1
|
Giatagana EM, Berdiaki A, Gaardløs M, Tsatsakis AM, Samsonov SA, Nikitovic D. Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis. Am J Physiol Cell Physiol 2022; 323:C1740-C1756. [PMID: 36280393 DOI: 10.1152/ajpcell.00368.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biglycan is a class I secreted small leucine-rich proteoglycan (SLRP), which regulates signaling pathways connected to bone pathologies. Autophagy is a vital catabolic process with a dual role in cancer progression. Here, we show that biglycan inhibits autophagy in two osteosarcoma cell lines (P ≤ 0.001), while rapamycin-induced autophagy decreases biglycan expression in MG63 osteosarcoma cells and abrogates the biglycan-induced cell growth increase (P ≤ 0.001). Rapamycin also inhibits β-catenin translocation to the nucleus, inhibiting the Wnt pathway (P ≤ 0.001) and reducing biglycan's colocalization with the Wnt coreceptor LRP6 (P ≤ 0.05). Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug doxorubicin in MG63 OS cells through an autophagy-dependent manner (P ≤ 0.05). Cotreatment of these cells with rapamycin and doxorubicin enhances cells response to doxorubicin by decreasing biglycan (P ≤ 0.001) and β-catenin (P ≤ 0.05) expression. Biglycan deficiency leads to increased caspase-3 activation (P ≤ 0.05), suggesting increased apoptosis of biglycan-deficient cells treated with doxorubicin. Computational models of LRP6 and biglycan complexes suggest that biglycan changes the receptor's ability to interact with other signaling molecules by affecting the interdomain bending angles in the receptor structure. Biglycan binding to LRP6 activates the Wnt pathway and β-catenin nuclear translocation by disrupting β-catenin degradation complex (P ≤ 0.01 and P ≤ 0.05). Interestingly, this mechanism is not followed in moderately differentiated, biglycan-nonexpressing U-2OS OS cells. To sum up, biglycan exhibits protective effects against the doxorubicin in MG63 OS cells by activating the Wnt signaling pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Margrethe Gaardløs
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| |
Collapse
|
2
|
Neuhaus J, Weimann A, Berndt-Paetz M. Immunocytochemical Analysis of Endogenous Frizzled-(Co-)Receptor Interactions and Rapid Wnt Pathway Activation in Mammalian Cells. Int J Mol Sci 2021; 22:12057. [PMID: 34769487 PMCID: PMC8584856 DOI: 10.3390/ijms222112057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The differential activation of Wnt pathways (canonical: Wnt/β-catenin; non-canonical: planar cell polarity (PCP), Wnt/Ca2+) depends on the cell-specific availability and regulation of Wnt receptors, called Frizzled (FZD). FZDs selectively recruit co-receptors to activate various downstream effectors. We established a proximity ligation assay (PLA) for the detection of endogenous FZD-co-receptor interactions and analyzed time-dependent Wnt pathway activation in cultured cells. Prostate cancer cells (PC-3) stimulated by Wnt ligands (Wnt5A, Wnt10B) were analyzed by Cy3-PLA for the co-localization of FZD6 and co-receptors (canonical: LRP6, non-canonical: ROR1) at the single-cell level. Downstream effector activation was assayed by immunocytochemistry. PLA allowed the specific (siRNA-verified) detection of FZD6-LRP6 and FZD6-ROR1 complexes as highly fluorescent spots. Incubation with Wnt10B led to increased FZD6-LRP6 interactions after 2 to 4 min and resulted in nuclear accumulation of β-catenin within 5 min. Wnt5A stimulation resulted in a higher number of FZD6-ROR1 complexes after 2 min. Elevated levels of phosphorylated myosin phosphatase target 1 suggested subsequent Wnt/PCP activation in PC-3. This is the first study demonstrating time-dependent interactions of endogenous Wnt (co-)receptors followed by rapid Wnt/β-catenin and Wnt/PCP activation in PC-3. In conclusion, the PLA could uncover novel signatures of Wnt receptor activation in mammalian cells and may provide new insights into involved signaling routes.
Collapse
Affiliation(s)
| | | | - Mandy Berndt-Paetz
- Department of Urology, Research Laboratories, University of Leipzig, 04109 Leipzig, Germany; (J.N.); (A.W.)
| |
Collapse
|
3
|
Yuan T, Wang S, Hu C, Wu Y, Liang D, Li L, Liu Y, Li J, Chen YH. Low-density lipoprotein receptor-related protein 6 regulates alternative pre-mRNA splicing. J Cell Mol Med 2018; 22:4653-4663. [PMID: 30070011 PMCID: PMC6156287 DOI: 10.1111/jcmm.13682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) serves as a Wnt coreceptor. Although Wnt/LRP6 signalling is best known for the β-catenin-dependent regulation of target genes in tissue development and homeostasis, emerging evidence demonstrates the biological aspects of LRP6 beyond a Wnt coreceptor. Whether LRP6 modulates tissue development in a Wnt/β-catenin signalling-independent manner remains unknown. Using a model of striated muscle development, we observed that LRP6 was almost undetectable in proliferating myoblasts, whereas its expression gradually increased in the nucleus of myodifferentiating cells. During myodifferentiation, LRP6 modulated the muscle-specific splicing of integrin-β1D and consequent myotube maturation independently of the β-catenin-dependent Wnt signalling. Furthermore, we identified that the carboxy-terminal serine-rich region in LRP6 bond to the adenine-rich sequence within alternative exon D (AED) of integrin-β1 pre-mRNA, and therefore, elicited AED inclusion when the spliceosome was recruited to the splice site. The interaction of LRP6 with the adenine-rich sequence was sufficient to overcome AED exclusion by a splicing repressor, polypyrimidine tract binding protein-1. Besides the integrin-β1, deep RNA sequencing in different types of cells revealed that the LRP6-mediated splicing regulation was widespread. Thus, our findings implicate LRP6 as a potential regulator for alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Tianyou Yuan
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Shiyi Wang
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China
| | - Chaoyue Hu
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Yufei Wu
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liang
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Yi Liu
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China
| | - Yi-Han Chen
- Institute of Medical Genetics, East Hospital, Tongji University School of Medicine, Shanghai, China.,Heart Health Center, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Maubant S, Tahtouh T, Brisson A, Maire V, Némati F, Tesson B, Ye M, Rigaill G, Noizet M, Dumont A, Gentien D, Marty-Prouvost B, de Koning L, Mahmood SF, Decaudin D, Cruzalegui F, Tucker GC, Roman-Roman S, Dubois T. LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers. Oncotarget 2018; 9:22586-22604. [PMID: 29854300 PMCID: PMC5978250 DOI: 10.18632/oncotarget.25187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting. We analyzed expression of the WNT coreceptors LRP5 and LRP6 in human breast cancer samples. As previously described, LRP6 was overexpressed in TNBCs. However, we also showed, for the first time, that LRP5 was overexpressed in TNBCs too. The knockdown of LRP5 or LRP6 decreased tumorigenesis in vitro and in vivo, identifying both receptors as potential treatment targets in TNBC. The apoptotic effect of LRP5 knockdown was more robust than that of LRP6 depletion. We analyzed and compared the transcriptomes of cells depleted of LRP5 or LRP6, to identify genes specifically deregulated by LRP5 potentially implicated in cell death. We identified serine/threonine kinase 40 (STK40) as one of two genes specifically downregulated soon after LRP5 depletion. STK40 was found to be overexpressed in TNBCs, relative to other breast cancer subtypes, and in various other tumor types. STK40 depletion decreased cell viability and colony formation, and induced the apoptosis of TNBC cells. In addition, STK40 knockdown impaired growth in an anchorage-independent manner in vitro and slowed tumor growth in vivo. These findings identify the largely uncharacterized putative protein kinase STK40 as a novel candidate treatment target for TNBC.
Collapse
Affiliation(s)
- Sylvie Maubant
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Tania Tahtouh
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Amélie Brisson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Virginie Maire
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Fariba Némati
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Bruno Tesson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France.,Institut Curie, PSL Research University, INSERM U900, Paris, France
| | - Mengliang Ye
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR 1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France.,Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry, France
| | - Maïté Noizet
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Aurélie Dumont
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Department, Genomics Platform, Paris, France
| | - Bérengère Marty-Prouvost
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Leanne de Koning
- Institut Curie, PSL Research University, Translational Research Department, Reverse-Phase Protein Array Platform, Paris, France
| | - Sardar Faisal Mahmood
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Didier Decaudin
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Francisco Cruzalegui
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Gordon C Tucker
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Thierry Dubois
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| |
Collapse
|
5
|
Silva GO, Zhang Z, Cucco C, Oh M, Camargo CHR, Nör JE. Lipoprotein Receptor-related Protein 6 Signaling is Necessary for Vasculogenic Differentiation of Human Dental Pulp Stem Cells. J Endod 2017; 43:S25-S30. [PMID: 28778505 PMCID: PMC5657009 DOI: 10.1016/j.joen.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to evaluate the effects of Wnt signaling through lipoprotein receptor-related protein 6 (LRP6) and Frizzled6 on the endothelial differentiation of dental pulp stem cells (DPSCs). DPSCs were stably transduced with enhanced green fluorescent protein (EGFP)-tagged lentiviral vectors (short hairpin RNA-LRP6, short hairpin RNA-Frizzled6, or empty vector controls). We evaluated the effects of LRP6 and Frizzled6 on expression of endothelial markers and on capillary tube formation mediated by DPSCs induced with recombinant human Wnt1 (rhWnt1) and/or recombinant human vascular endothelial growth factor165 (rhVEGF165). In vivo, tooth slices/scaffolds were seeded with LRP6-silenced, Frizzled6-silenced, or vector control DPSC cells and transplanted into immunodeficient mice. The density of blood vessels generated by DPSCs differentiated into vascular endothelial cells was analyzed by immunohistochemistry for EGFP. The rhWnt1 and rhVEGF165 induced expression of active β-catenin in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. Furthermore, VEGF and interleukin-8 were downregulated in LRP6-silenced DPSCs, but not in control DPSCs or in Frizzled6-silenced DPSCs (P < .05). Likewise, rhWnt1 and rhVEGF165 induced expression of the endothelial marker VEGF receptor-2 in control DPSCs and in Frizzled6-silenced DPSCs, but not in LRP6-silenced DPSCs. These data correlated with a trend for lower density of capillary sprouts generated by LRP6-silenced DPSCs when compared with control DPSCs in Matrigel. In vivo, tooth slice/scaffolds seeded with DPSC-short hairpinRNA-LRP6 cells showed lower density of human blood vessels (ie, EGFP-positive blood vessels), when compared with tooth slice/scaffolds seeded with vector control cells (P < .05). Collectively, these data demonstrated that LRP6 signaling is necessary for the vasculogenic differentiation of human DPSCs.
Collapse
Affiliation(s)
- Gleyce O Silva
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Carolina Cucco
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Min Oh
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Carlos H R Camargo
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University, São José dos Campos, São Paulo, Brazil
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan; Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Kannan S, Nicola Z, Overall RW, Ichwan M, Ramírez-Rodríguez G, N. Grzyb A, Patone G, Saar K, Hübner N, Kempermann G. Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation. Stem Cells 2016; 34:674-84. [DOI: 10.1002/stem.2313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/28/2015] [Accepted: 10/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Suresh Kannan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- Department of Biomedical Sciences; Sri Ramachandra University; Porur Chennai India
| | - Zeina Nicola
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | - Rupert W. Overall
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Muhammad Ichwan
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
| | - Gerardo Ramírez-Rodríguez
- Laboratory of Neurogenesis, Division of Clinical Investigations; National Institute of Psychiatry “Ramón de la Fuente Muñiz; ” México D.F. México
| | - Anna N. Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| | | | - Kathrin Saar
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine; Berlin Germany
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden; Technische Universität Dresden; Dresden Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden; Dresden Germany
| |
Collapse
|
7
|
Beagle BR, Nguyen DM, Mallya S, Tang SS, Lu M, Zeng Z, Konopleva M, Vo TT, Fruman DA. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells. Oncotarget 2015; 6:2088-100. [PMID: 25576920 PMCID: PMC4385838 DOI: 10.18632/oncotarget.2992] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 12/24/2022] Open
Abstract
High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors. Here we tested combinations of mTOR and pan-HDAC inhibitors on B-ALL cells, including both Philadelphia chromosome-positive (Ph+) and non-Ph cell lines. We found that mTOR kinase inhibitors (TOR-KIs) synergize with HDAC inhibitors to cause apoptosis in B-ALL cells and the effect is greater when compared to rapamycin plus HDAC inhibitors. The combination of TOR-KIs with the clinically approved HDAC inhibitor vorinostat increased apoptosis in primary pediatric B-ALL cells in vitro. Mechanistically, TOR-KI and HDAC inhibitor combinations increased expression of pro-death genes, including targets of the Forkhead Box O (FOXO) transcription factors, and increased sensitivity to apoptotic triggers at the mitochondria. These findings suggest that targeting epigenetic factors can unmask the cytotoxic potential of TOR-KIs towards B-ALL cells.
Collapse
Affiliation(s)
- Brandon R Beagle
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - Duc M Nguyen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - Sarah S Tang
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - Mengrou Lu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - Zhihong Zeng
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Thanh-Trang Vo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA
| |
Collapse
|
8
|
Welch MD, Howlett M, Halse HM, Greene WK, Kees UR. Novel CT domain-encoding splice forms of CTGF/CCN2 are expressed in B-lineage acute lymphoblastic leukaemia. Leuk Res 2015; 39:913-20. [PMID: 26138615 DOI: 10.1016/j.leukres.2015.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Connective tissue growth factor (CTGF/CCN2) has been shown previously to be aberrantly expressed in a high proportion of paediatric precursor B cell acute lymphoblastic leukaemia (pre-B ALL), suggesting a potential oncogenic role in this tumour type. We therefore assessed CTGF mRNA transcript diversity in B-lineage ALL using primary patient specimens and cell lines. METHODS CTGF mRNA expression was evaluated by quantitative real-time PCR and Northern blotting. We performed a structural analysis of CTGF mRNA by nested reverse-transcriptase PCR and examined CTGF protein diversity by immunoblotting. RESULTS Northern blot analysis of pre-B ALL cell lines revealed short CTGF transcripts that were expressed in association with the active phase of cellular growth. Structural analysis confirmed the synthesis of several novel CTGF mRNA isoforms in B-lineage ALL cell lines that were uniformly characterised by the retention of the coding sequence for the C-terminal (CT) domain. One of these novel spliceforms was expressed in a majority (70%) of primary pre-B ALL patient specimens positive for canonical CTGF mRNA. Evidence that these alternative transcripts have coding potential was provided by cryptic CTGF proteins of predicted size detected by immunoblotting. CONCLUSION This study identifies for the first time alternative splicing of the CTGF gene and shows that a short CTGF splice variant associated with cell proliferation is expressed in most cases of primary CTGF-positive pre-B ALL. This novel variant encoding only the CT domain may play a role in pre-B ALL tumorigenesis and/or progression.
Collapse
Affiliation(s)
- M D Welch
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia; Faculty of Health Sciences, School of Pharmacy, Curtin University, Perth, WA, Australia.
| | - M Howlett
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - H M Halse
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - W K Greene
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia.
| | - U R Kees
- Division of Children's Leukemia and Cancer Research, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
9
|
GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 2013; 8:e67694. [PMID: 23840876 PMCID: PMC3698143 DOI: 10.1371/journal.pone.0067694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Collapse
|
10
|
Hu Y, Chen Y, Lin M, Lee K, Mott RA, Ma JX. Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 2013; 54:141-54. [PMID: 23211829 DOI: 10.1167/iovs.12-10281] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Choroidal neovascularization (CNV) is a severe complication of AMD. The Wnt signaling pathway has been shown to mediate angiogenesis. The purpose of this study was to investigate the pathogenic role of the Wnt pathway in CNV and explore the therapeutic potential of a novel Wnt signaling inhibitor in CNV. METHODS Adult rats and mice were photocoagulated using diode laser to induce CNV. On the same day, the animals were intravitreally injected with a monoclonal antibody (Mab2F1) blocking LRP6 or nonspecific mouse IgG. The Wnt signaling activation and target gene expression in the eyecup were determined by Western blot analysis. Fundus angiography was used to examine leakage from the laser lesion. CNV areas were measured on choroidal flatmount using FITC-dextran. RESULTS Levels of Wnt pathway components and Wnt target gene expression were elevated in both laser-induced CNV rat and mouse eyecups, suggesting activation of the Wnt pathway. Significant suppression of Wnt signaling was observed in the Mab2F1 treatment group. Mab2F1 decreased vascular leakage from CNV lesions and reduced the neovascular area in laser-induced CNV rats. Mab2F1 inhibited the hypoxia-induced activation of Wnt signaling in cultured RPE cells. Mab2F1 also ameliorated retinal inflammation and vascular leakage in the eyecups of very low-density lipoprotein receptor knockout mice, a model of subretinal neovascularization. CONCLUSIONS The Wnt pathway is activated in the laser-induced CNV models and plays a pathogenic role in CNV. Blockade of Wnt signaling using an anti-LRP6 antibody has therapeutic potential in CNV.
Collapse
Affiliation(s)
- Yang Hu
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gundemir S, Colak G, Feola J, Blouin R, Johnson GVW. Transglutaminase 2 facilitates or ameliorates HIF signaling and ischemic cell death depending on its conformation and localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1-10. [PMID: 23085038 DOI: 10.1016/j.bbamcr.2012.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a widely expressed and multifunctional protein that modulates cell death/survival processes. We have previously shown that TG2 binds to hypoxia inducible factor 1β (HIF1β) and decreases the upregulation of HIF responsive genes; however, the relationship between these observations was not investigated. In this study, we investigated whether endogenous TG2 is sufficient to suppress HIF activity and whether the interaction between TG2 and HIF1β is required for this suppression. shRNA-mediated silencing of TG2 significantly enhanced HIF activation in response to hypoxia. In addition, nuclear localization of TG2 is required for its suppressive effect on HIF activity, with TG2 being recruited to HIF responsive promoters in hypoxic conditions. These observations suggest that TG2 directly regulates hypoxic transcriptional machinery; however, its interaction with HIF1β was not required for this regulation. We also examined whether TG2's effect on cell death/survival processes in ischemia is due to its effects on HIF signaling. Our results indicate that TG2 mediated HIF suppression can be separated from TG2's effect on cell survival in hypoxic/hypoglycemic conditions. Lastly, here we show that nuclear TG2 in the closed conformation and non-nuclear TG2 in the open conformation have opposing effects on hypoxic/hypoglycemic cell death, which could explain previous controversial results. Overall, our results further clarify the role of TG2 in mediating the cellular response to ischemia and suggest that manipulating the conformation of TG2 might be of pharmacological interest as a therapeutic strategy for the treatment of ischemia-related pathologies.
Collapse
Affiliation(s)
- Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
12
|
Tung EKK, Wong BYC, Yau TO, Ng IOL. Upregulation of the Wnt co-receptor LRP6 promotes hepatocarcinogenesis and enhances cell invasion. PLoS One 2012; 7:e36565. [PMID: 22570728 PMCID: PMC3343020 DOI: 10.1371/journal.pone.0036565] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Activation of the Wnt/β-catenin signaling pathway plays a crucial role in hepatocellular carcinoma (HCC). Low-density lipoprotein (LDL) receptor-related protein-6 (LRP6) is one of the co-receptors of the Wnt/β-catenin pathway and forms a signaling complex with Wnt ligand and Frizzled receptor to activate downstream signaling. However, the role of LRP6 in hepatocarcinogenesis is unclear. In this study, we examined its expression and roles in human HCC. METHODOLOGY/PRINCIPAL FINDINGS Using real-time quantitative RT-PCR, we found that LRP6 was frequently (45%) overexpressed in human HCCs (P = 0.003). In vitro studies showed that ectopic expression of LRP6 increased the protein level of β-catenin. Moreover, overexpression of the full-length and constitutively active LRP6, respectively, activated the WNT/β-catenin signaling pathway, as shown by the TCF/β-catenin reporter assay. With regard to the effects of LRP6 overexpression in HCC cells, stable overexpression of the constitutively active LRP6 in BEL-7402 HCC cells enhanced cell proliferation, cell migration, and invasion in vitro as well as tumorigenicity in nude mice. CONCLUSIONS/SIGNIFICANCE Our findings indicate that overexpression of LRP6 contributes to the hyperactivation of the Wnt/β-catenin signaling pathway in human HCCs and suggest it may play a role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Edmund Kwok-Kwan Tung
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Betty Yin-Chi Wong
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tai-On Yau
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
13
|
Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M. Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver. MOLECULAR BIOSYSTEMS 2011; 7:3234-44. [PMID: 21968817 DOI: 10.1039/c1mb05041a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant microRNA expression patterns underlie the pathogenesis of diverse diseases, however in a disease as complex as diabetes where the liver exhibits deregulations of normal metabolic processes, the status and role of microRNAs are not yet completely understood. In a step towards unraveling this correlation, we assessed the global microRNA expression profiles in the control and diabetic (db/db) mice liver. These db/db mice were on a C57BLKS/J background and they exhibit diabetic phenotypes that are remarkably similar to those in humans. microRNA microarray profiling revealed 11 miRNAs to be up-regulated and 2 to be down-regulated in the db/db mice liver. Predicted targets of these differentially expressed microRNAs were retrieved from miRanda and TargetScan and the maximum number of commonly predicted targets mapped onto the Wnt signaling pathway that is otherwise conventionally associated with organogenesis and development. Towards validation of this prediction, we found that major components of the Wnt signaling pathway are inhibited in the db/db mice liver. A significant number of these down-regulated genes of the Wnt signaling pathway are predicted targets to the up-regulated miRNAs and specifically our results show that miR-34a and miR-22 decreased the protein levels of their targets. Overexpression of miR-34a and miR-22 and also inhibition of Wnt signaling using specific inhibitors led to increased lipid accumulation in HepG2 cells. Our data suggest that the Wnt signaling pathway could contribute towards the deregulated hepatic behavior in these animals and an altered hepatic miRNA signature could be playing a regulatory role herein.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
14
|
Abstract
The human Transducin-like Enhancer of Split (TLE) and mouse homologue, Groucho gene-related protein (GRG), represent a family of conserved non-DNA binding transcriptional modulatory proteins divided into two subgroups based upon size. The long TLE/GRGs consist of four pentadomain proteins that are dedicated co-repressors for multiple transcription factors (TF). The second TLE/GRG subgroup is composed of the Amino-terminal Enhancer of Split (AES) in humans and its mouse homolog GRG5 (AES/GRG5). In contrast to the dedicated co-repressor function of long TLE/GRGs, AES/GRG5 can both positively or negatively modulate various TF as well as non-TF proteins in a long TLE/GRG-dependent or -independent manner. Therefore, AES/GRG5 is a functionally dynamic protein that is not exclusively defined by its role as a long TLE/GRG antagonist. AES/GRG5 may function in various developmental and pathological processes but the functional characteristics of endogenous AES/GRG5 in a physiologically relevant context remains to be determined. Developmental Dynamics 239:2795–2805, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Brandon Beagle
- Department of Anesthesiology, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|