology, National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 363-883,
Korea
| |
Collapse
|
31
|
Dhivya S, Premkumar K. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis. Crit Rev Oncol Hematol 2015; 98:81-93. [PMID: 26548742 DOI: 10.1016/j.critrevonc.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis.
Collapse
Affiliation(s)
- Sridaran Dhivya
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kumpati Premkumar
- Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
32
|
Mehra M, Gangwar I, Shankar R. A Deluge of Complex Repeats: The Solanum Genome. PLoS One 2015; 10:e0133962. [PMID: 26241045 PMCID: PMC4524691 DOI: 10.1371/journal.pone.0133962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genome, Plant
- Humans
- INDEL Mutation
- Solanum lycopersicum/genetics
- MicroRNAs/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Alignment
- Solanum tuberosum/genetics
- Species Specificity
- Terminal Repeat Sequences
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| |
Collapse
|
33
|
Chandrashekar DS, Dey P, Acharya KK. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species. PLoS One 2015. [PMID: 26208093 PMCID: PMC4514817 DOI: 10.1371/journal.pone.0133647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting repeats in various contexts/regions. GREAM is freely available at http://resource.ibab.ac.in/GREAM/.
Collapse
Affiliation(s)
- Darshan Shimoga Chandrashekar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Kshitish K. Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Shodhaka Life Sciences Pvt. Ltd., IBAB, Biotech Park, Bengaluru (Bangalore), 560100, Karnataka state, India
- * E-mail:
| |
Collapse
|
34
|
Catania F, Schmitz J. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:547-61. [PMID: 26140477 DOI: 10.1002/wrna.1293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/06/2015] [Indexed: 12/17/2022]
Abstract
Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
35
|
A transposable element within the Non-canonical telomerase RNA of Arabidopsis thaliana modulates telomerase in response to DNA damage [corrected]. PLoS Genet 2015; 11:e1005281. [PMID: 26075395 PMCID: PMC4468102 DOI: 10.1371/journal.pgen.1005281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs). TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3’ terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE). DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and without DRE (TER2Δ) we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault. Telomerase is a highly regulated enzyme whose activity is essential for long-term cellular proliferation. In the presence of DNA double-strand breaks (DSBs), telomerase activity must be curtailed to promote faithful DNA repair. We previously showed that the flowering plant Arabidopsis thaliana rapidly down-regulates telomerase in response to DSBs, and further that this mode of regulation is dependent on TER2, a non-canonical telomerase RNA subunit. Here we demonstrate that the unique regulatory properties of TER2 are conveyed by a transposable element (TE) embedded in the TER2 gene. A comparison of A. thaliana accessions with and without the TE revealed that the element increases the binding affinity of TER2 for the telomerase catalytic subunit TERT relative to the canonical telomerase RNA subunit. The TE also increases TER2 turnover. In response to DSBs, TER2 is induced and accumulates in TERT containing complexes in vivo. Thus, invasion of a TE endows TER2 with a DNA damage sensor to rapidly and reversibly modulate enzyme activity in response to genotoxic stress. These findings provide an example of how exaptation of a TE altered the function of a long noncoding RNA. In this case, a duplicated gene (TER2) was used as the platform, and the TE as the tool to engineer a novel mode of telomerase regulation.
Collapse
|
36
|
Abascal F, Tress ML, Valencia A. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2α and ZNF451 in mammals. Bioinformatics 2015; 31:2257-61. [PMID: 25735770 PMCID: PMC4495291 DOI: 10.1093/bioinformatics/btv132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/25/2015] [Indexed: 01/05/2023] Open
Abstract
Transposable elements constitute a large fraction of vertebrate genomes and, during evolution, may be co-opted for new functions. Exonization of transposable elements inserted within or close to host genes is one possible way to generate new genes, and alternative splicing of the new exons may represent an intermediate step in this process. The genes TMPO and ZNF451 are present in all vertebrate lineages. Although they are not evolutionarily related, mammalian TMPO and ZNF451 do have something in common-they both code for splice isoforms that contain LAP2alpha domains. We found that these LAP2alpha domains have sequence similarity to repetitive sequences in non-mammalian genomes, which are in turn related to the first ORF from a DIRS1-like retrotransposon. This retrotransposon domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms, which may have contributed to the success of the colonization process. The LAP2alpha-specific isoform of TMPO (LAP2α) has been co-opted for important roles in the cell, whereas the ZNF451 LAP2alpha isoform is evolving under strong purifying selection but remains uncharacterized.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Michael L Tress
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| | - Alfonso Valencia
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid 28029, Spain
| |
Collapse
|
37
|
Laurila K, Autio R, Kong L, Närvä E, Hussein S, Otonkoski T, Lahesmaa R, Lähdesmäki H. Integrative genomics and transcriptomics analysis of human embryonic and induced pluripotent stem cells. BioData Min 2014; 7:32. [PMID: 25649046 PMCID: PMC4298950 DOI: 10.1186/s13040-014-0032-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 12/04/2014] [Indexed: 11/13/2022] Open
Abstract
Background Human genomic variations, including single nucleotide polymorphisms (SNPs) and copy number variations (CNVs), are associated with several phenotypic traits varying from mild features to hereditary diseases. Several genome-wide studies have reported genomic variants that correlate with gene expression levels in various tissue and cell types. Results We studied human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) measuring the SNPs and CNVs with Affymetrix SNP 6 microarrays and expression values with Affymetrix Exon microarrays. We computed the linear relationships between SNPs and expression levels of exons, transcripts and genes, and the associations between gene CNVs and gene expression levels. Further, for a few of the resulted genes, the expression value was associated with both CNVs and SNPs. Our results revealed altogether 217 genes and 584 SNPs whose genomic alterations affect the transcriptome in the same cells. We analyzed the enriched pathways and gene ontologies within these groups of genes, and found out that the terms related to alternative splicing and development were enriched. Conclusions Our results revealed that in the human pluripotent stem cells, the expression values of several genes, transcripts and exons were affected due to the genomic variation. Electronic supplementary material The online version of this article (doi:10.1186/s13040-014-0032-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kirsti Laurila
- Department of Information and Computer Science, Aalto University School of Science, Espoo, Finland
| | - Reija Autio
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,School of Health Sciences, University of Tampere, Tampere, Finland
| | - Lingjia Kong
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Elisa Närvä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Samer Hussein
- Samuel Lunenfeld Research Institute, Toronto, Canada.,Research Program Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Program Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Lähdesmäki
- Department of Information and Computer Science, Aalto University School of Science, Espoo, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
38
|
Kaer K, Speek M. Intronic retroelements: Not just "speed bumps" for RNA polymerase II. Mob Genet Elements 2014; 2:154-157. [PMID: 23061024 PMCID: PMC3463474 DOI: 10.4161/mge.20774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two well-known retroelements, L1 and Alu, comprise about one third of the human genome and are nearly equally distributed between the intergenic and intragenic regions. They carry different regulatory elements and contribute structurally and functionally to the expression of our genes. Recent data also suggest that hundreds of intronic L1s and Alus interfere with the transcription of human genes by inducing intron retention, forcing exonization and cryptic polyadenylation. These novel features can be explained with the RNA polymerase kinetic model and suggest that intronic L1s and Alus are not just "speed bumps" in regulation of RNA polymerase traffic. Here we discuss the complexity of the regulation of gene transcription imposed by intronic retroelements and predict that in addition to transcriptional activity, transcription factor binding and nucleosomal occupancy play a significant role in the transcriptional interference effects of the host genes.
Collapse
Affiliation(s)
- Kristel Kaer
- Department of Gene Technology; Tallinn University of Technology; Tallinn, Estonia
| | | |
Collapse
|
39
|
Llorens C, Bernet GP, Ramasamy S, Feschotte C, Moya A. On the transposon origins of mammalian SCAND3 and KRBA2, two zinc-finger genes carrying an integrase/transposase domain. Mob Genet Elements 2014; 2:205-210. [PMID: 23550032 PMCID: PMC3575427 DOI: 10.4161/mge.22914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SCAND3 and KRBA2 are two mammalian proteins originally described as “cellular-integrases” due to sharing of a similar DDE-type integrase domain whose origin and relationship with other recombinases remain unclear. Here we perform phylogenetic analyses of 341 integrase/transposase sequences to reveal that the integrase domain of SCAND3 and KRBA2 derives from the same clade of GINGER2, a superfamily of cut-and-paste transposons widely distributed in insects and other protostomes, but seemingly absent or extinct in vertebrates. Finally, we integrate the results of phylogenetic analyses to the taxonomic distribution of SCAND3 and KRBA2 and their transposon relatives to discuss some of the processes that promoted the emergence of these two chimeric genes during mammalian evolution.
Collapse
|
40
|
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol 2014; 27:2573-84. [PMID: 25290698 DOI: 10.1111/jeb.12513] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic
| |
Collapse
|
41
|
Johnson R, Guigó R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA (NEW YORK, N.Y.) 2014; 20:959-76. [PMID: 24850885 PMCID: PMC4114693 DOI: 10.1261/rna.044560.114] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our genome contains tens of thousands of long noncoding RNAs (lncRNAs), many of which are likely to have genetic regulatory functions. It has been proposed that lncRNA are organized into combinations of discrete functional domains, but the nature of these and their identification remain elusive. One class of sequence elements that is enriched in lncRNA is represented by transposable elements (TEs), repetitive mobile genetic sequences that have contributed widely to genome evolution through a process termed exaptation. Here, we link these two concepts by proposing that exonic TEs act as RNA domains that are essential for lncRNA function. We term such elements Repeat Insertion Domains of LncRNAs (RIDLs). A growing number of RIDLs have been experimentally defined, where TE-derived fragments of lncRNA act as RNA-, DNA-, and protein-binding domains. We propose that these reflect a more general phenomenon of exaptation during lncRNA evolution, where inserted TE sequences are repurposed as recognition sites for both protein and nucleic acids. We discuss a series of genomic screens that may be used in the future to systematically discover RIDLs. The RIDL hypothesis has the potential to explain how functional evolution can keep pace with the rapid gene evolution observed in lncRNA. More practically, TE maps may in the future be used to predict lncRNA function.
Collapse
Affiliation(s)
- Rory Johnson
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Corresponding authorE-mail
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
42
|
Dannlowski U, Kugel H, Redlich R, Halik A, Schneider I, Opel N, Grotegerd D, Schwarte K, Schettler C, Ambrée O, Rust S, Domschke K, Arolt V, Heindel W, Baune BT, Suslow T, Zhang W, Hohoff C. Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Hum Brain Mapp 2014; 35:5356-67. [PMID: 24862560 DOI: 10.1002/hbm.22555] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/27/2014] [Accepted: 05/07/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The serotonin transporter (5-HTT) and the 5-HTTLPR/rs25531 polymorphisms in its gene (SLC6A4) have been associated with depression, increased stress-response, and brain structural alterations such as reduced hippocampal volumes. Recently, epigenetic processes including SLC6A4 promoter methylation were shown to be affected by stress, trauma, or maltreatment and are regarded to be involved in the etiology of affective disorders. However, neurobiological correlates of SLC6A4 promoter methylation have never been studied or compared to genotype effects by means of human neuroimaging hitherto METHODS Healthy subjects were recruited in two independent samples (N = 94, N = 95) to obtain structural gray matter images processed by voxel-based morphometry (VBM8), focusing on hippocampal, amygdala, and anterior cingulate gyrus gray matter structure. SLC6A4 promoter methylation within an AluJb element and 5-HTTLPR/rs25531 genotypes were analyzed in view of a possible impact on local gray matter volume RESULTS Strong associations of AluJb methylation and hippocampal gray matter volumes emerged within each sample separately, which in the combined sample withstood most conservative alpha-corrections for the entire brain. The amygdala, insula, and caudate nucleus showed similar associations. The 5-HTTLPR/rs25531 showed no main effect on gray matter, and the effect of methylation rates on hippocampal structure was comparable among the genotype groups CONCLUSIONS Methylation within the AluJb appears to have strong effects on hippocampal gray matter volumes, indicating that epigenetic processes can alter brain structures crucially involved in stress-related disorders. Different ways of regulating SLC6A4 expression might involve exonization or transcription factor binding as potentially underlying mechanisms, which, however, is speculative and warrants further investigation.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Capomaccio S, Vitulo N, Verini-Supplizi A, Barcaccia G, Albiero A, D'Angelo M, Campagna D, Valle G, Felicetti M, Silvestrelli M, Cappelli K. RNA sequencing of the exercise transcriptome in equine athletes. PLoS One 2013; 8:e83504. [PMID: 24391776 PMCID: PMC3877044 DOI: 10.1371/journal.pone.0083504] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022] Open
Abstract
The horse is an optimal model organism for studying the genomic response to exercise-induced stress, due to its natural aptitude for athletic performance and the relative homogeneity of its genetic and environmental backgrounds. Here, we applied RNA-sequencing analysis through the use of SOLiD technology in an experimental framework centered on exercise-induced stress during endurance races in equine athletes. We monitored the transcriptional landscape by comparing gene expression levels between animals at rest and after competition. Overall, we observed a shift from coding to non-coding regions, suggesting that the stress response involves the differential expression of not annotated regions. Notably, we observed significant post-race increases of reads that correspond to repeats, especially the intergenic and intronic L1 and L2 transposable elements. We also observed increased expression of the antisense strands compared to the sense strands in intronic and regulatory regions (1 kb up- and downstream) of the genes, suggesting that antisense transcription could be one of the main mechanisms for transposon regulation in the horse under stress conditions. We identified a large number of transcripts corresponding to intergenic and intronic regions putatively associated with new transcriptional elements. Gene expression and pathway analysis allowed us to identify several biological processes and molecular functions that may be involved with exercise-induced stress. Ontology clustering reflected mechanisms that are already known to be stress activated (e.g., chemokine-type cytokines, Toll-like receptors, and kinases), as well as "nucleic acid binding" and "signal transduction activity" functions. There was also a general and transient decrease in the global rates of protein synthesis, which would be expected after strenuous global stress. In sum, our network analysis points toward the involvement of specific gene clusters in equine exercise-induced stress, including those involved in inflammation, cell signaling, and immune interactions.
Collapse
Affiliation(s)
- Stefano Capomaccio
- Department of Pathology, Diagnostic and Veterinary Clinic - Sport Horse Research Centre, University of Perugia, Perugia, Italy
| | - Nicola Vitulo
- CRIBI, University of Padua, Complesso Vallisneri, Padova, Italy
| | - Andrea Verini-Supplizi
- Department of Pathology, Diagnostic and Veterinary Clinic - Sport Horse Research Centre, University of Perugia, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetic and Genomics, DAFNAE - University of Padova, Campus of Agripolis, Legnaro, Italy
| | | | | | - Davide Campagna
- CRIBI, University of Padua, Complesso Vallisneri, Padova, Italy
| | - Giorgio Valle
- CRIBI, University of Padua, Complesso Vallisneri, Padova, Italy
| | - Michela Felicetti
- Department of Pathology, Diagnostic and Veterinary Clinic - Sport Horse Research Centre, University of Perugia, Perugia, Italy
| | - Maurizio Silvestrelli
- Department of Pathology, Diagnostic and Veterinary Clinic - Sport Horse Research Centre, University of Perugia, Perugia, Italy
| | - Katia Cappelli
- Department of Pathology, Diagnostic and Veterinary Clinic - Sport Horse Research Centre, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Trott JF, Freking BA, Hovey RC. Variation in the coding and 3′ untranslated regions of the porcine prolactin receptor short form modifies protein expression and function. Anim Genet 2013; 45:74-86. [DOI: 10.1111/age.12100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Josephine F. Trott
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| | - Bradley A. Freking
- USDA, ARS; US Meat Animal Research Center; PO Box 166 Clay Center NE 68933 USA
| | - Russell C. Hovey
- Department of Animal Science; University of California, Davis; One Shields Ave Davis CA 95616 USA
| |
Collapse
|
45
|
Saylor B, Elliott TA, Linquist S, Kremer SC, Gregory TR, Cottenie K. A novel application of ecological analyses to assess transposable element distributions in the genome of the domestic cow, Bos taurus. Genome 2013; 56:521-33. [PMID: 24168673 DOI: 10.1139/gen-2012-0162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are among the most abundant components of many eukaryotic genomes. Efforts to explain TE abundance, as well as TE diversity among genomes, have led some researchers to draw an analogy between genomic and ecological processes. Adopting this perspective, we conducted an analysis of the cow (Bos taurus) genome using techniques developed by community ecologists to determine whether environmental factors influence community composition. Specifically, each chromosome within the Bos taurus genome was treated as a "linear transect", and a multivariate redundancy analysis (RDA) was used to identify large-scale spatial patterns in TE communities associated with 10 TE families. The position of each TE community on the chromosome accounted for ∼50% of the variation along the chromosome "transect". Multivariate analysis further revealed an effect of gene density on TE communities that is influenced by several other factors in the (genomic) environment, including chromosome length and TE density. The results of this analysis demonstrate that ecological methods can be applied successfully to help answer genomic questions.
Collapse
Affiliation(s)
- Brent Saylor
- a Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Zhang W, Edwards A, Fan W, Fang Z, Deininger P, Zhang K. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data. BMC Genomics 2013; 14:584. [PMID: 23984937 PMCID: PMC3765721 DOI: 10.1186/1471-2164-14-584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Background The exonization of transposable elements (TEs) has proven to be a significant mechanism for the creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly established by the analysis of Expressed Sequence Tag (EST) data and microarray data. Results This study seeks to validate and extend previous studies on the expression of TE exons by an integrative statistical analysis of high throughput RNA sequencing data. We collected 26 RNA-seq datasets spanning multiple tissues and cancer types. The exon-level digital expressions (indicating retention rates in mRNAs) were quantified by a double normalized measure, called the rescaled RPKM (Reads Per Kilobase of exon model per Million mapped reads). We analyzed the distribution profiles and the variability (across samples and between tissue/disease groups) of TE exon expressions, and compared them with those of other constitutive or cassette exons. We inferred the effects of four genomic factors, including the location, length, cognate TE family and TE nucleotide proportion (RTE, see Methods section) of a TE exon, on the exons’ expression level and expression variability. We also investigated the biological implications of an assembly of highly-expressed TE exons. Conclusion Our analysis confirmed prior studies from the following four aspects. First, with relatively high expression variability, most TE exons in mRNAs, especially those without exact counterparts in the UCSC RefSeq (Reference Sequence) gene tables, demonstrate low but still detectable expression levels in most tissue samples. Second, the TE exons in coding DNA sequences (CDSs) are less highly expressed than those in 3′ (5′) untranslated regions (UTRs). Third, the exons derived from chronologically ancient repeat elements, such as MIRs, tend to be highly expressed in comparison with those derived from younger TEs. Fourth, the previously observed negative relationship between the lengths of exons and the inclusion levels in transcripts is also true for exonized TEs. Furthermore, our study resulted in several novel findings. They include: (1) for the TE exons with non-zero expression and as shown in most of the studied biological samples, a high TE nucleotide proportion leads to their lower retention rates in mRNAs; (2) the considered genomic features (i.e. a continuous variable such as the exon length or a category indicator such as 3′UTR) influence the expression level and the expression variability (CV) of TE exons in an inverse manner; (3) not only the exons derived from Alu elements but also the exons from the TEs of other families were preferentially established in zinc finger (ZNF) genes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | | | | | | | | | | |
Collapse
|
47
|
A New Exon Derived from a Mammalian Apparent LTR Retrotransposon of the SUPT16H Gene. Int J Genomics 2013; 2013:387594. [PMID: 23671841 PMCID: PMC3647538 DOI: 10.1155/2013/387594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/12/2013] [Indexed: 11/28/2022] Open
Abstract
The SUPT16H gene known as FACTP140 is required for the transcription of other genes. For transcription, genes need to be complexed with accessory factors, including transcription factors and RNA polymerase II. One such factor, FACT, interacts with histones H2A/H2B for nucleosome disassembly and transcription elongation. The SUPT16H gene has a transcript and many expressed sequence tags (ESTs). We were especially interested in an MaLR-derived transcript (EST, BX333035) that included a new exon introduced by a transposable element, a mammalian apparent LTR retrotransposon (MaLR). The MaLR was detected ranging from humans to galagos, indicating the MaLR in the SUPT16H gene is integrated into the primate ancestor genome. A new exon was created by alternative donor site provided by the MaLR. The original transcript and the MaLR-derived transcript were expressed in various human, rhesus monkey, and other primate tissues. Additionally, we identified a new alternative transcript that included the MaLR, but there was no significant difference in the expression of the original transcript and the MaLR-derived transcript. Interestingly, the new alternative transcript and the MaLR-derived transcript had the MaLR sequence in the new exon, but they had different structures by adopting different 3′ splice sites. From this study, we verified transposable elements that contributed to transcriptome diversity.
Collapse
|
48
|
Akagi K, Li J, Symer DE. How do mammalian transposons induce genetic variation? A conceptual framework: the age, structure, allele frequency, and genome context of transposable elements may define their wide-ranging biological impacts. Bioessays 2013; 35:397-407. [PMID: 23319453 DOI: 10.1002/bies.201200133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this essay, we discuss new insights into the wide-ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences.
Collapse
Affiliation(s)
- Keiko Akagi
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | | |
Collapse
|
49
|
Liu LYD, Charng YC. Genome-wide survey of ds exonization to enrich transcriptomes and proteomes in plants. Evol Bioinform Online 2012; 8:575-87. [PMID: 23091369 PMCID: PMC3475393 DOI: 10.4137/ebo.s10324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Insertion of transposable elements (TEs) into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization which can enrich the complexity of transcriptomes and proteomes. Previously, we performed the first experimental assessment of TE exonization by inserting a Ds element into each intron of the rice epsps gene. Exonization of Ds in plants was biased toward providing splice donor sites from the beginning of the inserted Ds sequence. Additionally, Ds inserted in the reverse direction resulted in a continuous splice donor consensus region by offering 4 donor sites in the same intron. The current study involved genome-wide computational analysis of Ds exonization events in the dicot Arabidopsis thaliana and the monocot Oryza sativa (rice). Up to 71% of the exonized transcripts were putative targets for the nonsense-mediated decay (NMD) pathway. The insertion patterns of Ds and the polymorphic splice donor sites increased the transcripts and subsequent protein isoforms. Protein isoforms contain protein sequence due to unspliced intron-TE region and/or a shift of the reading frame. The number of interior protein isoforms would be twice that of C-terminal isoforms, on average. TE exonization provides a promising way for functional expansion of the plant proteome.
Collapse
Affiliation(s)
- Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
50
|
Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 2012; 509:7-15. [PMID: 22921893 DOI: 10.1016/j.gene.2012.07.042] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.
Collapse
Affiliation(s)
- Benoît Chénais
- Université du Maine, EA2160 Mer Molécules Santé, UFR Sciences et Techniques, Avenue Olivier Messiaen, F-72085 Le Mans, France.
| | | | | | | |
Collapse
|