1
|
Firoozbakht F, Elkjaer ML, Handy D, Wang R, Chervontseva Z, Rarey M, Loscalzo J, Baumbach J, Tsoy O. DREAMER: Exploring Common Mechanisms of Adverse Drug Reactions and Disease Phenotypes through Network-Based Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.602911. [PMID: 39091742 PMCID: PMC11291051 DOI: 10.1101/2024.07.20.602911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Adverse drug reactions (ADRs) are a major concern in clinical healthcare, significantly affecting patient safety and drug development. This study introduces DREAMER, a novel network-based method for exploring the mechanisms underlying ADRs and disease phenotypes at a molecular level by leveraging a comprehensive knowledge graph obtained from various datasets. By considering drugs and diseases that cause similar phenotypes, and investigating their commonalities regarding their impact on specific modules of the protein-protein interaction network, DREAMER can robustly identify protein sets associated with the biological mechanisms underlying ADRs and unravel the causal relationships that contribute to the observed clinical outcomes. Applying DREAMER to 649 ADRs, we identified proteins associated with the mechanism of action for 67 ADRs across multiple organ systems. In particular, DREAMER highlights the importance of GABAergic signaling and proteins of the coagulation pathways for personality disorders and intracranial hemorrhage, respectively. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol, ranolazine, and diltiazem as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes.
Collapse
|
2
|
Park J, Lee S, Kim K, Jung J, Lee D. Large-scale prediction of adverse drug reactions-related proteins with network embedding. Bioinformatics 2022; 39:6965019. [PMID: 36579854 PMCID: PMC9825773 DOI: 10.1093/bioinformatics/btac843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Adverse drug reactions (ADRs) are a major issue in drug development and clinical pharmacology. As most ADRs are caused by unintended activity at off-targets of drugs, the identification of drug targets responsible for ADRs becomes a key process for resolving ADRs. Recently, with the increase in the number of ADR-related data sources, several computational methodologies have been proposed to analyze ADR-protein relations. However, the identification of ADR-related proteins on a large scale with high reliability remains an important challenge. RESULTS In this article, we suggest a computational approach, Large-scale ADR-related Proteins Identification with Network Embedding (LAPINE). LAPINE combines a novel concept called single-target compound with a network embedding technique to enable large-scale prediction of ADR-related proteins for any proteins in the protein-protein interaction network. Analysis of benchmark datasets confirms the need to expand the scope of potential ADR-related proteins to be analyzed, as well as LAPINE's capability for high recovery of known ADR-related proteins. Moreover, LAPINE provides more reliable predictions for ADR-related proteins (Value-added positive predictive value = 0.12), compared to a previously proposed method (P < 0.001). Furthermore, two case studies show that most predictive proteins related to ADRs in LAPINE are supported by literature evidence. Overall, LAPINE can provide reliable insights into the relationship between ADRs and proteomes to understand the mechanism of ADRs leading to their prevention. AVAILABILITY AND IMPLEMENTATION The source code is available at GitHub (https://github.com/rupinas/LAPINE) and Figshare (https://figshare.com/articles/software/LAPINE/21750245) to facilitate its use. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jaesub Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangyeon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Kwansoo Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaegyun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Doheon Lee
- To whom correspondence should be addressed.
| |
Collapse
|
3
|
Bresso E, Monnin P, Bousquet C, Calvier FE, Ndiaye NC, Petitpain N, Smaïl-Tabbone M, Coulet A. Investigating ADR mechanisms with Explainable AI: a feasibility study with knowledge graph mining. BMC Med Inform Decis Mak 2021; 21:171. [PMID: 34039343 PMCID: PMC8157660 DOI: 10.1186/s12911-021-01518-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Adverse drug reactions (ADRs) are statistically characterized within randomized clinical trials and postmarketing pharmacovigilance, but their molecular mechanism remains unknown in most cases. This is true even for hepatic or skin toxicities, which are classically monitored during drug design. Aside from clinical trials, many elements of knowledge about drug ingredients are available in open-access knowledge graphs, such as their properties, interactions, or involvements in pathways. In addition, drug classifications that label drugs as either causative or not for several ADRs, have been established. METHODS We propose in this paper to mine knowledge graphs for identifying biomolecular features that may enable automatically reproducing expert classifications that distinguish drugs causative or not for a given type of ADR. In an Explainable AI perspective, we explore simple classification techniques such as Decision Trees and Classification Rules because they provide human-readable models, which explain the classification itself, but may also provide elements of explanation for molecular mechanisms behind ADRs. In summary, (1) we mine a knowledge graph for features; (2) we train classifiers at distinguishing, on the basis of extracted features, drugs associated or not with two commonly monitored ADRs: drug-induced liver injuries (DILI) and severe cutaneous adverse reactions (SCAR); (3) we isolate features that are both efficient in reproducing expert classifications and interpretable by experts (i.e., Gene Ontology terms, drug targets, or pathway names); and (4) we manually evaluate in a mini-study how they may be explanatory. RESULTS Extracted features reproduce with a good fidelity classifications of drugs causative or not for DILI and SCAR (Accuracy = 0.74 and 0.81, respectively). Experts fully agreed that 73% and 38% of the most discriminative features are possibly explanatory for DILI and SCAR, respectively; and partially agreed (2/3) for 90% and 77% of them. CONCLUSION Knowledge graphs provide sufficiently diverse features to enable simple and explainable models to distinguish between drugs that are causative or not for ADRs. In addition to explaining classifications, most discriminative features appear to be good candidates for investigating ADR mechanisms further.
Collapse
Affiliation(s)
- Emmanuel Bresso
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
- Centre d’Investigations Cliniques Plurithématique 1433, Inserm 1116, CHRU de Nancy, Université de Lorraine, Nancy, France
| | - Pierre Monnin
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
- Orange, Belfort, France
| | - Cédric Bousquet
- Service de santé publique et information médicale, CHU de Saint Etienne, Saint Etienne, France
- Sorbonne Université, Inserm, Université Paris 13, LIMICS, Paris, France
| | - François-Elie Calvier
- Service de santé publique et information médicale, CHU de Saint Etienne, Saint Etienne, France
| | | | - Nadine Petitpain
- Centre Régional de Pharmacovigilance, CHRU of Nancy, Nancy, France
| | | | - Adrien Coulet
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
- Inria Paris, Paris, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
4
|
Ahmed L, Alogheli H, McShane SA, Alvarsson J, Berg A, Larsson A, Schaal W, Laure E, Spjuth O. Predicting target profiles with confidence as a service using docking scores. J Cheminform 2020. [PMCID: PMC7566026 DOI: 10.1186/s13321-020-00464-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Identifying and assessing ligand-target binding is a core component in early drug discovery as one or more unwanted interactions may be associated with safety issues. Contributions We present an open-source, extendable web service for predicting target profiles with confidence using machine learning for a panel of 7 targets, where models are trained on molecular docking scores from a large virtual library. The method uses conformal prediction to produce valid measures of prediction efficiency for a particular confidence level. The service also offers the possibility to dock chemical structures to the panel of targets with QuickVina on individual compound basis. Results The docking procedure and resulting models were validated by docking well-known inhibitors for each of the 7 targets using QuickVina. The model predictions showed comparable performance to molecular docking scores against an external validation set. The implementation as publicly available microservices on Kubernetes ensures resilience, scalability, and extensibility.![]()
Collapse
|
5
|
Amano Y, Honda H, Sawada R, Nukada Y, Yamane M, Ikeda N, Morita O, Yamanishi Y. In silico systems for predicting chemical-induced side effects using known and potential chemical protein interactions, enabling mechanism estimation. J Toxicol Sci 2020; 45:137-149. [PMID: 32147637 DOI: 10.2131/jts.45.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In silico models for predicting chemical-induced side effects have become increasingly important for the development of pharmaceuticals and functional food products. However, existing predictive models have difficulty in estimating the mechanisms of side effects in terms of molecular targets or they do not cover the wide range of pharmacological targets. In the present study, we constructed novel in silico models to predict chemical-induced side effects and estimate the underlying mechanisms with high general versatility by integrating the comprehensive prediction of potential chemical-protein interactions (CPIs) with machine learning. First, the potential CPIs were comprehensively estimated by chemometrics based on the known CPI data (1,179,848 interactions involving 3,905 proteins and 824,143 chemicals). Second, the predictive models for 61 side effects in the cardiovascular system (CVS), gastrointestinal system (GIS), and central nervous system (CNS) were constructed by sparsity-induced classifiers based on the known and potential CPI data. The cross validation experiments showed that the proposed CPI-based models had a higher or comparable performance than the traditional chemical structure-based models. Moreover, our enrichment analysis indicated that the highly weighted proteins derived from predictive models could be involved in the corresponding functions of the side effects. For example, in CVS, the carcinogenesis-related pathways (e.g., prostate cancer, PI3K-Akt signal pathway), which were recently reported to be involved in cardiovascular side effects, were enriched. Therefore, our predictive models are biologically valid and would be useful for predicting side effects and novel potential underlying mechanisms of chemical-induced side effects.
Collapse
Affiliation(s)
- Yuto Amano
- R&D Safety Science Research, Kao Corporation
| | | | - Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Yuko Nukada
- R&D Safety Science Research, Kao Corporation
| | | | | | | | | |
Collapse
|
6
|
Nguyen DA, Nguyen CH, Mamitsuka H. A survey on adverse drug reaction studies: data, tasks and machine learning methods. Brief Bioinform 2019; 22:164-177. [PMID: 31838499 DOI: 10.1093/bib/bbz140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Adverse drug reaction (ADR) or drug side effect studies play a crucial role in drug discovery. Recently, with the rapid increase of both clinical and non-clinical data, machine learning methods have emerged as prominent tools to support analyzing and predicting ADRs. Nonetheless, there are still remaining challenges in ADR studies. RESULTS In this paper, we summarized ADR data sources and review ADR studies in three tasks: drug-ADR benchmark data creation, drug-ADR prediction and ADR mechanism analysis. We focused on machine learning methods used in each task and then compare performances of the methods on the drug-ADR prediction task. Finally, we discussed open problems for further ADR studies. AVAILABILITY Data and code are available at https://github.com/anhnda/ADRPModels.
Collapse
Affiliation(s)
| | - Canh Hao Nguyen
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University
| |
Collapse
|
7
|
La MK, Sedykh A, Fourches D, Muratov E, Tropsha A. Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions. Drug Saf 2018; 41:1059-1072. [PMID: 29876834 PMCID: PMC6212308 DOI: 10.1007/s40264-018-0688-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Given that adverse drug effects (ADEs) have led to post-market patient harm and subsequent drug withdrawal, failure of candidate agents in the drug development process, and other negative outcomes, it is essential to attempt to forecast ADEs and other relevant drug-target-effect relationships as early as possible. Current pharmacologic data sources, providing multiple complementary perspectives on the drug-target-effect paradigm, can be integrated to facilitate the inference of relationships between these entities. OBJECTIVE This study aims to identify both existing and unknown relationships between chemicals (C), protein targets (T), and ADEs (E) based on evidence in the literature. MATERIALS AND METHODS Cheminformatics and data mining approaches were employed to integrate and analyze publicly available clinical pharmacology data and literature assertions interrelating drugs, targets, and ADEs. Based on these assertions, a C-T-E relationship knowledge base was developed. Known pairwise relationships between chemicals, targets, and ADEs were collected from several pharmacological and biomedical data sources. These relationships were curated and integrated according to Swanson's paradigm to form C-T-E triangles. Missing C-E edges were then inferred as C-E relationships. RESULTS Unreported associations between drugs, targets, and ADEs were inferred, and inferences were prioritized as testable hypotheses. Several C-E inferences, including testosterone → myocardial infarction, were identified using inferences based on the literature sources published prior to confirmatory case reports. Timestamping approaches confirmed the predictive ability of this inference strategy on a larger scale. CONCLUSIONS The presented workflow, based on free-access databases and an association-based inference scheme, provided novel C-E relationships that have been validated post hoc in case reports. With refinement of prioritization schemes for the generated C-E inferences, this workflow may provide an effective computational method for the early detection of potential drug candidate ADEs that can be followed by targeted experimental investigations.
Collapse
Affiliation(s)
- Mary K La
- Division of Practice Advancement and Clinical Education, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Alexander Sedykh
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
- Sciome LLC, 2 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Marshall LJ, Willett C. Parkinson's disease research: adopting a more human perspective to accelerate advances. Drug Discov Today 2018; 23:1950-1961. [PMID: 30240875 DOI: 10.1016/j.drudis.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) affects 1% of the population over 60 years old and, with global increases in the aging population, presents huge economic and societal burdens. The etiology of PD remains unknown; most cases are idiopathic, presumed to result from genetic and environmental risk factors. Despite 200 years since the first description of PD, the mechanisms behind initiation and progression of the characteristic neurodegenerative processes are not known. Here, we review progress and limitations of the multiple PD animal models available and identify advances that could be implemented to better understand pathological processes, improve disease outcome, and reduce dependence on animal models. Lessons learned from reducing animal use in PD research could serve as guideposts for wider biomedical research.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA
| | - Catherine Willett
- Humane Society International, The Humane Society of the United States, 700 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
9
|
Lim H, Poleksic A, Xie L. Exploring Landscape of Drug-Target-Pathway-Side Effect Associations. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2018; 2017:132-141. [PMID: 29888057 PMCID: PMC5961812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Side effects are the second and the fourth leading causes of drug attrition and death in the US. Thus, accurate prediction of side effects and understanding their mechanism of action will significantly impact drug discovery and clinical practice. Here, we show REMAP, a neighborhood-regularized weighted and imputed one-class collaborative filtering algorithm, is effective in predicting drug-side effect associations from a drug-side effect association network, and significantly outperforms the state-of-the-art multi-target learning algorithm for predicting rare side effects. We also apply FASCINATE, an extension of REMAP for multi-layered networks, to infer associations among side effects and drug targets from drug-target-side effect networks. Then, using random permutation analysis and gene overrepresentation tests, we infer statistically significant side effect-pathway associations. The predicted drug-side effect associations and side effect-causing pathways are consistent with clinical evidences. We expect more novel drug-side effect associations and side effect-causing pathways to be identified when applying REMAP and FASCINATE to large-scale chemical-gene-side effect networks.
Collapse
Affiliation(s)
- Hansaim Lim
- PhD program in Biochemistry, the City University of New York, New York, NY, United States
| | - Aleksandar Poleksic
- Department of Computer Science, University of Northern Iowa, Cedar Falls, IA, United States
| | - Lei Xie
- Department of Computer Science, Hunter College, the CityUniversity of New York, New York, NY, United States
| |
Collapse
|
10
|
Abstract
In this review we address to what extent computational techniques can augment our ability to predict toxicity. The first section provides a brief history of empirical observations on toxicity dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes the insight that toxicity is not solely a property of a compound but instead depends on the interaction with the host organism. The next logical step is the current conception of evaluating drugs from a personalized medicine point of view. We review recent work on integrating what could be referred to as classical pharmacokinetic analysis with emerging systems biology approaches incorporating multiple omics data. These systems approaches employ advanced statistical analytical data processing complemented with machine learning techniques and use both pharmacokinetic and omics data. We find that such integrated approaches not only provide improved predictions of toxicity but also enable mechanistic interpretations of the molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by discussing some of the main challenges, such as how to balance the inherent tension between the predicitive capacity of models, which in practice amounts to constraining the number of features in the models versus allowing for rich mechanistic interpretability, i.e., equipping models with numerous molecular features. This challenge also requires patient-specific predictions on toxicity, which in turn requires proper stratification of patients as regards how they respond, with or without adverse toxic effects. In summary, the transformation of the ancient concept of dose is currently successfully operationalized using rich integrative data encoded in patient-specific models.
Collapse
|
11
|
Somody JC, MacKinnon SS, Windemuth A. Structural coverage of the proteome for pharmaceutical applications. Drug Discov Today 2017; 22:1792-1799. [DOI: 10.1016/j.drudis.2017.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
|
12
|
Evangelista W, Weir RL, Ellingson SR, Harris JB, Kapoor K, Smith JC, Baudry J. Ensemble-based docking: From hit discovery to metabolism and toxicity predictions. Bioorg Med Chem 2016; 24:4928-4935. [PMID: 27543390 DOI: 10.1016/j.bmc.2016.07.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Wilfredo Evangelista
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rebecca L Weir
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sally R Ellingson
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Genome Science and Technology, University of Tennessee, Knoxville, TN, United States; Division of Biomedical Informatics, College of Medicine, University of Kentucky and Cancer Research Informatics, Markey Cancer Center, Lexington, KY, United States
| | - Jason B Harris
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Karan Kapoor
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Genome Science and Technology, University of Tennessee, Knoxville, TN, United States.
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, United States; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Genome Science and Technology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
13
|
Mei H, Feng G, Zhu J, Lin S, Qiu Y, Wang Y, Xia T. A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology. Methods Mol Biol 2016; 1303:531-547. [PMID: 26235090 DOI: 10.1007/978-1-4939-2627-5_33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning.
Collapse
Affiliation(s)
- Hongkang Mei
- Informatics and Structure Biology, R&D China, GlaxoSmithKline, 917 Halei Road, Shanghai, 201203, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Boland MR, Jacunski A, Lorberbaum T, Romano JD, Moskovitch R, Tatonetti NP. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:104-22. [PMID: 26559926 DOI: 10.1002/wsbm.1323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023]
Abstract
Small molecules are indispensable to modern medical therapy. However, their use may lead to unintended, negative medical outcomes commonly referred to as adverse drug reactions (ADRs). These effects vary widely in mechanism, severity, and populations affected, making ADR prediction and identification important public health concerns. Current methods rely on clinical trials and postmarket surveillance programs to find novel ADRs; however, clinical trials are limited by small sample size, whereas postmarket surveillance methods may be biased and inherently leave patients at risk until sufficient clinical evidence has been gathered. Systems pharmacology, an emerging interdisciplinary field combining network and chemical biology, provides important tools to uncover and understand ADRs and may mitigate the drawbacks of traditional methods. In particular, network analysis allows researchers to integrate heterogeneous data sources and quantify the interactions between biological and chemical entities. Recent work in this area has combined chemical, biological, and large-scale observational health data to predict ADRs in both individual patients and global populations. In this review, we explore the rapid expansion of systems pharmacology in the study of ADRs. We enumerate the existing methods and strategies and illustrate progress in the field with a model framework that incorporates crucial data elements, such as diet and comorbidities, known to modulate ADR risk. Using this framework, we highlight avenues of research that may currently be underexplored, representing opportunities for future work.
Collapse
Affiliation(s)
- Mary Regina Boland
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA.,Observational Health Data Science and Informatics (OHDSI), New York, NY, USA
| | - Alexandra Jacunski
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Tal Lorberbaum
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Joseph D Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| | - Robert Moskovitch
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA.,Observational Health Data Science and Informatics (OHDSI), New York, NY, USA
| |
Collapse
|
15
|
Systematic analysis of the associations between adverse drug reactions and pathways. BIOMED RESEARCH INTERNATIONAL 2015; 2015:670949. [PMID: 26495310 PMCID: PMC4606217 DOI: 10.1155/2015/670949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/24/2015] [Accepted: 05/14/2015] [Indexed: 01/09/2023]
Abstract
Adverse drug reactions (ADRs) are responsible for drug candidate failure during clinical trials. It is crucial to investigate biological pathways contributing to ADRs. Here, we applied a large-scale analysis to identify overrepresented ADR-pathway combinations through merging clinical phenotypic data, biological pathway data, and drug-target relations. Evaluation was performed by scientific literature review and defining a pathway-based ADR-ADR similarity measure. The results showed that our method is efficient for finding the associations between ADRs and pathways. To more systematically understand the mechanisms of ADRs, we constructed an ADR-pathway network and an ADR-ADR network. Through network analysis on biology and pharmacology, it was found that frequent ADRs were associated with more pathways than infrequent and rare ADRs. Moreover, environmental information processing pathways contributed most to the observed ADRs. Integrating the system organ class of ADRs, we found that most classes tended to interact with other classes instead of themselves. ADR classes were distributed promiscuously in all the ADR cliques. These results reflected that drug perturbation to a certain pathway can cause changes in multiple organs, rather than in one specific organ. Our work not only provides a global view of the associations between ADRs and pathways, but also is helpful to understand the mechanisms of ADRs.
Collapse
|
16
|
Li R, Chen T, Li S. Network-based method to infer the contributions of proteins to the etiology of drug side effects. QUANTITATIVE BIOLOGY 2015. [DOI: 10.1007/s40484-015-0051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Pérez-Nueno VI, Souchet M, Karaboga AS, Ritchie DW. GESSE: Predicting Drug Side Effects from Drug–Target Relationships. J Chem Inf Model 2015; 55:1804-23. [DOI: 10.1021/acs.jcim.5b00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Violeta I. Pérez-Nueno
- Harmonic Pharma, Espace Transfert, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France
| | - Michel Souchet
- Harmonic Pharma, Espace Transfert, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France
| | - Arnaud S. Karaboga
- Harmonic Pharma, Espace Transfert, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France
| | - David W. Ritchie
- INRIA Nancy − Grand Est, Equipe Capsid, 615 rue du Jardin Botanique, 54600 Villers-les-Nancy, France
| |
Collapse
|
18
|
Abstract
INTRODUCTION Over the past three decades, the predominant paradigm in drug discovery was designing selective ligands for a specific target to avoid unwanted side effects. However, in the last 5 years, the aim has shifted to take into account the biological network in which they interact. Quantitative and Systems Pharmacology (QSP) is a new paradigm that aims to understand how drugs modulate cellular networks in space and time, in order to predict drug targets and their role in human pathophysiology. AREAS COVERED This review discusses existing computational and experimental QSP approaches such as polypharmacology techniques combined with systems biology information and considers the use of new tools and ideas in a wider 'systems-level' context in order to design new drugs with improved efficacy and fewer unwanted off-target effects. EXPERT OPINION The use of network biology produces valuable information such as new indications for approved drugs, drug-drug interactions, proteins-drug side effects and pathways-gene associations. However, we are still far from the aim of QSP, both because of the huge effort needed to model precisely biological network models and the limited accuracy that we are able to reach with those. Hence, moving from 'one molecule for one target to give one therapeutic effect' to the 'big systems-based picture' seems obvious moving forward although whether our current tools are sufficient for such a step is still under debate.
Collapse
Affiliation(s)
- Violeta I Pérez-Nueno
- a Harmonic Pharma, Espace Transfert , 615 rue du Jardin Botanique, 54600 Villers lès Nancy, France +33 354 958 604 ; +33 383 593 046 ;
| |
Collapse
|
19
|
In silico assessment of adverse drug reactions and associated mechanisms. Drug Discov Today 2015; 21:58-71. [PMID: 26272036 DOI: 10.1016/j.drudis.2015.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022]
Abstract
During recent years, various in silico approaches have been developed to estimate chemical and biological drug features, for example chemical fragments, protein targets, pathways, among others, that correlate with adverse drug reactions (ADRs) and explain the associated mechanisms. These features have also been used for the creation of predictive models that enable estimation of ADRs during the early stages of drug development. In this review, we discuss various in silico approaches to predict these features for a certain drug, estimate correlations with ADRs, establish causal relationships between selected features and ADR mechanisms and create corresponding predictive models.
Collapse
|
20
|
Liu T, Altman RB. Relating Essential Proteins to Drug Side-Effects Using Canonical Component Analysis: A Structure-Based Approach. J Chem Inf Model 2015; 55:1483-94. [PMID: 26121262 DOI: 10.1021/acs.jcim.5b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular mechanism of many drug side-effects is unknown and difficult to predict. Previous methods for explaining side-effects have focused on known drug targets and their pathways. However, low affinity binding to proteins that are not usually considered drug targets may also drive side-effects. In order to assess these alternative targets, we used the 3D structures of 563 essential human proteins systematically to predict binding to 216 drugs. We first benchmarked our affinity predictions with available experimental data. We then combined singular value decomposition and canonical component analysis (SVD-CCA) to predict side-effects based on these novel target profiles. Our method predicts side-effects with good accuracy (average AUC: 0.82 for side effects present in <50% of drug labels). We also noted that side-effect frequency is the most important feature for prediction and can confound efforts at elucidating mechanism; our method allows us to remove the contribution of frequency and isolate novel biological signals. In particular, our analysis produces 2768 triplet associations between 50 essential proteins, 99 drugs, and 77 side-effects. Although experimental validation is difficult because many of our essential proteins do not have validated assays, we nevertheless attempted to validate a subset of these associations using experimental assay data. Our focus on essential proteins allows us to find potential associations that would likely be missed if we used recognized drug targets. Our associations provide novel insights about the molecular mechanisms of drug side-effects and highlight the need for expanded experimental efforts to investigate drug binding to proteins more broadly.
Collapse
Affiliation(s)
- Tianyun Liu
- †Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Russ B Altman
- ‡Department of Genetics and Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
3D pharmacophoric similarity improves multi adverse drug event identification in pharmacovigilance. Sci Rep 2015; 5:8809. [PMID: 25744369 PMCID: PMC4351525 DOI: 10.1038/srep08809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/30/2015] [Indexed: 11/08/2022] Open
Abstract
Adverse drugs events (ADEs) detection constitutes a considerable concern in patient safety and public health care. For this reason, it is important to develop methods that improve ADE signal detection in pharmacovigilance databases. Our objective is to apply 3D pharmacophoric similarity models to enhance ADE recognition in Offsides, a pharmacovigilance resource with drug-ADE associations extracted from the FDA Adverse Event Reporting System (FAERS). We developed a multi-ADE predictor implementing 3D drug similarity based on a pharmacophoric approach, with an ADE reference standard extracted from the SIDER database. The results showed that the application of our 3D multi-type ADE predictor to the pharmacovigilance data in Offsides improved ADE identification and generated enriched sets of drug-ADE signals. The global ROC curve for the Offsides ADE candidates ranked with the 3D similarity score showed an area of 0.7. The 3D predictor also allows the identification of the most similar drug that causes the ADE under study, which could provide hypotheses about mechanisms of action and ADE etiology. Our method is useful in drug development, screening potential adverse effects in experimental drugs, and in drug safety, applicable to the evaluation of ADE signals selected through pharmacovigilance data mining.
Collapse
|
22
|
Baker NC, Fourches D, Tropsha A. Drug Side Effect Profiles as Molecular Descriptors for Predictive Modeling of Target Bioactivity. Mol Inform 2015; 34:160-70. [DOI: 10.1002/minf.201400134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/16/2014] [Indexed: 11/05/2022]
|
23
|
Hasegawa K, Funatsu K. Multivariate Analysis of Side Effects of Drug Molecules Based on Knowledge of Protein Bindings and ProteinProtein Interactions. Mol Inform 2014; 33:757-63. [PMID: 27485422 DOI: 10.1002/minf.201400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
Here, we examined the relationships between 969 side effects associated with 658 drugs and their 1368 human protein targets using our hybrid approaches. Firstly, L-shaped PLS (LPLS) was used to construct a multivariate model of side effects and protein bindings of drug molecules. LPLS is an extension of standard PLS regression, where, in addition to the response matrix Y and the regressor matrix X, an extra data matrix Z is constructed that summarizes the background information of X. X and Y are matrices comprising drugs-target proteins, and drugs-side effects, respectively. The Z matrix is the proteinprotein interaction data. From the loading plot of Y, we could identify two remarkable side effects (urinary incontinence and increased salivation) From the corresponding loading plot of X, the responsible protein targets causing each side effect could be estimated (sodium channels and gamma-aminobutyric acid (GABA) receptors). The loading plot of the Z matrix indicated that the GABA receptors interact with each other and they heavily influence the side effect of increased salivation. Secondly, Bayesian classifier methods were separately applied to the cases of the two side effects. That is, the Bayesian classifier method was used to classify drug molecules as binding or not binding to the responsible protein targets associated with each side effect. Using atom-coloring techniques, it was possible to estimate which fragments on the drug molecule might cause the specific side effects. This information is valuable for drug design to avoid specific side effects.
Collapse
Affiliation(s)
- Kiyoshi Hasegawa
- Chugai Pharmaceutical Company, Kamakura Research Laboratories, Kajiwara 200, Kamakura, Kanagawa 247-8530, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan phone: (+81) 03-5841-7751; fax: (+81) 03-5841-7771. ,
| |
Collapse
|
24
|
LaBute MX, Zhang X, Lenderman J, Bennion BJ, Wong SE, Lightstone FC. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines. PLoS One 2014; 9:e106298. [PMID: 25191698 PMCID: PMC4156361 DOI: 10.1371/journal.pone.0106298] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/05/2014] [Indexed: 01/12/2023] Open
Abstract
Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.
Collapse
Affiliation(s)
- Montiago X LaBute
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Xiaohua Zhang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Jason Lenderman
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brian J Bennion
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sergio E Wong
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
25
|
Huiru Zheng, Haiying Wang, Hua Xu, Yonghui Wu, Zhongming Zhao, Azuaje F. Linking Biochemical Pathways and Networks to Adverse Drug Reactions. IEEE Trans Nanobioscience 2014; 13:131-7. [DOI: 10.1109/tnb.2014.2319158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Luo H, Zhang P, Huang H, Huang J, Kao E, Shi L, He L, Yang L. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome. Nucleic Acids Res 2014; 42:W46-52. [PMID: 24875476 PMCID: PMC4086096 DOI: 10.1093/nar/gku433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Drug–drug interactions (DDIs) may cause serious side-effects that draw great attention from both academia and industry. Since some DDIs are mediated by unexpected drug–human protein interactions, it is reasonable to analyze the chemical–protein interactome (CPI) profiles of the drugs to predict their DDIs. Here we introduce the DDI-CPI server, which can make real-time DDI predictions based only on molecular structure. When the user submits a molecule, the server will dock user's molecule across 611 human proteins, generating a CPI profile that can be used as a feature vector for the pre-constructed prediction model. It can suggest potential DDIs between the user's molecule and our library of 2515 drug molecules. In cross-validation and independent validation, the server achieved an AUC greater than 0.85. Additionally, by investigating the CPI profiles of predicted DDI, users can explore the PK/PD proteins that might be involved in a particular DDI. A 3D visualization of the drug-protein interaction will be provided as well. The DDI-CPI is freely accessible at http://cpi.bio-x.cn/ddi/.
Collapse
Affiliation(s)
- Heng Luo
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China University of Arkansas at Little Rock/University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Ping Zhang
- Healthcare Analytics Research Group, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Hui Huang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jialiang Huang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215, USA
| | - Emily Kao
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Leming Shi
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lun Yang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
27
|
Urban L, Maciejewski M, Lounkine E, Whitebread S, Jenkins JL, Hamon J, Fekete A, Muller PY. Translation of off-target effects: prediction of ADRs by integrated experimental and computational approach. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00077c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adverse drug reactions (ADRs) are associated with most drugs, often discovered late in drug development and sometimes only during extended course of clinical use.
Collapse
Affiliation(s)
- Laszlo Urban
- Preclinical Safety Profiling
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | - Mateusz Maciejewski
- Preclinical Safety Profiling
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | - Eugen Lounkine
- Preclinical Safety Profiling
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | - Steven Whitebread
- Preclinical Safety Profiling
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | - Jeremy L. Jenkins
- Developmental and Molecular Pathways
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | - Jacques Hamon
- Basel Screening Operations
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Basel, Switzerland
| | - Alexander Fekete
- Preclinical Safety Profiling
- Center for Proteomic Chemistry
- Novartis Institutes for Biomedical Research
- Cambridge, USA
| | | |
Collapse
|
28
|
Analysis of chemical and biological features yields mechanistic insights into drug side effects. ACTA ACUST UNITED AC 2013; 20:594-603. [PMID: 23601648 DOI: 10.1016/j.chembiol.2013.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/31/2022]
Abstract
Side effects (SEs) are the unintended consequence of therapeutic treatments, but they can also be seen as valuable readouts of drug effects, resulting from the perturbation of biological systems by chemical compounds. Unfortunately, biology and chemistry are often considered separately, leading to incomplete models unable to provide a unified view of SEs. Here, we investigate the molecular bases of over 1,600 SEs by navigating both chemical and biological spaces. We identified characteristic molecular traits for 1,162 SEs, 38% of which can be explained using solely biological arguments, and only 6% are exclusively associated with the chemistry of the compounds, implying that the drug action is somewhat unspecific. Overall, we provide mechanistic insights for most SEs and emphasize the need to blend biology and chemistry to surpass intricate phenomena not captured in the molecular biology view.
Collapse
|
29
|
Johnson DE. Fusion of nonclinical and clinical data to predict human drug safety. Expert Rev Clin Pharmacol 2013; 6:185-95. [PMID: 23473595 DOI: 10.1586/ecp.13.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse drug reactions continue to be a major cause of morbidity in both patients receiving therapeutics and in drug R&D programs. Predicting and possibly eliminating these adverse events remains a high priority in industry, government agencies and healthcare systems. With small molecule candidates, the fusion of nonclinical and clinical data is essential in establishing an overall system that creates a true translational science approach. Several new advances are taking place that attempt to create a 'patient context' mechanism early in drug research and development and ultimately into the marketplace. This 'life-cycle' approach has as its core the development of human-oriented, nonclinical end points and the incorporation of clinical knowledge at the drug design stage. The next 5 years should witness an explosion of what the author views as druggable and safe chemical space, pharmacosafety molecular targets and the most important aspect, an understanding of unique susceptibilities in patients developing adverse drug reactions. Our current knowledge of clinical safety relies completely on pharmacovigilance data from approved and marketed drugs, with a few exceptions of drugs failing in clinical trials. Massive data repositories now and soon to be available via cloud computing should stimulate a major effort in expanding our view of clinical drug safety and its incorporation into early drug research and development.
Collapse
Affiliation(s)
- Dale E Johnson
- University of Michigan and University of California, Berkeley Morgan Hall, Berkeley, CA 94720-3104, USA.
| |
Collapse
|
30
|
Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y. Relating drug-protein interaction network with drug side effects. Bioinformatics 2013; 28:i522-i528. [PMID: 22962476 PMCID: PMC3436810 DOI: 10.1093/bioinformatics/bts383] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motivation: Identifying the emergence and underlying mechanisms of drug side effects is a challenging task in the drug development process. This underscores the importance of system–wide approaches for linking different scales of drug actions; namely drug-protein interactions (molecular scale) and side effects (phenotypic scale) toward side effect prediction for uncharacterized drugs. Results: We performed a large-scale analysis to extract correlated sets of targeted proteins and side effects, based on the co-occurrence of drugs in protein-binding profiles and side effect profiles, using sparse canonical correlation analysis. The analysis of 658 drugs with the two profiles for 1368 proteins and 1339 side effects led to the extraction of 80 correlated sets. Enrichment analyses using KEGG and Gene Ontology showed that most of the correlated sets were significantly enriched with proteins that are involved in the same biological pathways, even if their molecular functions are different. This allowed for a biologically relevant interpretation regarding the relationship between drug–targeted proteins and side effects. The extracted side effects can be regarded as possible phenotypic outcomes by drugs targeting the proteins that appear in the same correlated set. The proposed method is expected to be useful for predicting potential side effects of new drug candidate compounds based on their protein-binding profiles. Supplementary information: Datasets and all results are available at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/. Availability: Software is available at the above supplementary website. Contact:yamanishi@bioreg.kyushu-u.ac.jp, or goto@kuicr.kyoto-u.ac.jp
Collapse
Affiliation(s)
- Sayaka Mizutani
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
31
|
Bai JP, Abernethy DR. Systems Pharmacology to Predict Drug Toxicity: Integration Across Levels of Biological Organization. Annu Rev Pharmacol Toxicol 2013; 53:451-73. [DOI: 10.1146/annurev-pharmtox-011112-140248] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jane P.F. Bai
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993;
| | - Darrell R. Abernethy
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993;
| |
Collapse
|
32
|
Abstract
Biomarkers are characteristics objectively measured and evaluated as indicators of: normal biologic processes, pathogenic processes, or pharmacologic response(s) to a therapeutic intervention. In environmental research and risk assessment, biomarkers are frequently referred to as indicators of human or environmental hazards. Discovering and implementing new biomarkers for toxicity caused by exposure to a chemical either from a therapeutic intervention or accidentally through the environment continues to be pursued through the use of animal models to predict potential human effects, from human studies (clinical or epidemiologic) or biobanked human samples, or the combination of all such approaches. The key to discovering or inferring biomarkers through computational means involves the identification or prediction of the molecular target(s) of the chemical(s) and the association of these targets with perturbed biological pathways. Two examples are given in this chapter: (1) inferring potential human biomarkers from animal toxicogenomics data, and (2) the identification of protein targets through computational means and associating these in one example with potential drug interactions and in another case with increasing the risk of developing certain human diseases.
Collapse
|
33
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
34
|
Edberg A, Soeria-Atmadja D, Bergman Laurila J, Johansson F, Gustafsson MG, Hammerling U. Assessing Relative Bioactivity of Chemical Substances Using Quantitative Molecular Network Topology Analysis. J Chem Inf Model 2012; 52:1238-49. [DOI: 10.1021/ci200429f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anna Edberg
- Division of Food
Data, National Food Agency, SE-75126 Uppsala, Sweden
| | - Daniel Soeria-Atmadja
- Division of R&D Information, AstraZeneca Research and Development, SE-15185, Södertälje, Sweden
| | | | - Fredrik Johansson
- Division of Information
Technology,
National Food Agency, SE-75126 Uppsala, Sweden
| | - Mats G. Gustafsson
- Division of Cancer Pharmacology and Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital, SE-75185 Uppsala, Sweden
| | - Ulf Hammerling
- Department of Risk Benefit Assessment,
National Food Agency, SE-75126 Uppsala, Sweden
| |
Collapse
|
35
|
Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLoS One 2011; 6:e28025. [PMID: 22205936 PMCID: PMC3244383 DOI: 10.1371/journal.pone.0028025] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/29/2011] [Indexed: 01/22/2023] Open
Abstract
Drug repositioning helps fully explore indications for marketed drugs and clinical candidates. Here we show that the clinical side-effects (SEs) provide a human phenotypic profile for the drug, and this profile can suggest additional disease indications. We extracted 3,175 SE-disease relationships by combining the SE-drug relationships from drug labels and the drug-disease relationships from PharmGKB. Many relationships provide explicit repositioning hypotheses, such as drugs causing hypoglycemia are potential candidates for diabetes. We built Naïve Bayes models to predict indications for 145 diseases using the SEs as features. The AUC was above 0.8 in 92% of these models. The method was extended to predict indications for clinical compounds, 36% of the models achieved AUC above 0.7. This suggests that closer attention should be paid to the SEs observed in trials not just to evaluate the harmful effects, but also to rationally explore the repositioning potential based on this “clinical phenotypic assay”.
Collapse
Affiliation(s)
- Lun Yang
- Computational Biology, Quantitative Sciences, Medicines Discovery and Development, GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America.
| | | |
Collapse
|
36
|
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3:33. [PMID: 21982300 PMCID: PMC3198950 DOI: 10.1186/1758-2946-3-33] [Citation(s) in RCA: 5122] [Impact Index Per Article: 394.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/07/2011] [Indexed: 02/08/2023] Open
Abstract
Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.
Collapse
Affiliation(s)
- Noel M O'Boyle
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15217, USA.
| | | | | | | | | | | |
Collapse
|
37
|
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011. [PMID: 21982300 DOI: 10.1186/1758-2946-3-33.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. RESULTS We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. CONCLUSIONS Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.
Collapse
Affiliation(s)
- Noel M O'Boyle
- University of Pittsburgh, Department of Chemistry, 219 Parkman Avenue, Pittsburgh, PA 15217, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG. Drug repositioning for orphan diseases. Brief Bioinform 2011; 12:346-56. [PMID: 21504985 DOI: 10.1093/bib/bbr021] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The need and opportunity to discover therapeutics for rare or orphan diseases are enormous. Due to limited prevalence and/or commercial potential, of the approximately 6000 orphan diseases (defined by the FDA Orphan Drug Act as <200 000 US prevalence), only a small fraction (5%) is of interest to the biopharmaceutical industry. The fact that drug development is complicated, time-consuming and expensive with extremely low success rates only adds to the low rate of therapeutics available for orphan diseases. An alternative and efficient strategy to boost the discovery of orphan disease therapeutics is to find connections between an existing drug product and orphan disease. Drug Repositioning or Drug Repurposing--finding a new indication for a drug--is one way to maximize the potential of a drug. The advantages of this approach are manifold, but rational drug repositioning for orphan diseases is not trivial and poses several formidable challenges--pharmacologically and computationally. Most of the repositioned drugs currently in the market are the result of serendipity. One reason the connection between drug candidates and their potential new applications are not identified in an earlier or more systematic fashion is that the underlying mechanism 'connecting' them is either very intricate and unknown or indirect or dispersed and buried in an ever-increasing sea of information, much of which is emerging only recently and therefore is not well organized. In this study, we will review some of these issues and the current methodologies adopted or proposed to overcome them and translate chemical and biological discoveries into safe and effective orphan disease therapeutics.
Collapse
Affiliation(s)
- Divya Sardana
- Department of Computer Science, University of Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
39
|
Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study. PLoS Comput Biol 2011; 7:e1002016. [PMID: 21483481 PMCID: PMC3068927 DOI: 10.1371/journal.pcbi.1002016] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/25/2011] [Indexed: 12/20/2022] Open
Abstract
In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs. Idiosyncratic drug reactions (IDR) generally cannot be identified until after a drug is taken by a large population, but usually result in restricted use or withdrawal. Clozapine provides the most effective treatment for schizophrenia but its use is limited because of a life-threatening IDR, i.e., the agranulocytosis. A high impact clinical study demonstrated the necessity of moving clozapine from 3rd line to 1st line drug; therefore, intensive research has aimed at identifying genes responsible for clozapine-induced agranulocytosis (CIA). Olanzapine, an analog of clozapine, has much lower incidence of agranulocytosis. Based on this phenomenon, we proposed an in silico methodology termed as antithesis chemical-protein interactome (CPI), which mimics the differences in the drug-protein interactions of the two drugs across a panel of human proteins. e.g., HSPA1A was identified to be targeted by clozapine not olanzapine. Furthermore, the gene expression of the HSPA1A-related gene system was also found up-regulated after clozapine treatment. This approach can examine the system's perturbation in terms of both the off-target and the off-system's interaction with the drug, providing theoretical basis for decoding the adverse drug reactions or the new uses for old drugs.
Collapse
|
40
|
Yang L, Wang KJ, Wang LS, Jegga AG, Qin SY, He G, Chen J, Xiao Y, He L. Chemical-protein interactome and its application in off-target identification. Interdiscip Sci 2011; 3:22-30. [PMID: 21369884 DOI: 10.1007/s12539-011-0051-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/14/2010] [Accepted: 09/19/2010] [Indexed: 01/30/2023]
Abstract
Drugs exert their therapeutic and adverse effects by interacting with molecular targets. Although designed to interact with specific targets in a desirable manner, drug molecules often bind to unexpected proteins (off-targets). By activating or inhibiting off-targets and the associated biological processes and pathways, the resulting chemical-protein interactions can influence drug reaction directly or indirectly. Exploring the relationship between drug and off-targets and the downstream drug reaction can help understand the polypharmacology of the drug, hence significantly advance the drug repositioning pipeline and the application of personalized medicine in understanding and preventing adverse drug reaction. This review summarizes works on predicting off-targets via chemical-protein interactome (CPI), an interaction strength matrix of drugs across multiple human proteins aiming at exploring the unexpected drug-protein interactions, with a variety of computational strategies, including docking, chemical structure comparison and text-mining etc. Effective recall on previous knowledge, de novo prediction and subsequent experimental validation conferred us strong confidence in these methods. Such studies present prospect of large scale in silico methodologies for off-target discovery with low cost and high efficiency.
Collapse
Affiliation(s)
- Lun Yang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | | | | | | | | | | | | | | | | |
Collapse
|