Aslan O, Sweeney T, Mullen AM, Hamill RM. Regulatory polymorphisms in the bovine Ankyrin 1 gene promoter are associated with tenderness and intramuscular fat content.
BMC Genet 2010;
11:111. [PMID:
21159195 PMCID:
PMC3022666 DOI:
10.1186/1471-2156-11-111]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/15/2010] [Indexed: 12/01/2022] Open
Abstract
Background
Recent QTL and gene expression studies have highlighted ankyrins as positional and functional candidate genes for meat quality. Our objective was to characterise the promoter region of the bovine ankyrin 1 gene and to test polymorphisms for association with sensory and technological meat quality measures.
Results
Seven novel promoter SNPs were identified in a 1.11 kb region of the ankyrin 1 promoter in Angus, Charolais and Limousin bulls (n = 15 per breed) as well as 141 crossbred beef animals for which meat quality data was available. Eighteen haplotypes were inferred with significant breed variation in haplotype frequencies. The five most frequent SNPs and the four most frequent haplotypes were subsequently tested for association with sensory and technological measures of meat quality in the crossbred population. SNP1, SNP3 and SNP4 (which were subsequently designated regulatory SNPs) and SNP5 were associated with traits that contribute to sensorial and technological measurements of tenderness and texture; Haplotype 1 and haplotype 4 were oppositely correlated with traits contributing to tenderness (P < 0.05). While no single SNP was associated with intramuscular fat (IMF), a clear association with increased IMF and juiciness was observed for haplotype 2.
Conclusion
The conclusion from this study is that alleles defining haplotypes 2 and 4 could usefully contribute to marker SNP panels used to select individuals with improved IMF/juiciness or tenderness in a genome-assisted selection framework.
Collapse