1
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
2
|
Morgan MB, Williams J, Breeze B, English N, Higdon N, Onthank K, Qualley DF. Synergistic and antagonistic interactions of oxybenzone and ocean acidification: new insight into vulnerable cellular processes in non-calcifying anthozoans. Front Physiol 2024; 14:1332446. [PMID: 38274044 PMCID: PMC10808722 DOI: 10.3389/fphys.2023.1332446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of "drug-like" compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
Collapse
Affiliation(s)
- Michael B. Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Barrett Breeze
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Nicholas English
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Nathaniel Higdon
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Kirt Onthank
- Department of Biology, Walla Walla University, College Place, WA, United States
| | - Dominic F. Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| |
Collapse
|
3
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Díaz-Martínez JP, Mejía-Gutiérrez LM, Islas-Villanueva V, Benítez-Villalobos F. Trioecy is maintained as a time-stable mating system in the pink sea urchin Toxopneustes roseus from the Mexican Pacific. Sci Rep 2022; 12:21408. [PMID: 36496463 PMCID: PMC9741619 DOI: 10.1038/s41598-022-26059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Trioecy is a sexual system that consists of the co-occurrence of females, males and hermaphrodites in a population and is common in plants; however, in animals it is uncommon and poorly understood. In echinoderms, trioecy had never been recorded until now. Frequencies of females, males, and hermaphrodites were evaluated and gametogenic development was histologically characterized in a population of Toxopneustes roseus inhabiting the Mexican Pacific. Trioecy in this population is functional and temporally stable, since the three sexes coexisted in each sampling month. The hermaphrodites presented similar gametogenic development as the females and males and participated during the spawning season, contributing to the population's reproductive process. Trioecy is considered an evolutionarily transitory state, and it is extremely difficult to explain its presence in a species. We hypothesize that continuous ocean warming represents a threat to the survival of this population of T. roseus, since its early developmental stages, which represent a population bottleneck, are more vulnerable to high temperatures than other sea urchins inhabiting the area, while its population density is significantly lower. These conditions generate a strongly stressed environment, which is the determining factor that maintains the stability of trioecy in the species in which it has been studied.
Collapse
Affiliation(s)
- Julia Patricia Díaz-Martínez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Leobarda Margarita Mejía-Gutiérrez
- Programa de Posgrado en Ecología Marina, División de Estudios de Posgrado, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | - Valentina Islas-Villanueva
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. de los Insurgentes Sur 1582, 03940, Mexico, Mexico
- Instituto de Genética, Universidad del Mar Campus Puerto Ángel, Cd. Universitaria S/N, 70902, Oaxaca, Mexico
| | | |
Collapse
|
5
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
6
|
DURÁN-FUENTES JEFERSON, GRACIA ADRIANA, GONZÁLEZ-MUÑOZ RICARDO. Sea anemones (Cnidaria, Anthozoa, Actiniaria) in high sedimentation environments influenced by the Magdalena River (Colombian Caribbean). AN ACAD BRAS CIENC 2022; 94:e20190862. [DOI: 10.1590/0001-3765202120190862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 05/03/2020] [Indexed: 11/21/2022] Open
|
7
|
The Tentacular Spectacular: Evolution of Regeneration in Sea Anemones. Genes (Basel) 2021; 12:genes12071072. [PMID: 34356088 PMCID: PMC8306839 DOI: 10.3390/genes12071072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sea anemones vary immensely in life history strategies, environmental niches and their ability to regenerate. While the sea anemone Nematostella vectensis is the starlet of many key regeneration studies, recent work is emerging on the diverse regeneration strategies employed by other sea anemones. This manuscript will explore current molecular mechanisms of regeneration employed by non-model sea anemones Exaiptasia diaphana (an emerging model species for coral symbiosis studies) and Calliactis polypus (a less well-studied species) and examine how these species compare to the model sea anemone N. vectensis. We summarize the field of regeneration within sea anemones, within the greater context of phylum Cnidaria and in other invertebrate models of regeneration. We also address the current knowledge on two key systems that may be implemented in regeneration: the innate immune system and developmental pathways, including future aspects of work and current limitations.
Collapse
|
8
|
Schweinsberg M, Gösser F, Tollrian R. The history, biological relevance, and potential applications for polyp bailout in corals. Ecol Evol 2021; 11:8424-8440. [PMID: 34257908 PMCID: PMC8258201 DOI: 10.1002/ece3.7740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Corals have evolved a variety of stress responses to changing conditions, many of which have been the subject of scientific research. However, polyp bailout has not received widespread scientific attention, despite being described more than 80 years ago. Polyp bailout is a drastic response to acute stress in which coral colonies break down, with individual and patches of polyps detaching from the colony and the calcareous skeleton Polyps retain their symbiotic partners, have dispersal ability, and may undergo secondary settlement and calcification. Polyp bailout has been described worldwide in a variety of anthozoan species, especially in Scleractinia. It can be induced by multiple natural stressors, but also artificially. Little is known about the evolutionary and ecological potential and consequences of breaking down modularity, the dispersal ability, and reattachment of polyps resulting from polyp bailout. It has been shown that polyp bailout can be used as a model system, with promise for implementation in various research topics. To date, there has been no compilation of knowledge on polyp bailout, which prompted us to review this interesting stress response and provide a basis to discuss research topics and priorities for the future.
Collapse
Affiliation(s)
| | - Fabian Gösser
- Department of Animal Ecology, Evolution and BiodiversityUniversity of BochumBochumGermany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and BiodiversityUniversity of BochumBochumGermany
| |
Collapse
|
9
|
Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions. Biol Invasions 2020; 22:3195-3222. [PMID: 32837266 PMCID: PMC7429141 DOI: 10.1007/s10530-020-02321-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/20/2020] [Indexed: 01/17/2023]
Abstract
Widespread non-native species tend to demonstrate an apparent lack of selectivity in habitat requirements, feeding regimes, and reproductive needs, while displaying a tendency to thrive in human-modified habitats. The high phenotypic plasticity typical of sessile, substrate-attached marine species may enhance their chances of survival and spread in a new region. Anthropogenic activities have changed marine habitats over a wide range of phenomena, including water temperature, community species composition, and the types of available substrates, creating new physical and biotic regimes that may contribute to the potential for successful species introduction. Here we examine ten species of sea anemones that have been introduced outside of their native range, and elucidate specific characteristics that are common among globally introduced sea anemones. Various life history strategies enable these species to survive and flourish through transport, introduction, establishment and spread, leading to the successful colonization of a new geographic area. Considering life history strategies and weighing of vector potential, we suggest conditions that facilitate introduction of these species, and identify species of sea anemones that may be introduced in the future in the face of changing climate and increased anthropogenic activities.
Collapse
|
10
|
Li Y, Han T, Bi K, Liang K, Chen J, Lu J, He C, Lu Z. The 3D Reconstruction of Pocillopora Colony Sheds Light on the Growth Pattern of This Reef-Building Coral. iScience 2020; 23:101069. [PMID: 32504876 PMCID: PMC7276440 DOI: 10.1016/j.isci.2020.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 04/13/2020] [Indexed: 11/27/2022] Open
Abstract
Coral reefs are formed by living polyps, and understanding the dynamic processes behind the reefs is crucial for marine ecosystem restoration. However, these processes are still unclear because the growth and budding patterns of living polyps are poorly known. Here, we investigate the growth pattern of a widely distributed reef-building coral Pocillopora damicornis from Xisha Islands using high-resolution computed tomography. We examine the corallites in a single corallum of the species in detail, to interpret the budding, growth, and distribution pattern of the polyps, to reconstruct the growth pattern of this important reef-building species. Our results reveal a three-stage growth pattern of P. damicornis, based on different growth bundles that are secreted by polyps along the dichotomous growth axes of the corallites. Our work on the three-dimensional reconstruction of calice and inter-septal space structure of P. damicornis sheds lights on its reef-building processes by reconstructing the budding patterns. We use high-resolution computed tomography to investigate coral forming and polyp budding processes The calice reconstruction shows coral growth patterns and budding information Our work visualizes the growth pattern of Pocillopora damicornis High-resolution computed tomography is a method for future reef-building coral studies
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kun Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kun Liang
- Nanjing Institute of Paleontology and Geology, 39 East Beijing Road, Nanjing 210008, China
| | - Junyuan Chen
- Nanjing Institute of Paleontology and Geology, 39 East Beijing Road, Nanjing 210008, China
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
11
|
Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis 2020. [DOI: 10.1007/s13199-020-00665-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. Non-model model organisms. BMC Biol 2017; 15:55. [PMID: 28662661 PMCID: PMC5492503 DOI: 10.1186/s12915-017-0391-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.
Collapse
Affiliation(s)
- James J Russell
- Department of Biology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Departments of Biochemistry and of Microbiology & Immunology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA.
| | - Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, 10032, USA
| | | | - Jessica K Polka
- Visiting Scholar, Whitehead Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Therese Gerbich
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Amy Gladfelter
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | | | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Carlisle JF, Murphy GK, Roark AM. Body size and symbiotic status influence gonad development in Aiptasia pallida anemones. Symbiosis 2017; 71:121-127. [PMID: 28203041 PMCID: PMC5277023 DOI: 10.1007/s13199-016-0456-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/24/2016] [Indexed: 10/29/2022]
Abstract
Pale anemones (Aiptasia pallida) coexist with dinoflagellates (primarily Symbiodinium minutum) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.
Collapse
Affiliation(s)
- Judith F Carlisle
- Department of Biology, Furman University, 3300 Poinsett Highway, Greenville, SC 29613 USA
| | - Grant K Murphy
- Department of Biology, Furman University, 3300 Poinsett Highway, Greenville, SC 29613 USA
| | - Alison M Roark
- Department of Biology, Furman University, 3300 Poinsett Highway, Greenville, SC 29613 USA
| |
Collapse
|
14
|
Kaliszewicz A, Dobczyńska O. A comparative study of mobility in threeHydraspecies with different reproductive strategies. Isr J Ecol Evol 2017. [DOI: 10.1080/15659801.2016.1276426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Siebert S, Juliano CE. Sex, polyps, and medusae: Determination and maintenance of sex in cnidarians. Mol Reprod Dev 2016; 84:105-119. [DOI: 10.1002/mrd.22690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Stefan Siebert
- Department of Molecular and Cellular Biology; University of California; Davis California
| | - Celina E. Juliano
- Department of Molecular and Cellular Biology; University of California; Davis California
| |
Collapse
|
16
|
Shapiro OH, Kramarsky-Winter E, Gavish AR, Stocker R, Vardi A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat Commun 2016; 7:10860. [PMID: 26940983 PMCID: PMC4785229 DOI: 10.1038/ncomms10860] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/27/2016] [Indexed: 11/10/2022] Open
Abstract
Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. Studies of coral in laboratory settings are limited by a lack of reliable methods for manipulation of the coral microenvironment and monitoring of coral processes in vitro. Here the authors develop coral-on-a-chip, a microfluidic platform to enable study of coral processes at single-cell resolution.
Collapse
Affiliation(s)
- Orr H Shapiro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Esti Kramarsky-Winter
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Assaf R Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roman Stocker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Grawunder D, Hambleton EA, Bucher M, Wolfowicz I, Bechtoldt N, Guse A. Induction of Gametogenesis in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep 2015; 5:15677. [PMID: 26498008 PMCID: PMC4620495 DOI: 10.1038/srep15677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
Endosymbiosis is widespread among cnidarians and is of high ecological relevance. The tropical sea anemone Aiptasia sp. is a laboratory model system for endosymbiosis between reef-building corals and photosynthetic dinoflagellate algae of the genus Symbiodinium. Here we identify the key environmental cues to induce reproducible spawning in Aiptasia under controlled laboratory conditions. We find that simulating a lunar cycle with blue-wavelength light is necessary to promote abundant gamete production and synchronous release in well-fed animals. Sexual reproduction rates are genetically determined and differ among clonal lines under similar conditions. We also find the inverse difference in rates of asexual reproduction. This study provides the requisite basis for further development of the Aiptasia model system, allowing analysis of basic cellular and molecular mechanisms in the laboratory as well as investigations of broad questions of ecological and evolutionary relevance.
Collapse
Affiliation(s)
- Désirée Grawunder
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Elizabeth A Hambleton
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Madeline Bucher
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Iliona Wolfowicz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany.,University of Porto, Porto 4200-465, Portugal
| | - Natascha Bechtoldt
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
18
|
Thornhill DJ, Xiang Y, Pettay DT, Zhong M, Santos SR. Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol 2013; 22:4499-515. [DOI: 10.1111/mec.12416] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel J. Thornhill
- Department of Conservation Science and Policy; Defenders of Wildlife; Washington DC 20036 USA
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Yu Xiang
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - D. Tye Pettay
- College of Earth, Ocean, and Environment; University of Delaware; Lewes DE 19958 USA
| | - Min Zhong
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| | - Scott R. Santos
- Department of Biological Sciences, Cellular and Molecular Biosciences Peak Program; Auburn University; Auburn AL 36849 USA
- Molette Biology Laboratory for Environmental and Climate Change Studies; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
19
|
Morgan MB, Parker CC, Robinson JW, Pierce EM. Using Representational Difference Analysis to detect changes in transcript expression of Aiptasia genes after laboratory exposure to lindane. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:66-73. [PMID: 22281777 DOI: 10.1016/j.aquatox.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 05/31/2023]
Abstract
Molecular stress responses to pesticide exposures represent an understudied area of cnidarian transcriptome investigations. The organochlorine pesticide lindane is known to disrupt normal neuron function. Cnidarians with simple nervous systems are recognized as sensitive indicators of water quality, yet nothing is known about cnidarian responses to lindane. Sea anemones (Aiptasia pallida) were exposed for 4h to lindane (20 μg/l). Because anemones have neurons and lindane is known to target neurons, it is anticipated that cnidarian stress responses will include changes in transcription of genes associated with neurons. Representational Difference Analysis (RDA) was utilized to isolate differentially transcribed genes in the anemones exposed to the pesticide. After two rounds of RDA hybridizations, 148 amplified fragments ranging in size from 150 to 800 bp were cloned. Sequencing and bioinformatic analyses of 106 clones revealed 56 different gene fragments. Virtual Northern dot blots were used as a preliminary screening tool to identify the most responsive RDA products. To further characterize the specificity of response, additional anemones were exposed to a series of lindane concentrations (0, 0.2, 2.0, 10, and 20 μg/l). Northern dot blots were subsequently used to develop expression profiles for selected RDA products over the range of pesticide concentrations. The seven most responsive RDA products represent genes with products associated with neuron development, immune responses, and Ca(2+) binding/transport. The resulting expression profiles illustrate that these RDA products exhibit various degrees of concentration specificity with some RDA products being significantly up-regulated at 20 μg/l while other RDA products are most responsive at concentrations <20 μg/l. Results also demonstrate how RDA can be used to identify potentially important biomarkers of organochlorine exposure while generating new hypotheses about important phenomena such as endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA 30149, USA.
| | | | | | | |
Collapse
|
20
|
Kaliszewicz A, Lipińska A. Environmental condition related reproductive strategies and sex ratio in hydras. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00536.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|