1
|
Peviani VC, Joosten MGA, Miller LE, Medendorp WP. Bayesian inference in arm posture perception. J Neurophysiol 2024; 132:1639-1649. [PMID: 39412564 DOI: 10.1152/jn.00297.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
To configure our limbs in space, the brain must compute their position based on sensory information provided by mechanoreceptors in the skin, muscles, and joints. Because this information is corrupted by noise, the brain is thought to process it probabilistically and integrate it with prior belief about arm posture, following Bayes' rule. Here, we combined computational modeling with behavioral experimentation to test this hypothesis. The model conceives the perception of arm posture as the combination of a probabilistic kinematic chain composed by the shoulder, elbow, and wrist angles, compromised with additive Gaussian noise, with a Gaussian prior about these joint angles. We tested whether the model explains errors in a virtual reality (VR)-based posture matching task better than a model that assumes a uniform prior. Human participants (N = 20) were required to align their unseen right arm to a target posture, presented as a visual configuration of the arm in the horizontal plane. Results show idiosyncratic biases in how participants matched their unseen arm to the target posture. We used maximum likelihood estimation to fit the Bayesian model to these observations and estimate key parameters including the prior means and its variance-covariance structure. The Bayesian model including a Gaussian prior explained the response biases and variance much better than a model with a uniform prior. The prior varied across participants, consistent with the idiosyncrasies in arm posture perception and in alignment with previous behavioral research. Our work clarifies the biases in arm posture perception within a new perspective on the nature of proprioceptive computations.NEW & NOTEWORTHY We modeled the perception of arm posture as a Bayesian computation. A VR posture-matching task was used to empirically test this Bayesian model. The Bayesian model including a nonuniform postural prior well explained individual participants' biases in arm posture matching.
Collapse
Affiliation(s)
- Valeria C Peviani
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - Manon G A Joosten
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - Luke E Miller
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Center for CognitionRadboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Héroux ME, Fisher G, Axelson LH, Butler AA, Gandevia SC. How we perceive the width of grasped objects: Insights into the central processes that govern proprioceptive judgements. J Physiol 2024; 602:2899-2916. [PMID: 38734987 DOI: 10.1113/jp286322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Low-level proprioceptive judgements involve a single frame of reference, whereas high-level proprioceptive judgements are made across different frames of reference. The present study systematically compared low-level (grasp → $\rightarrow$ grasp) and high-level (vision → $\rightarrow$ grasp, grasp → $\rightarrow$ vision) proprioceptive tasks, and quantified the consistency of grasp → $\rightarrow$ vision and possible reciprocal nature of related high-level proprioceptive tasks. Experiment 1 (n = 30) compared performance across vision → $\rightarrow$ grasp, a grasp → $\rightarrow$ vision and a grasp → $\rightarrow$ grasp tasks. Experiment 2 (n = 30) compared performance on the grasp → $\rightarrow$ vision task between hands and over time. Participants were accurate (mean absolute error 0.27 cm [0.20 to 0.34]; mean [95% CI]) and precise (R 2 $R^2$ = 0.95 [0.93 to 0.96]) for grasp → $\rightarrow$ grasp judgements, with a strong correlation between outcomes (r = -0.85 [-0.93 to -0.70]). Accuracy and precision decreased in the two high-level tasks (R 2 $R^2$ = 0.86 and 0.89; mean absolute error = 1.34 and 1.41 cm), with most participants overestimating perceived width for the vision → $\rightarrow$ grasp task and underestimating it for grasp → $\rightarrow$ vision task. There was minimal correlation between accuracy and precision for these two tasks. Converging evidence indicated performance was largely reciprocal (inverse) between the vision → $\rightarrow$ grasp and grasp → $\rightarrow$ vision tasks. Performance on the grasp → $\rightarrow$ vision task was consistent between dominant and non-dominant hands, and across repeated sessions a day or week apart. Overall, there are fundamental differences between low- and high-level proprioceptive judgements that reflect fundamental differences in the cortical processes that underpin these perceptions. Moreover, the central transformations that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. KEY POINTS: Low-level proprioceptive judgements involve a single frame of reference (e.g. indicating the width of a grasped object by selecting from a series of objects of different width), whereas high-level proprioceptive judgements are made across different frames of reference (e.g. indicating the width of a grasped object by selecting from a series of visible lines of different length). We highlight fundamental differences in the precision and accuracy of low- and high-level proprioceptive judgements. We provide converging evidence that the neural transformations between frames of reference that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. This stability is likely key to precise judgements and accurate predictions in high-level proprioception.
Collapse
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| | - Georgia Fisher
- Neuroscience Research Australia, Randwick, Australia
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, Australia
| | | | - Annie A Butler
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Mirdamadi JL, Ting LH, Borich MR. Distinct Cortical Correlates of Perception and Motor Function in Balance Control. J Neurosci 2024; 44:e1520232024. [PMID: 38413231 PMCID: PMC11007305 DOI: 10.1523/jneurosci.1520-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation β power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation β power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lena H Ting
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
4
|
Tsay JS, Asmerian H, Germine LT, Wilmer J, Ivry RB, Nakayama K. Large-scale citizen science reveals predictors of sensorimotor adaptation. Nat Hum Behav 2024; 8:510-525. [PMID: 38291127 DOI: 10.1038/s41562-023-01798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Sensorimotor adaptation is essential for keeping our movements well calibrated in response to changes in the body and environment. For over a century, researchers have studied sensorimotor adaptation in laboratory settings that typically involve small sample sizes. While this approach has proved useful for characterizing different learning processes, laboratory studies are not well suited for exploring the myriad of factors that may modulate human performance. Here, using a citizen science website, we collected over 2,000 sessions of data on a visuomotor rotation task. This unique dataset has allowed us to replicate, reconcile and challenge classic findings in the learning and memory literature, as well as discover unappreciated demographic constraints associated with implicit and explicit processes that support sensorimotor adaptation. More generally, this study exemplifies how a large-scale exploratory approach can complement traditional hypothesis-driven laboratory research in advancing sensorimotor neuroscience.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Hrach Asmerian
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ken Nakayama
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Wali M, Block HJ. Expanding the framework of proprioception: a comment on Héroux et al. J Appl Physiol (1985) 2024; 136:509-510. [PMID: 38423518 DOI: 10.1152/japplphysiol.00880.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Affiliation(s)
- Manasi Wali
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, United States
| | - Hannah J Block
- Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, United States
| |
Collapse
|
6
|
Darling WG, Zuck BI, Mikhail L, Adhikari J. Proprioceptive acuity for landmarks on the hand and digits. Exp Brain Res 2024; 242:491-503. [PMID: 38193947 DOI: 10.1007/s00221-023-06761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Previous work using visually guided reaches to localize landmarks on a hidden hand has suggested that proprioceptive acuity for hand targets is low and representation of hand dimensions is highly distorted (e.g., hand width estimated to be 60% wider than actual hand width). We re-examined these issues using a pure proprioceptive task in which 20 blindfolded subjects reached in a single movement without terminal corrections to touch the right index-tip to landmarks of the left hand placed in various locations in 3D space. Subjects were also tested with vision allowed to estimate minimal errors. Based on previous reports of high proprioceptive acuity for some hand landmarks, we hypothesized that the proprioceptive representation of the hand was much less distorted than described previously and that errors were not correlated with target hand location. Mean distance errors in proprioceptively guided reaches to the landmarks averaged less than 3 cm and were only 0.5-1.3 cm larger than when vision was allowed. Errors were not correlated with hand location in most subjects. Distortions of hand width averaged less than 20% wider than actual width and were not correlated with hand location in most subjects. We conclude that relatively accurate proprioceptive awareness of locations of hand/digit structures and dimensions is available for use in control of hand movements, which are executed largely subconsciously. Studying acuity of proprioception using conscious perceptual tasks and involving vision may not provide accurate measures of proprioceptive acuity as used by the motor system.
Collapse
Affiliation(s)
- Warren G Darling
- Department of Health and Human Physiology, Motor Control Laboratory, University of Iowa, Iowa City, IA, 52242, USA.
| | - Bennett I Zuck
- Department of Health and Human Physiology, Motor Control Laboratory, University of Iowa, Iowa City, IA, 52242, USA
| | - Lavena Mikhail
- Department of Health and Human Physiology, Motor Control Laboratory, University of Iowa, Iowa City, IA, 52242, USA
| | - Jharna Adhikari
- Department of Health and Human Physiology, Motor Control Laboratory, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
Mirdamadi JL, Ting LH, Borich MR. Distinct cortical correlates of perception and motor function in balance control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554282. [PMID: 37662247 PMCID: PMC10473579 DOI: 10.1101/2023.08.22.554282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Fluctuations in brain state alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance control, we recently showed that evoked brain activity is associated with balance ability in healthy young individuals. Further, in individuals with Parkinson's disease, impairments in whole-body motion perception in reactive balance are associated with clinical balance impairment. Here we investigated brain activity during whole-body motion perception in reactive balance in healthy young adults. We hypothesized that flexibility in brain states underlies successful perception and movement during whole-body movement. We characterized two cortical sensorimotor signals using electroencephalography localized to the supplementary motor area: 1) the "N1 response", a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function; and 2) pre-perturbation beta oscillatory activity, a rhythm that favors maintenance of the current sensorimotor state and is inversely associated with perception in seated somatosensory perceptual tasks. In a two-alternative forced choice task, participants judged whether pairs of backward support-surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, pre-perturbation beta power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Taken together, flexibility in different cortical processes influences perceptual accuracy but have distinct associations with balance and perceptual ability.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lena H. Ting
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Michael R. Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Phataraphruk P, Rahman Q, Lakshminarayanan K, Fruchtman M, Buneo CA. Posture dependent factors influence movement variability when reaching to nearby virtual objects. Front Neurosci 2022; 16:971382. [PMID: 36389217 PMCID: PMC9641121 DOI: 10.3389/fnins.2022.971382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2023] Open
Abstract
Reaching movements are subject to noise arising during the sensing, planning and execution phases of movement production, which contributes to movement variability. When vision of the moving hand is available, reach endpoint variability appears to be strongly influenced by internal noise associated with the specification and/or online updating of movement plans in visual coordinates. In contrast, without hand vision, endpoint variability appears more dependent upon movement direction, suggesting a greater influence of execution noise. Given that execution noise acts in part at the muscular level, we hypothesized that reaching variability should depend not only on movement direction but initial arm posture as well. Moreover, given that the effects of execution noise are more apparent when hand vision is unavailable, we reasoned that postural effects would be more evident when visual feedback was withheld. To test these hypotheses, participants planned memory-guided reaching movements to three frontal plane targets using one of two initial arm postures ("adducted" or "abducted"), attained by rotating the arm about the shoulder-hand axis. In this way, variability was examined for two sets of movements that were largely identical in endpoint coordinates but different in joint/muscle-based coordinates. We found that patterns of reaching variability differed in several respects when movements were initiated with different arm postures. These postural effects were evident shortly after movement onset, near the midpoints of the movements, and again at the endpoints. At the endpoints, posture dependent effects interacted with effects of visual feedback to determine some aspects of variability. These results suggest that posture dependent execution noise interacts with feedback control mechanisms and biomechanical factors to determine patterns of reach endpoint variability in 3D space.
Collapse
Affiliation(s)
| | | | | | | | - Christopher A. Buneo
- Visuomotor Learning Laboratory, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Extracurricular sports activities modify the proprioceptive map in children aged 5-8 years. Sci Rep 2022; 12:9338. [PMID: 35665769 PMCID: PMC9167298 DOI: 10.1038/s41598-022-13565-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
The Chinese government has recently issued the strictest ever guideline to improve the compulsory education system. The new policy aims at reducing the burden of excessive homework and supplementary tutoring, whilst promoting extracurricular activities, including sports and arts, for primary and junior middle school students. To examine the impact that this reform might have on sensory development—which is critical for higher-order cognitive functions—we assessed proprioceptive abilities in children from 5 to 8 years of age. Proprioception refers to sensations of position and motion of the body in space and is mediated by activity in somatosensory and prefrontal cortical areas. By asking participants to perform position matching tasks in the forward–backward directions, we were able to compare the proprioceptive maps of children with and without regular sports training. We demonstrate that extracurricular sports activities can modify the proprioceptive map and improve proprioceptive acuity and stability in school-aged children.
Collapse
|
10
|
Rand MK, Ringenbach SDR. Delay of gaze fixation during reaching movement with the non-dominant hand to a distant target. Exp Brain Res 2022; 240:1629-1647. [PMID: 35366070 DOI: 10.1007/s00221-022-06357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
The present study examined the effects of hand and task difficulty on eye-hand coordination related to gaze fixation behavior (i.e., fixating a gaze to the target until reach completion) in single reaching movements. Twenty right-handed young adults made reaches on a digitizer, while looking at a visual target and feedback of hand movements on a computer monitor. Task difficulty was altered by having three target distances. In a small portion of trials, visual feedback was randomly removed at the target presentation. The effect of a moderate amount of practice was also examined using a randomized trial schedule across target-distance and visual-feedback conditions in each hand. The results showed that the gaze distances covered during the early reaching phase were reduced, and the gaze fixation to the target was delayed when reaches were performed with the left hand and when the target distance increased. These results suggest that when the use of the non-dominant hand or an increased task difficulty reduces the predictability of hand movements and its sensory consequences, eye-hand coordination is modified to enhance visual monitoring of the reach progress prior to gaze fixation. The randomized practice facilitated this process. Nevertheless, variability of reach trajectory was more increased without visual feedback for right-hand reaches, indicating that control of the dominant arm integrates more visual feedback information during reaches. These results together suggest that the earlier gaze fixation and greater integration of visual feedback during right-hand reaches contribute to the faster and more accurate performance in the final reaching phase.
Collapse
Affiliation(s)
- Miya K Rand
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| | | |
Collapse
|
11
|
Heroux ME, Butler AA, Robertson LS, Fisher G, Gandevia SC. Proprioception: a new look at an old concept. J Appl Physiol (1985) 2022; 132:811-814. [PMID: 35142561 DOI: 10.1152/japplphysiol.00809.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprioception, which can be defined as the awareness of the mechanical and spatial state of the body and its musculoskeletal parts, is critical to motor actions and contributes to our sense of body ownership. To date, clinical proprioceptive tests have focused on a person's ability to detect, discriminate or match limb positions or movements, and reveal that the strength of the relationship between deficits in proprioception and physical function varies widely. Unfortunately, these tests fail to assess higher-level proprioceptive abilities. In this Perspective, we propose that to understand fully the link between proprioception and function, we need to look beyond traditional clinical tests of proprioception. Specifically, we present a novel framework for human proprioception assessment that is divided into two categories: low-level and high-level proprioceptive judgments. Low-level judgments are those made in a single frame of reference and are the types of judgments made in traditional proprioceptive tests (i.e. detect, discriminate or match). High-level proprioceptive abilities involve proprioceptive judgments made in a different frame of reference. For example, when a person indicates where their hand is located in space. This framework acknowledges that proprioception is complex and multifaceted, and that tests of proprioception should not be viewed as interchangeable, but rather as complimentary. Crucially, it provides structure to the way researchers and clinicians can approach proprioception and its assessment. We hope this Perspective serves as the catalyst for discussion and new lines of investigation.
Collapse
Affiliation(s)
- Martin E Heroux
- Neuroscience Research Australia, Sydney, NSW, Australia.,University of New South Wales, School of Medical Sciences, Kensington, NSW, Australia
| | - Annie A Butler
- Neuroscience Research Australia, Sydney, NSW, Australia.,University of New South Wales, School of Medical Sciences, Kensington, NSW, Australia
| | - Lucy S Robertson
- Neuroscience Research Australia, Sydney, NSW, Australia.,University of New South Wales, School of Medical Sciences, Kensington, NSW, Australia
| | | | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, NSW, Australia.,University of New South Wales, Clinical School, NSW, Australia
| |
Collapse
|
12
|
Isaacs MW, Buxbaum LJ, Wong AL. Proprioception-based movement goals support imitation and are disrupted in apraxia. Cortex 2022; 147:140-156. [PMID: 35033899 PMCID: PMC8852218 DOI: 10.1016/j.cortex.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
The ability to imitate observed actions serves as an efficient method for learning novel movements and is specifically impaired (without concomitant gross motor impairments) in the neurological disorder of limb apraxia, a disorder common after left hemisphere stroke. Research with apraxic patients has advanced our understanding of how people imitate. However, the role of proprioception in imitation has been rarely assessed directly. Prior work has proposed that proprioceptively sensed body position is transformed into a visual format, supporting the attainment of a desired imitation goal represented visually (i.e., how the movement should look when performed). In contrast, we hypothesized a more direct role for proprioception: we suggest that movement goals are also represented proprioceptively (i.e., how a desired movement should feel when performed), and the ability to represent or access such proprioceptive goals is deficient in apraxia. Using a novel imitation task in which a robot cued meaningless trajectories proprioceptively or visually, we probed the role of each sensory modality. We found that patients with left hemisphere stroke were disproportionately worse than controls at imitating when cued proprioceptively versus visually. This proprioceptive versus visual disparity was associated with apraxia severity as assessed by a traditional imitation task, but could not be explained by general proprioceptive impairment or speed-accuracy trade-offs. These data suggest that successful imitation depends in part on the ability to represent movement goals in terms of how those movements should feel, and that deficits in this ability contribute to imitation impairments in patients with apraxia.
Collapse
Affiliation(s)
| | | | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| |
Collapse
|
13
|
Passive Proprioceptive Training Alters the Sensitivity of Muscle Spindles to Imposed Movements. eNeuro 2022; 9:ENEURO.0249-21.2021. [PMID: 35022185 PMCID: PMC8805769 DOI: 10.1523/eneuro.0249-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Humans rely on precise proprioceptive feedback from our muscles, which is important in both the acquisition and execution of movements, to perform daily activities. Somatosensory input from the body shapes motor learning through central processes, as demonstrated for tasks using the arm, under active (self-generated) and passive conditions. Presently, we investigated whether passive movement training of the ankle increased proprioceptive acuity (psychophysical experiment) and whether it changed the peripheral proprioceptive afferent signal (microneurography experiment). In the psychophysical experiment, the ankle of 32 healthy human participants was moved passively using pairs of ramp-and-hold movements in different directions. In a pretraining test, participants made judgements about the movement direction in a two-alternative forced choice paradigm. Participants then underwent passive movement training, but only half were cued for learning, where a reference position was signaled by a sound and the participant had to learn to recognize this position; they then completed a post-training test. In a paradigm using the same setup, nine healthy participants underwent microneurography recordings of Ia muscle afferents from the peroneal nerve, where all were cued during training. In the psychophysical experiment, proprioceptive acuity improved with training only in the cued group. In the microneurography experiment, we found that muscle afferent firing was modulated, via an increase in the dynamic index, after training. We suggest that changes in muscle afferent input from the periphery can contribute to and support central perceptual and motor learning, as shown under passive conditions using ankle movements, which may be exploited for movement rehabilitation.
Collapse
|
14
|
Takai A, Lisi G, Noda T, Teramae T, Imamizu H, Morimoto J. Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training. Front Neurosci 2021; 15:704402. [PMID: 34744603 PMCID: PMC8567031 DOI: 10.3389/fnins.2021.704402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Improving human motor performance via physical guidance by an assist robot device is a major field of interest of the society in many different contexts, such as rehabilitation and sports training. In this study, we propose a Bayesian estimation method to predict whether motor performance of a user can be improved or not by the robot guidance from the user's initial skill level. We designed a robot-guided motor training procedure in which subjects were asked to generate a desired circular hand movement. We then evaluated the tracking error between the desired and actual subject's hand movement. Results showed that we were able to predict whether a novel user can reduce the tracking error after the robot-guided training from the user's initial movement performance by checking whether the initial error was larger than a certain threshold, where the threshold was derived by using the proposed Bayesian estimation method. Our proposed approach can potentially help users to decide if they should try a robot-guided training or not without conducting the time-consuming robot-guided movement training.
Collapse
Affiliation(s)
- Asuka Takai
- Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Mechanical and Physical Engineering Course, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Giuseppe Lisi
- Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Tomoyuki Noda
- Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Tatsuya Teramae
- Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Hiroshi Imamizu
- Department of Psychology, The University of Tokyo, Tokyo, Japan
- Department of Cognitive Neuroscience, Brain Information Communication Research Laboratory Group, ATR, Kyoto, Japan
| | - Jun Morimoto
- Department of Brain Robot Interface, Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Maimon-Mor RO, Schone HR, Henderson Slater D, Faisal AA, Makin TR. Early life experience sets hard limits on motor learning as evidenced from artificial arm use. eLife 2021; 10:66320. [PMID: 34605407 PMCID: PMC8523152 DOI: 10.7554/elife.66320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The study of artificial arms provides a unique opportunity to address long-standing questions on sensorimotor plasticity and development. Learning to use an artificial arm arguably depends on fundamental building blocks of body representation and would therefore be impacted by early life experience. We tested artificial arm motor-control in two adult populations with upper-limb deficiencies: a congenital group—individuals who were born with a partial arm, and an acquired group—who lost their arm following amputation in adulthood. Brain plasticity research teaches us that the earlier we train to acquire new skills (or use a new technology) the better we benefit from this practice as adults. Instead, we found that although the congenital group started using an artificial arm as toddlers, they produced increased error noise and directional errors when reaching to visual targets, relative to the acquired group who performed similarly to controls. However, the earlier an individual with a congenital limb difference was fitted with an artificial arm, the better their motor control was. Since we found no group differences when reaching without visual feedback, we suggest that the ability to perform efficient visual-based corrective movements is highly dependent on either biological or artificial arm experience at a very young age. Subsequently, opportunities for sensorimotor plasticity become more limited.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Laboratory of Brain & Cognition, NIMH, National Institutes of Health, Bethesda, United States
| | | | - A Aldo Faisal
- Departments of Bioengineering and of Computing, Imperial College London, London, United Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
16
|
Herter TM, Kurtzer I, Granat L, Crevecoeur F, Dukelow SP, Scott SH. Interjoint coupling of position sense reflects sensory contributions of biarticular muscles. J Neurophysiol 2021; 125:1223-1235. [PMID: 33502932 DOI: 10.1152/jn.00317.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand (x, y) and joint (shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm to different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors.NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors.
Collapse
Affiliation(s)
- Troy M Herter
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Isaac Kurtzer
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical Sciences, New York Institute of Technology, New York City, New York
| | - Lauren Granat
- Department of Biomedical Sciences, New York Institute of Technology, New York City, New York
| | - Frédéric Crevecoeur
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Institute of Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sean P Dukelow
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Stephen H Scott
- Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
17
|
Kitchen NM, Miall RC. Adaptation of reach action to a novel force-field is not predicted by acuity of dynamic proprioception in either older or younger adults. Exp Brain Res 2020; 239:557-574. [PMID: 33315127 PMCID: PMC7936968 DOI: 10.1007/s00221-020-05997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Healthy ageing involves degeneration of the neuromuscular system which impacts movement control and proprioception. Yet the relationship between these sensory and motor deficits in upper limb reaching has not been examined in detail. Recently, we reported that age-related proprioceptive deficits were unrelated to accuracy in rapid arm movements, but whether this applied in motor tasks more heavily dependent on proprioceptive feedback was not clear. To address this, we have tested groups of younger and older adults on a force-field adaptation task under either full or limited visual feedback conditions and examined how performance was related to dynamic proprioceptive acuity. Adaptive performance was similar between the age groups, regardless of visual feedback condition, although older adults showed increased after-effects. Physically inactive individuals made larger systematic (but not variable) proprioceptive errors, irrespective of age. However, dynamic proprioceptive acuity was unrelated to adaptation and there was no consistent evidence of proprioceptive recalibration with adaptation to the force-field for any group. Finally, in spite of clear age-dependent loss of spatial working memory capacity, we found no relationship between memory capacity and adaptive performance or proprioceptive acuity. Thus, non-clinical levels of deficit in dynamic proprioception, due to age or physical inactivity, do not affect force-field adaptation, even under conditions of limited visual feedback that might require greater proprioceptive control.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
Zhou Q, Yu D, Reinoso MN, Newn J, Goncalves J, Velloso E. Eyes-free Target Acquisition During Walking in Immersive Mixed Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3423-3433. [PMID: 32941144 DOI: 10.1109/tvcg.2020.3023570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reaching towards out-of-sight objects during walking is a common task in daily life, however the same task can be challenging when wearing immersive Head-Mounted Displays (HMD). In this paper, we investigate the effects of spatial reference frame, walking path curvature, and target placement relative to the body on user performance of manually acquiring out-of-sight targets located around their bodies, as they walk in a spatial-mapping Mixed Reality (MR) environment wearing an immersive HMD. We found that walking and increased path curvature negatively affected the overall spatial accuracy of the performance, and that the performance benefited more from using the torso as the reference frame than the head. We also found that targets placed at maximum reaching distance yielded less error in angular rotation and depth of the reaching arm. We discuss our findings with regard to human walking kinesthetics and the sensory integration in the peripersonal space during locomotion in immersive MR. We provide design guidelines for future immersive MR experience featuring spatial mapping and full-body motion tracking to provide better embodied experience.
Collapse
|
19
|
Accuracy of hand localization is subject-specific and improved without performance feedback. Sci Rep 2020; 10:19188. [PMID: 33154521 PMCID: PMC7645785 DOI: 10.1038/s41598-020-76220-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Accumulating evidence indicates that the spatial error of human's hand localization appears subject-specific. However, whether the idiosyncratic pattern persists across time with good within-subject consistency has not been adequately examined. Here we measured the hand localization map by a Visual-matching task in multiple sessions over 2 days. Interestingly, we found that participants improved their hand localization accuracy when tested repetitively without performance feedback. Importantly, despite the reduction of average error, the spatial pattern of hand localization errors remained idiosyncratic. Based on individuals' hand localization performance, a standard convolutional neural network classifier could identify participants with good accuracy. Moreover, we did not find supporting evidence that participants' baseline hand localization performance could predict their motor performance in a visual Trajectory-matching task even though both tasks require accurate mapping of hand position to visual targets in the same workspace. Using a separate experiment, we not only replicated these findings but also ruled out the possibility that performance feedback during a few familiarization trials caused the observed improvement in hand localization. We conclude that the conventional hand localization test itself, even without feedback, can improve hand localization but leave the idiosyncrasy of hand localization map unchanged.
Collapse
|
20
|
Peviani V, Bottini G. Proprioceptive errors in the localization of hand landmarks: What can be learnt about the hand metric representation? PLoS One 2020; 15:e0236416. [PMID: 32735572 PMCID: PMC7394425 DOI: 10.1371/journal.pone.0236416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
Proprioception acquires a crucial role in estimating the configuration of our body segments in space when visual information is not available. Proprioceptive accuracy is assessed by asking participants to match the perceived position of an unseen body landmark through reaching movements. This task was also adopted to study the perceived hand structure by computing the relative distances between averaged proprioceptive judgments (hand Localization Task). However, the pattern of proprioceptive errors leading to the misperceived hand structure is unexplored. Here, we aimed to characterize this pattern across different hand landmarks, having different anatomo-physiological properties and cortical representations. Furthermore, we sought to describe the error consistency and its stability over time. To this purpose, we analyzed the proprioceptive errors of 43 healthy participants during the hand Localization Task. We found larger but more consistent errors for the fingertips compared to the knuckles, possibly due to poorer proprioceptive signal, compensated by other sources of spatial information. Furthermore, we found a shift (overlap effect) and a temporal drift of the hand perceived position towards the shoulder of origin, which was consistent within and between subjects. The overlap effect had a greater influence on lateral compared to medial landmarks, leading to the hand width overestimation. Our results are compatible with domain-general and body-specific spatial biases affecting the proprioceptive localization of the hand landmarks, thus the apparent hand structure misperception.
Collapse
Affiliation(s)
- Valeria Peviani
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Gabriella Bottini
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Cognitive Neuropsychology Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- NeuroMI, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
21
|
Judgements of hand location and hand spacing show minimal proprioceptive drift. Exp Brain Res 2020; 238:1759-1767. [PMID: 32462377 DOI: 10.1007/s00221-020-05836-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
With a visual memory of where our hands are, their perceived location drifts. We investigated whether the perceived location of one hand or the spacing between two hands drifts in the absence of visual memories or cues. In 30 participants (17 females, mean age 27 years, range 20-45 years), perceived location of the right index finger was assessed when it was 10 cm to the right or left of the midline. Perceived spacing between the index fingers was assessed when they were spaced 20 cm apart, centred on the midline. Testing included two conditions, one with ten measures at 30 s intervals and another where a 3 min delay was introduced after the fifth measure. Participants responded by selecting a point on a ruler or a line from a series of lines of different lengths. Overall, participants mislocalised their hands closer to the midline. However, there was little to no drift in perceived index finger location when measures were taken at regular intervals (ipsilateral slope: 0.073 cm/measure [[Formula: see text] to 0.160], mean [99% CI]; contralateral slope: 0.045 cm/measure [[Formula: see text] to 0.120]), or across a 3 min delay (ipsilateral: ([Formula: see text] cm [[Formula: see text] to 0.17]; contralateral: [Formula: see text] cm [[Formula: see text] to 0.24]). There was a slight drift in perceived spacing when measures were taken at regular intervals (slope: [Formula: see text] cm/measure [[Formula: see text] to [Formula: see text]]), but none across a 3 min delay (0.08 cm [[Formula: see text] to 1.24]). Thus, proprioceptive-based perceptions of where our hands are located or how they are spaced drift minimally or not at all, indicating these perceptions are stable.
Collapse
|
22
|
Mirdamadi JL, Block HJ. Somatosensory changes associated with motor skill learning. J Neurophysiol 2020; 123:1052-1062. [DOI: 10.1152/jn.00497.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function ( F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention ( t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training ( F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function. NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Hannah J. Block
- Program in Neuroscience, Indiana University, Bloomington, Indiana
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| |
Collapse
|
23
|
Galofaro E, Ballardini G, Boggini S, Foti F, Nisky I, Casadio M. Assessment of bimanual proprioception during an orientation matching task with a physically coupled object. IEEE Int Conf Rehabil Robot 2020; 2019:101-107. [PMID: 31374614 DOI: 10.1109/icorr.2019.8779415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assessing proprioception is important for understanding and treating sensorimotor impairments. Many daily tasks require bimanual manipulation of objects, but state of the art methods for the assessment of proprioception are far away from bimanual activities, and instead evaluate sensorimotor integrity in oversimplified and often unimanual goal-directed tasks. Here, we developed a new device and method to assess proprioception and force production by simulating a realistic bimanual behavior. Twelve healthy participants held a physically coupled object - a sensorized box - and matched target orientations about the three principal axes without and with added weights. Our preliminary findings indicate that bimanual proprioception during orientation matching depends on the axis of rotation. For example, in rotations about the lateral axis of the body, underestimation and overestimation of the target angle depends on its orientation in a body-centered reference frame: participants tended to underestimate targets that required rotation far away from the body and overestimated angles that required rotation towards the body. We also found that for the same rotation axis, the larger were the rotations, the higher was the force applied. Moreover, we also found that fatigue causes undershoot in orientation matching. In the future, this tool could be adopted for assessment and treatment of sensorimotor deficits in bimanual functional tasks.
Collapse
|
24
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task. IEEE Int Conf Rehabil Robot 2019; 2019:1019-1024. [PMID: 31374763 DOI: 10.1109/icorr.2019.8779552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Innovative research in the fields of prosthetic, neurorehabilitation, motor control and human physiology has been focusing on the study of proprioception, the sense through which we perceive the position and movement of our body, and great achievements have been obtained regarding its assessment and characterization. However, how proprioceptive signals are combined with other sensory modalities and processed by the central nervous system to form a conscious body image, is still unknown. Such a crucial question was addressed in this study, which involved 23 healthy subjects, by combining a robot-based proprioceptive test with a specific analysis of electroencephalographic activity (EEG) in the $\mu$ frequency band (8-12 Hz). We observed important activation in the motor area contralateral to the moving hand, and besides, a substantial bias in brain activation and proprioceptive acuity when visual feedback was provided in addition to the proprioceptive information during movement execution. In details, brain activation and proprioceptive acuity were both higher in case of movements performed with visual feedback. Remarkably, we also found a correlation between the level of activation in the brain motor area contralateral to the moving hand and the value of proprioceptive acuity.
Collapse
|
25
|
Sadler CM, Cressman EK. Central fatigue mechanisms are responsible for decreases in hand proprioceptive acuity following shoulder muscle fatigue. Hum Mov Sci 2019; 66:220-230. [PMID: 31071614 DOI: 10.1016/j.humov.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Muscle fatigue is a complex phenomenon, consisting of central and peripheral mechanisms which contribute to local and systemic changes in motor performance. In particular, it has been demonstrated that afferent processing in the fatigued muscle (e.g., shoulder), as well as in surrounding or distal muscles (e.g., hand) can be altered by fatigue. Currently, it is unclear how proximal muscle fatigue affects proprioceptive acuity of the distal limb. The purpose of the present study was to assess the effects of shoulder muscle fatigue on participants' ability to judge the location of their hand using only proprioceptive cues. Participants' (N = 16) limbs were moved outwards by a robot manipulandum and they were instructed to estimate the position of their hand relative to one of four visual reference targets (two near, two far). This estimation task was completed before and after a repetitive pointing task was performed to fatigue the shoulder muscles. To assess central versus peripheral effects of fatigue on the distal limb, the right shoulder was fatigued and proprioceptive acuity of the left and right hands were tested. Results showed that there was a significant decrease in the accuracy of proprioceptive estimates for both hands after the right shoulder was fatigued, with no change in the precision of proprioceptive estimates. A control experiment (N = 8), in which participants completed the proprioceptive estimation task before and after a period of quiet sitting, ruled out the possibility that the bilateral changes in proprioceptive accuracy were due to a practice effect. Together, these results indicate that shoulder muscle fatigue decreases proprioceptive acuity in both hands, suggesting that central fatigue mechanisms are primarily responsible for changes in afferent feedback processing of the distal upper limb.
Collapse
|
26
|
The hidden hand is perceived closer to midline. Exp Brain Res 2019; 237:1773-1779. [PMID: 31037326 DOI: 10.1007/s00221-019-05546-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Whether visible or not, knowing the location of our hands is fundamental to how we perceive ourselves and interact with our environment. The present study investigated perceived hand location in the absence of vision in 30 participants. Their right index finger was placed 10, 20 or 30 cm away on either side of the body midline, with and without their left index finger placed 10 cm to the left of the right index. On average, at each position, participants perceived their right hand closer to the body midline than it actually was. This underestimation increased linearly with increased distance of the hand from body midline [slope 0.77 (0.74 to 0.81), mean (95% CI)]. Participants made smaller errors in perceived hand location when the right hand was in the contralateral workspace [mean difference 2.13 cm (1.57 to 2.69)]. Presence of the left hand on the support surface had little or no effect on perceived location of the right hand [mean difference [Formula: see text] cm ([Formula: see text] to 0.02)]. Overall, participants made systematic perceptual errors immediately after hand placement. The magnitude of these errors grew linearly as the hand got further away from the body midline. Because of their magnitude, these errors may contribute to errors in motor planning when visual feedback is not available. Also, these errors are important for studies in which perceived hand location is assessed after some time, for example, when studying illusions of body ownership and proprioceptive drift.
Collapse
|
27
|
Rand MK, Heuer H. Effects of Hand and Hemispace on Multisensory Integration of Hand Position and Visual Feedback. Front Psychol 2019; 10:237. [PMID: 30809172 PMCID: PMC6379332 DOI: 10.3389/fpsyg.2019.00237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Abstract
The brain generally integrates a multitude of sensory signals to form a unified percept. Even in cursor control tasks, such as reaching while looking at rotated visual feedback on a monitor, visual information on cursor position and proprioceptive information on hand position are partially integrated (sensory coupling), resulting in mutual biases of the perceived positions of cursor and hand. Previous studies showed that the strength of sensory coupling (sum of the mutual biases) depends on the experience of kinematic correlations between hand movements and cursor motions, whereas the asymmetry of sensory coupling (difference between the biases) depends on the relative reliabilities (inverse of variability) of hand-position and cursor-position estimates (reliability rule). Furthermore, the precision of movement control and perception of hand position are known to differ between hands (left, right) and workspaces (ipsilateral, contralateral), and so does the experience of kinematic correlations from daily life activities. Thus, in the present study, we tested whether strength and asymmetry of sensory coupling for the endpoints of reaches in a cursor control task differ between the right and left hand and between ipsilateral and contralateral hemispace. No differences were found in the strength of sensory coupling between hands or between hemispaces. However, asymmetry of sensory coupling was less in ipsilateral than in contralateral hemispace: in ipsilateral hemispace, the bias of the perceived hand position was reduced, which was accompanied by a smaller variability of the estimates. The variability of position estimates of the dominant right hand was also less than for the non-dominant left hand, but this difference was not accompanied by a difference in the asymmetry of sensory coupling – a violation of the reliability rule, probably due a stronger influence of visual information on right-hand movements. According to these results, the long-term effects of the experienced kinematic correlation between hand movements and cursor motions on the strength of sensory coupling are generic and not specific for hemispaces or hands, whereas the effects of relative reliabilities on the asymmetry of sensory coupling are specific for hemispaces but not for hands.
Collapse
Affiliation(s)
- Miya K Rand
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund (IfADo), Dortmund, Germany
| | - Herbert Heuer
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
28
|
Kitchen NM, Miall RC. Proprioceptive deficits in inactive older adults are not reflected in fast targeted reaching movements. Exp Brain Res 2019; 237:531-545. [PMID: 30478636 PMCID: PMC6373199 DOI: 10.1007/s00221-018-5440-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
During normal healthy ageing there is a decline in the ability to control simple movements, characterised by increased reaction times, movement durations and variability. There is also growing evidence of age-related proprioceptive loss which may contribute to these impairments. However, this relationship has not been studied in detail for the upper limb. We recruited 20 younger adults (YAs) and 31 older adults (OAs) who each performed 2 tasks on a 2D robotic manipulandum. The first assessed dynamic proprioceptive acuity using active, multi-joint movements constrained by the robot to a pre-defined path. Participants made perceptual judgements of the lateral position of the unseen arm. The second task required fast, accurate and discrete movements to the same targets in the absence of visual feedback of the hand, and without robotic intervention. We predicted that the variable proprioceptive error (uncertainty range) assessed in Task 1 would be increased in physically inactive OAs and would predict increased movement variability in Task 2. Instead we found that physically inactive OAs had larger systematic proprioceptive errors (bias) than YAs (t[33] = 2.8, p = 0.009), and neither proprioceptive uncertainty nor bias was related to motor performance in either age group (all regression model R2 ≤ 0.06). We suggest that previously reported estimates of proprioceptive decline with ageing may be exaggerated by task demands and that the extent of these deficits is unrelated to control of discrete, rapid movement. The relationship between dynamic proprioceptive acuity and movement control in other tasks with greater emphasis on online feedback is still unclear and warrants further investigation.
Collapse
Affiliation(s)
- Nick M Kitchen
- School of Psychology, University of Birmingham, Birmingham, UK.
- Department of Speech and Hearing Science, University of Washington, Seattle, WA, USA.
| | - R Chris Miall
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Ingram LA, Butler AA, Gandevia SC, Walsh LD. Proprioceptive measurements of perceived hand position using pointing and verbal localisation tasks. PLoS One 2019; 14:e0210911. [PMID: 30653568 PMCID: PMC6336330 DOI: 10.1371/journal.pone.0210911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022] Open
Abstract
Previous studies revealed that healthy individuals consistently misjudge the size and shape of their hidden hand during a localisation task. Specifically, they overestimate the width of their hand and underestimate the length of their fingers. This would also imply that the same individuals misjudge the actual location of at least some parts of their hand during the task. Therefore, the primary aim of the current study was to determine whether healthy individuals could accurately locate the actual position of their hand when hidden from view, and whether accuracy depends on the type of localisation task used, the orientation of the hidden hand, and whether the left or right hand is tested. Sixteen healthy right-handed participants performed a hand localisation task that involved both pointing to and verbally indicating the perceived position of landmarks on their hidden hand. Hand position was consistently misjudged as closer to the wrist (proximal bias) and, to a lesser extent, away from the thumb (ulnar bias). The magnitude of these biases depended on the localisation task (pointing vs. verbal), the orientation of the hand (straight vs. rotated), and the hand tested (left vs. right). Furthermore, the proximal location bias increased in size as the duration of the experiment increased, while the magnitude of ulnar bias remained stable through the experiment. Finally, the resultant maps of perceived hand location appear to replicate the previously reported overestimation of hand width and underestimation of finger length. Once again, the magnitude of these distortions is dependent on the task, orientation, and hand tested. These findings underscore the need to control and standardise each component of the hand localisation task in future studies.
Collapse
Affiliation(s)
- Lewis A. Ingram
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Annie A. Butler
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Lee D. Walsh
- Platypus Technical Consultants Pty Ltd, Canberra, Australia
| |
Collapse
|
30
|
Logan LM, Semrau JA, Cluff T, Scott SH, Dukelow SP. Effort matching between arms depends on relative limb geometry and personal control. J Neurophysiol 2018; 121:459-470. [PMID: 30540499 DOI: 10.1152/jn.00346.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprioception encompasses our sense of position and movement of our limbs, as well as the effort with which we engage in voluntary actions. Historically, sense of effort has been linked to centrally generated signals that elicit voluntary movements. We were interested in determining the effect of differences in limb geometry and personal control on sense of effort. In experiment 1, subjects exerted either extension or flexion torques to resist a torque applied by a robot exoskeleton to their reference elbow. They attempted to match this torque by exerting an equal effort torque (in a congruent direction with the reference arm) with their opposite (matching) arm in different limb positions (±15°). Subjects produced greater matching torque when their matching arm exerted effort toward the mirrored position of the reference (e.g., reference/matching arms at 90°/105° elbow flexion) vs. away (e.g., 90°/75° flexion). In experiment 2, a larger angular difference between arms (30°) resulted in a larger discrepancy in matched torques. Furthermore, in both experiments 1 and 2, subjects tended to overestimate the reference arm torque. This motivated a third experiment to determine whether providing more personal control might influence perceived effort and reduce the overestimation of the reference torques that we observed ( experiments 3a and 3b). Overestimation of the matched torques decreased significantly when subjects self-selected the reference torque that they were matching. Collectively, our data suggest that perceived effort between arms can be influenced by signals relating to the relative geometry of the limbs and the personal control of motor output during action. NEW & NOTEWORTHY This work highlights how limb geometry influences our sense of effort during voluntary motor actions. It also suggests that loss of personal control during motor actions leads to an increase in perceived effort.
Collapse
Affiliation(s)
- Lindsey M Logan
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| | - Jennifer A Semrau
- Department of Clinical Neurosciences, University of Calgary, Alberta, Calgary , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Sean P Dukelow
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada.,Department of Clinical Neurosciences, University of Calgary, Alberta, Calgary , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
31
|
Gurari N, Drogos JM, Dewald JPA. Ability of individuals with chronic hemiparetic stroke to locate their forearms during single-arm and between-arms tasks. PLoS One 2018; 13:e0206518. [PMID: 30372499 PMCID: PMC6205610 DOI: 10.1371/journal.pone.0206518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
Background According to between-arms assessments, more than 50% of individuals with stroke have an impaired position sense. Our previous work, which employed a clinical assessment and slightly differing tasks, indicates that individuals who have a deficit on a between-forearms position-localization task do not necessarily have a deficit on a single-forearm position-localization task. Objective Our goal here was to, using robotics tools, determine whether individuals with stroke who have a deficit when matching forearm positions within an arm also have a deficit when mirroring forearm positions between arms, independent of the arm that leads the task. Methods Eighteen participants with chronic hemiparetic stroke and nine controls completed a single-arm position-matching experiment and between-arms position-mirroring experiment. For each experiment, the reference forearm (left/right) passively rotated about the elbow joint to a reference target location (flexion/extension), and then the participant actively rotated their same/opposite forearm to match/mirror the reference forearm’s position. Participants with stroke were classified as having a position-matching/-mirroring deficit based on a quantitative threshold that was derived from the controls’ data. Results On our single-arm task, one participant with stroke was classified as having a position-matching deficit with a mean magnitude of error greater than 10.7° when referencing their paretic arm. Position-matching ability did not significantly differ for the controls and the remaining seventeen participants with stroke. On our between-arms task, seven participants with stroke were classified as having a position-mirroring deficit with a mean magnitude of error greater than 10.1°. Position-mirroring accuracy was worse for these participants with stroke, when referencing their paretic arm, than the controls. Concluding remark Findings underscore the need for assessing within-arm position-matching deficits, in addition to between-arms position-mirroring deficits when referencing each arm, to comprehensively evaluate an individual’s ability to locate their forearm(s).
Collapse
Affiliation(s)
- Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- University of Twente, Department of Biomechanical Engineering, Faculty of Engineering Technology, Enschede, The Netherlands
| |
Collapse
|
32
|
Klein J, Whitsell B, Artemiadis PK, Buneo CA. Perception of Arm Position in Three-Dimensional Space. Front Hum Neurosci 2018; 12:331. [PMID: 30186128 PMCID: PMC6110942 DOI: 10.3389/fnhum.2018.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/26/2018] [Indexed: 12/02/2022] Open
Abstract
Proprioception refers to the senses of body position, movement, force and effort. Previous studies have demonstrated workspace and direction-dependent differences in arm proprioceptive sensitivity within the horizontal plane. In addition, studies of reaching in the vertical plane have shown that proprioception plays a key role in anticipating arm configuration dependent effects of gravity. This suggests that proprioceptive sensitivity could vary with the direction of arm displacement relative to the gravitational vector, as well as with arm configuration. To test these hypotheses, and to characterize proprioception more generally, we assessed the direction-dependence and arm postural-dependence of proprioceptive sensitivity in 3D space using a novel robotic paradigm. A subject’s right arm was coupled to a 7-df robot through a trough that stabilized the wrist and forearm, allowing for changes in configuration largely at the elbow and shoulder. Sensitivity was evaluated using a “same-different” task, where the subject’s hand was moved 1–4 cm away from an initial “test” position to a 2nd “judgment” position. The proportion of trials where subjects responded “different” when the positions were different (“hit rate”), and where they responded “different” when the positions were the same, (“false alarm rate”), were used to calculate d’, a measure of sensitivity derived from signal detection theory (SDT). Initially, a single initial arm posture was used and displacements were performed in six directions: upward, downward, forward, backward, leftward and rightward of the test position. In a follow-up experiment, data were obtained for four directions and two initial arm postures. As expected, sensitivity (d’) increased monotonically with distance for all six directions. Sensitivity also varied between directions, particularly at position differences of 2 and 3 cm. Overall, sensitivity reached near maximal values in this task at 2 cm for the leftward/rightward directions, 3 cm for upward/forward and 4 cm for the downward/backward directions. In addition, when data were grouped together for opposing directions, sensitivity showed a dependence upon arm posture. These data suggest arm proprioceptive sensitivity is both anisotropic in 3D space and configuration-dependent, which has important implications for sensorimotor control of the arm and human-robot interactions.
Collapse
Affiliation(s)
- Joshua Klein
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, United States.,Alliance for Person-Centered Accessible Technologies, Arizona State University, Tempe, AZ, United States
| | - Bryan Whitsell
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Panagiotis K Artemiadis
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, United States
| | - Christopher A Buneo
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, United States.,Alliance for Person-Centered Accessible Technologies, Arizona State University, Tempe, AZ, United States.,School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
33
|
Ballardini G, Carlini G, Giannoni P, Scheidt RA, Nisky I, Casadio M. Tactile-STAR: A Novel Tactile STimulator And Recorder System for Evaluating and Improving Tactile Perception. Front Neurorobot 2018; 12:12. [PMID: 29681809 PMCID: PMC5897626 DOI: 10.3389/fnbot.2018.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Many neurological diseases impair the motor and somatosensory systems. While several different technologies are used in clinical practice to assess and improve motor functions, somatosensation is evaluated subjectively with qualitative clinical scales. Treatment of somatosensory deficits has received limited attention. To bridge the gap between the assessment and training of motor vs. somatosensory abilities, we designed, developed, and tested a novel, low-cost, two-component (bimanual) mechatronic system targeting tactile somatosensation: the Tactile-STAR-a tactile stimulator and recorder. The stimulator is an actuated pantograph structure driven by two servomotors, with an end-effector covered by a rubber material that can apply two different types of skin stimulation: brush and stretch. The stimulator has a modular design, and can be used to test the tactile perception in different parts of the body such as the hand, arm, leg, big toe, etc. The recorder is a passive pantograph that can measure hand motion using two potentiometers. The recorder can serve multiple purposes: participants can move its handle to match the direction and amplitude of the tactile stimulator, or they can use it as a master manipulator to control the tactile stimulator as a slave. Our ultimate goal is to assess and affect tactile acuity and somatosensory deficits. To demonstrate the feasibility of our novel system, we tested the Tactile-STAR with 16 healthy individuals and with three stroke survivors using the skin-brush stimulation. We verified that the system enables the mapping of tactile perception on the hand in both populations. We also tested the extent to which 30 min of training in healthy individuals led to an improvement of tactile perception. The results provide a first demonstration of the ability of this new system to characterize tactile perception in healthy individuals, as well as a quantification of the magnitude and pattern of tactile impairment in a small cohort of stroke survivors. The finding that short-term training with Tactile-STAR can improve the acuity of tactile perception in healthy individuals suggests that Tactile-STAR may have utility as a therapeutic intervention for somatosensory deficits.
Collapse
Affiliation(s)
- Giulia Ballardini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Giorgio Carlini
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Psiche Giannoni
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Robert A. Scheidt
- Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation, Alexandria, VA, United States
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Maura Casadio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
34
|
Development of a System Architecture for Evaluation and Training of Proprioceptive Deficits of the Upper Limb. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:4132820. [PMID: 29552031 PMCID: PMC5818916 DOI: 10.1155/2018/4132820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
Abstract
Proprioception plays a fundamental role in maintaining posture and executing movement, and the quantitative evaluation of proprioceptive deficits in poststroke patients is important. But currently it is not widely performed due to the complexity of the evaluation tools required for a reliable assessment. The aims of this pilot study were to (a) develop a system architecture for upper limb evaluation and training of proximal and distal sense of position in the horizontal plane and (b) test the system in healthy and pathological subjects. Two robotic devices for evaluation and training of, respectively, wrist flexion/extension and shoulder-elbow manipulation were employed. The system we developed was applied in a group of 12 healthy subjects and 10 patients after stroke. It was able to quantitatively evaluate upper limb sense of position in the horizontal plane thanks to a set of quantitative parameters assessing position estimation errors, variability, and gain. In addition, it was able to distinguish healthy from pathological conditions. The system could thus be a reliable method to detect changes in the sense of position of patients with sensory deficits after stroke and could enable the implementation of novel training approaches for the recovery of normal proprioception.
Collapse
|
35
|
Chen J, Sperandio I, Goodale MA. Proprioceptive Distance Cues Restore Perfect Size Constancy in Grasping, but Not Perception, When Vision Is Limited. Curr Biol 2018; 28:927-932.e4. [DOI: 10.1016/j.cub.2018.01.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/27/2017] [Accepted: 01/24/2018] [Indexed: 01/12/2023]
|
36
|
Liu Y, Sexton BM, Block HJ. Spatial bias in estimating the position of visual and proprioceptive targets. J Neurophysiol 2018; 119:1879-1888. [PMID: 29465330 DOI: 10.1152/jn.00633.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When people match an unseen hand to a visual or proprioceptive target, they make both variable and systematic (bias) errors. Variance is a well-established factor in behavior, but the origin and implications of bias, and its connection to variance, are poorly understood. Eighty healthy adults matched their unseen right index finger to proprioceptive (left index finger) and visual targets with no performance feedback. We asked whether matching bias was related to target modality and to the magnitude or spatial properties of matching variance. Bias errors were affected by target modality, with subjects estimating visual and proprioceptive targets 20 mm apart. We found three pieces of evidence to suggest a connection between bias and variable errors: 1) for most subjects, the target modality that yielded greater spatial bias was also estimated with greater variance; 2) magnitudes of matching bias and variance were somewhat correlated for each target modality ( R = 0.24 and 0.29); and 3) bias direction was closely related to the angle of the major axis of the confidence ellipse ( R = 0.60 and 0.63). However, whereas variance was significantly correlated with visuo-proprioceptive weighting as predicted by multisensory integration theory ( R = -0.29 and 0.27 for visual and proprioceptive variance, respectively), bias was not. In a second session, subjects improved their matching variance, but not bias, for both target modalities, indicating a difference in stability. Taken together, these results suggest bias and variance are related only in some respects, which should be considered in the study of multisensory behavior. NEW & NOTEWORTHY People matching visual or proprioceptive targets make both variable and systematic (bias) errors. Multisensory integration is thought to minimize variance, but if the less variable modality has more bias, behavioral accuracy will decrease. Our data set suggests this is unusual. However, although bias and variable errors were spatially related, they differed in both stability and correlation with multisensory weighting. This suggests the bias-variance relationship is not straightforward, and both should be considered in multisensory behavior.
Collapse
Affiliation(s)
- Yang Liu
- Department of Kinesiology and Program in Neuroscience, Indiana University Bloomington , Bloomington, Indiana
| | - Brandon M Sexton
- Department of Kinesiology and Program in Neuroscience, Indiana University Bloomington , Bloomington, Indiana
| | - Hannah J Block
- Department of Kinesiology and Program in Neuroscience, Indiana University Bloomington , Bloomington, Indiana
| |
Collapse
|
37
|
Impact of motor task execution on an individual's ability to mirror forearm positions. Exp Brain Res 2018; 236:765-777. [PMID: 29330571 DOI: 10.1007/s00221-018-5173-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
This work is motivated by our goal of determining why individuals with stroke are impaired when locating their arms in space. We assessed the ability of individuals without neurological impairments to mirror their forearms during various motor tasks so that we could identify baseline performance in an unimpaired population. Nine right-hand dominant participants without neurological impairments mirrored forearm positions bi-directionally (i.e., right forearm mirrors left forearm, vice versa) for three motor tasks (i.e., passive, passive/active, and active) and two position identification modes (i.e., mirroring to a position stored in working memory versus concurrently felt by the opposite arm). During each trial, the participant's reference forearm moved to a flexion ([Formula: see text]) or extension ([Formula: see text]) position, and then, their opposite forearm mirrored the position of their reference forearm. The main finding across all tested conditions is that participants mirrored forearm positions with an average magnitude of error [Formula: see text]. When controlling their forearms' movements (active motor task), participants mirrored forearm positions more accurately by up to, on average, [Formula: see text] at the flexion location than at the extension location. Moreover, participants mirrored forearm positions more accurately by up to, on average, [Formula: see text] when their forearms were moved for them rather than when they controlled their forearms' movements. Task directionality and position identification mode did not significantly affect participant arm mirroring accuracy. These findings are relevant for interpreting in future work the reason why impairments occur, on similar tasks, in individuals with altered motor commands, working memory, and arm impedance, e.g., post-stroke hemiparesis.
Collapse
|
38
|
Contu S, Hussain A, Kager S, Budhota A, Deshmukh VA, Kuah CWK, Yam LHL, Xiang L, Chua KSG, Masia L, Campolo D. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator. PLoS One 2017; 12:e0183257. [PMID: 29161264 PMCID: PMC5697829 DOI: 10.1371/journal.pone.0183257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants’ hand was passively moved to the target position guided by the H-Man robot (Criterion movement) and were asked to indicate during a second passive movement towards the same target (Matching movement) when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed) and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings.
Collapse
Affiliation(s)
- Sara Contu
- Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Asif Hussain
- Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Simone Kager
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Aamani Budhota
- Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Vishwanath A. Deshmukh
- Centre for Advanced Rehabilitation Therapeutics, Department of Rehabilitation Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christopher W. K. Kuah
- Centre for Advanced Rehabilitation Therapeutics, Department of Rehabilitation Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Lester H. L. Yam
- Centre for Advanced Rehabilitation Therapeutics, Department of Rehabilitation Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Liming Xiang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Karen S. G. Chua
- Centre for Advanced Rehabilitation Therapeutics, Department of Rehabilitation Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Lorenzo Masia
- Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Domenico Campolo
- Robotics Research Centre, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Weeks HM, Therrien AS, Bastian AJ. Proprioceptive Localization Deficits in People With Cerebellar Damage. THE CEREBELLUM 2017; 16:427-437. [PMID: 27538404 DOI: 10.1007/s12311-016-0819-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been hypothesized that an important function of the cerebellum is predicting the state of the body during movement. Yet, the extent of cerebellar involvement in perception of limb state (i.e., proprioception, specifically limb position sense) has yet to be determined. Here, we investigated whether patients with cerebellar damage have deficits when trying to locate their hand in space (i.e., proprioceptive localization), which is highly important for everyday movements. By comparing performance during passive robot-controlled and active self-made multi-joint movements, we were able to determine that some cerebellar patients show improved precision during active movement (i.e., active benefit), comparable to controls, whereas other patients have reduced active benefit. Importantly, the differences in patient performance are not explained by patient diagnosis or clinical ratings of impairment. Furthermore, a subsequent experiment confirmed that active deficits in proprioceptive localization occur during both single-joint and multi-joint movements. As such, it is unlikely that localization deficits can be explained by the multi-joint coordination deficits occurring after cerebellar damage. Our results suggest that cerebellar damage may cause varied impairments to different elements of proprioceptive sense. It follows that proprioceptive localization should be adequately accounted for in clinical testing and rehabilitation of people with cerebellar damage.
Collapse
Affiliation(s)
- Heidi M Weeks
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Kennedy Krieger Institute, 707 N. Broadway, G04, Baltimore, MD, 21205, USA
| | - Amanda S Therrien
- Kennedy Krieger Institute, 707 N. Broadway, G04, Baltimore, MD, 21205, USA.,Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amy J Bastian
- Kennedy Krieger Institute, 707 N. Broadway, G04, Baltimore, MD, 21205, USA. .,Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Fraser LE, Harris LR. The effect of hand position on perceived finger orientation in left- and right-handers. Exp Brain Res 2017; 235:3683-3693. [PMID: 28929312 PMCID: PMC5671529 DOI: 10.1007/s00221-017-5090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Abstract
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Collapse
Affiliation(s)
- Lindsey E Fraser
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| | - Laurence R Harris
- Department of Psychology, Center for Vision Research, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
41
|
Oh DS, Choi JD. The effect of motor imagery training for trunk movements on trunk muscle control and proprioception in stroke patients. J Phys Ther Sci 2017; 29:1224-1228. [PMID: 28744053 PMCID: PMC5509597 DOI: 10.1589/jpts.29.1224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The present study was conducted to evaluate the effect of motor imagery
training for trunk movements on trunk muscle control and proprioception in stroke
patients. [Subjects and Methods] A total of 12 study subjects were randomly assigned to
the experimental group (a motor imagery training group) and the control group (a
neurodevelopmental treatment, NDT) group. The two groups were treated five times (30
minutes each time) per week for 4 weeks. The experimental group underwent imagery training
for 10 minutes and trunk control centered NDT for 20 minutes and the control group
underwent only trunk control centered NDT for 30 minutes. The trunk muscle activity and
the position sense of the subjects were evaluated before and after the intervention.
[Results] The two groups showed significant improvements in muscle activity after the
intervention. Only the experimental group showed significant improvements in
proprioception. The experimental group showed significant improvements in the variations
of muscle activity and proprioception compared to the control group. [Conclusion] Motor
imagery training for trunk movements can be effectively used to improve trunk muscle
activity and proprioception in stroke patients.
Collapse
Affiliation(s)
- Dong-Sik Oh
- Department of Physical Therapy, Hanseo University, Republic of Korea
| | - Jong-Duk Choi
- Department of Physical Therapy, College of Health and Medical Science, Daejeon University, Republic of Korea
| |
Collapse
|
42
|
Contu S, Marini F, Masia L. Robotic assessment of the contribution of motor commands to wrist position sense. IEEE Int Conf Rehabil Robot 2017; 2017:941-946. [PMID: 28813942 DOI: 10.1109/icorr.2017.8009370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assessing joint position sense for rehabilitation after neurological injury provides a prognostic factor in recovery and long-term functional outcomes. A common method for testing joint position sense involves the active replication of a joint configuration presented via a passive movement. However, recent evidence showed how this sense is mediated by the centrally generated signals of motor command, such that movements produced volitionally may be coded differently from passive movements and accuracy may be different when matching targets presented actively. To verify this hypothesis we asked ten participants to actively replicate a target wrist angle with the help of a visual feedback in two conditions, which differed in the mode of target presentation: active (aaJPM) or passive (paJPM). The accuracy of target matching, directional bias and variability were analyzed, as well as speed and smoothness of the matching movement and criterion movement in the aaJPM. Overall results indicate higher accuracy and lower variability in the paJPM, while directional bias showed the tendency to overshoot the target regardless of condition. The speed did not differ in the two conditions and movements were smoother in the aaJPM, suggesting a higher confidence by participants in their matching ability. In conclusion, this study suggests that motor commands negatively affect the accuracy of joint position sense when matching involves the integration of visual and proprioceptive information.
Collapse
|
43
|
Weeks HM, Therrien AS, Bastian AJ. The cerebellum contributes to proprioception during motion. J Neurophysiol 2017; 118:693-702. [PMID: 28404825 DOI: 10.1152/jn.00417.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/22/2022] Open
Abstract
Proprioception, the sense of limb position and motion, is essential for generating accurate movements. Limb position sense has typically been studied under static conditions (i.e., the fixed position of a limb in space), with less known about dynamic position sense (i.e., limb position during movement). Here we investigated how a person's estimate of hand position varies when using spatial or temporal information to judge the unseen hand's location during reaching. We assessed the acuity of dynamic position sense in two directions, orthogonal to hand movement, which only requires spatial information, and in line with hand movement, which has both spatial and temporal components. Our results showed that people have better proprioceptive acuity in the orthogonal condition where only spatial information is used. We then assessed whether cerebellar damage impairs proprioceptive acuity in both tasks during passive and active movement. Cerebellar patients showed reduced acuity in both tasks and in both movement conditions relative to age-matched controls. However, patients' deficits were most apparent when judgments of active movement relied on temporal information. Furthermore, both cerebellar patient and control performance correlated with the trial-to-trial variability of their active movements: subjects are worse at the proprioceptive tasks when movements are variable. Our results suggest that, during active movements, proprioceptive acuity may be reliant on the motor system's ability to predict motor output. Therefore, the resultant proprioceptive deficits occurring after cerebellar damage may be related to a more general impairment in movement prediction.NEW & NOTEWORTHY We assessed limb position sense during movement in patients with cerebellar damage and found deficits in proprioceptive acuity during both passive and active movement. The effect of cerebellar damage was most apparent when individuals relied on both timing and spatial information during active movement. Thus proprioceptive acuity during active movements may be reliant on the motor system's ability to predict motor output.
Collapse
Affiliation(s)
- Heidi M Weeks
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland.,Kennedy Krieger Institute, Baltimore, Maryland; and
| | - Amanda S Therrien
- Kennedy Krieger Institute, Baltimore, Maryland; and.,Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amy J Bastian
- Kennedy Krieger Institute, Baltimore, Maryland; and .,Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Findlater SE, Dukelow SP. Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation. J Mot Behav 2016; 49:27-34. [PMID: 27726645 DOI: 10.1080/00222895.2016.1219303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Proprioception is an important aspect of function that is often impaired in the upper extremity following stroke. Unfortunately, neurorehabilitation has few evidence based treatment options for those with proprioceptive deficits. The authors consider potential reasons for this disparity. In doing so, typical assessments and proprioceptive intervention studies are discussed. Relevant evidence from the field of neuroscience is examined. Such evidence may be used to guide the development of targeted interventions for upper extremity proprioceptive deficits after stroke. As researchers become more aware of the impact of proprioceptive deficits on upper extremity motor performance after stroke, it is imperative to find successful rehabilitation interventions to target these deficits and ultimately improve daily function.
Collapse
Affiliation(s)
- Sonja E Findlater
- a Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Sean P Dukelow
- a Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences , Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
45
|
Marini F, Squeri V, Morasso P, Konczak J, Masia L. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace. PLoS One 2016; 11:e0161155. [PMID: 27536882 PMCID: PMC4990409 DOI: 10.1371/journal.pone.0161155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments.
Collapse
Affiliation(s)
- Francesca Marini
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Valentina Squeri
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pietro Morasso
- Motor Learning and Robotic Rehabilitation Laboratory, Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lorenzo Masia
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
46
|
Mugge W, Kuling IA, Brenner E, Smeets JBJ. Haptic Guidance Needs to Be Intuitive Not Just Informative to Improve Human Motor Accuracy. PLoS One 2016; 11:e0150912. [PMID: 26982481 PMCID: PMC4794196 DOI: 10.1371/journal.pone.0150912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
Abstract
Humans make both random and systematic errors when reproducing learned movements. Intuitive haptic guidance that assists one to make the movements reduces such errors. Our study examined whether any additional haptic information about the location of the target reduces errors in a position reproduction task, or whether the haptic guidance needs to be assistive to do so. Holding a haptic device, subjects made reaches to visible targets without time constraints. They did so in a no-guidance condition, and in guidance conditions in which the direction of the force with respect to the target differed, but the force scaled with the distance to the target in the same way. We examined whether guidance forces directed towards the target would reduce subjects’ errors in reproducing a prior position to the same extent as do forces rotated by 90 degrees or 180 degrees, as it might because the forces provide the same information in all three cases. Without vision of the arm, both the accuracy and precision were significantly better with guidance directed towards the target than in all other conditions. The errors with rotated guidance did not differ from those without guidance. Not surprisingly, the movements tended to be faster when guidance forces directed the reaches to the target. This study shows that haptic guidance significantly improved motor performance when using it was intuitive, while non-intuitively presented information did not lead to any improvements and seemed to be ignored even in our simple paradigm with static targets and no time constraints.
Collapse
Affiliation(s)
- Winfred Mugge
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University, Amsterdam, Netherlands
- * E-mail: ;
| | - Irene A. Kuling
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University, Amsterdam, Netherlands
| | - Eli Brenner
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University, Amsterdam, Netherlands
| | - Jeroen B. J. Smeets
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University, Amsterdam, Netherlands
| |
Collapse
|
47
|
Yavari F, Mahdavi S, Towhidkhah F, Ahmadi-Pajouh MA, Ekhtiari H, Darainy M. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res 2015; 234:997-1012. [DOI: 10.1007/s00221-015-4523-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
|
48
|
Yavari F, Towhidkhah F, Ahmadi-Pajouh MA, Darainy M. The role of internal forward models and proprioception in hand position estimation. J Integr Neurosci 2015; 14:403-18. [PMID: 26307154 DOI: 10.1142/s0219635215500168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our ability to properly move and react in different situations is largely dependent on our perception of our limbs' position. At least three sources - vision, proprioception, and internal forward models (FMs) - seem to contribute to this perception. To the best of our knowledge, the effect of each source has not been studied individually. Specifically, role of FM has been ignored in some previous studies. We hypothesized that FM has a critical role in subjects' perception which needs to be considered in the relevant studies to obtain more reliable results. Therefore, we designed an experiment with the goal of investigating FM and proprioception role in subjects' perception of their hand's position. Three groups of subjects were recruited in the study. Based on the experiment design, it was supposed that subjects in different groups relied on proprioception, FM, and both of them for estimating their unseen hand's position. Comparing the results of three groups revealed significant difference between their estimation' errors. FM provided minimum estimation error, while proprioception had a bias error in the tested region. Integrating proprioception with FM decreased this error. Integration of two Gaussian functions, fitted to the error distribution of FM and proprioception groups, was simulated and created a mean error value almost similar to the experimental observation. These results suggest that FM role needs to be considered when studying the perceived position of the limbs. This can lead to gain better insights into the mechanisms underlying the perception of our limbs' position which might have potential clinical and rehabilitation applications, e.g., in the postural control of elderly which are at high risk of falls and injury because of deterioration of their perception with age.
Collapse
Affiliation(s)
- Fatemeh Yavari
- * Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.,† Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Farzad Towhidkhah
- † Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Mohammad Darainy
- ‡ Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Clayton HA, Jones SAH, Henriques DYP. Proprioceptive precision is impaired in Ehlers-Danlos syndrome. SPRINGERPLUS 2015; 4:323. [PMID: 26180743 PMCID: PMC4493259 DOI: 10.1186/s40064-015-1089-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 11/14/2022]
Abstract
It has been suggested that people with Ehlers–Danlos syndrome (EDS), or other similar connective tissue disorders, may have proprioceptive impairments, the reason for which is still unknown. We recently found that EDS patients were less precise than healthy controls when estimating their felt hand’s position relative to visible peripheral reference locations, and that this deficit was positively correlated with the severity of joint hypermobility. We further explore proprioceptive abilities in EDS by having patients localize their non-dominant left hand at a greater number of workspace locations than in our previous study. Additionally, we explore the relationship between chronic pain and proprioceptive sensitivity. We found that, although patients were just as accurate as controls, they were not as precise. Patients showed twice as much scatter than controls at all locations, but the degree of scatter did not positively correlate with chronic pain scores. This further supports the idea that a proprioceptive impairment pertaining to precision is present in EDS, but may not relate to the magnitude of chronic pain.
Collapse
Affiliation(s)
- Holly A Clayton
- Centre for Vision Research, York University, Toronto, Canada ; Department of Psychology, York University, Toronto, Canada
| | - Stephanie A H Jones
- School of Health and Human Performance, Dalhousie University, Halifax, Canada
| | - Denise Y P Henriques
- Centre for Vision Research, York University, Toronto, Canada ; Department of Psychology, York University, Toronto, Canada ; School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
50
|
Cameron BD, de la Malla C, López-Moliner J. Why do movements drift in the dark? Passive versus active mechanisms of error accumulation. J Neurophysiol 2015; 114:390-9. [PMID: 25925317 DOI: 10.1152/jn.00032.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
When vision of the hand is unavailable, movements drift systematically away from their targets. It is unclear, however, why this drift occurs. We investigated whether drift is an active process, in which people deliberately modify their movements based on biased position estimates, causing the real hand to move away from the real target location, or a passive process, in which execution error accumulates because people have diminished sensory feedback and fail to adequately compensate for the execution error. In our study participants reached back and forth between two targets when vision of the hand, targets, or both the hand and targets was occluded. We observed the most drift when hand vision and target vision were occluded and equivalent amounts of drift when either hand vision or target vision was occluded. In a second experiment, we observed movement drift even when no visual target was ever present, providing evidence that drift is not driven by a visual-proprioceptive discrepancy. The observed drift in both experiments was consistent with a model of passive error accumulation in which the amount of drift is determined by the precision of the sensory estimate of movement error.
Collapse
Affiliation(s)
- Brendan D Cameron
- Vision and Control of Action Group, Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Catalonia, Spain; and Institute for Brain, Cognition, and Behaviour (IR3C), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina de la Malla
- Vision and Control of Action Group, Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Catalonia, Spain; and Institute for Brain, Cognition, and Behaviour (IR3C), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joan López-Moliner
- Vision and Control of Action Group, Departament de Psicologia Bàsica, Universitat de Barcelona, Barcelona, Catalonia, Spain; and Institute for Brain, Cognition, and Behaviour (IR3C), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|