1
|
Henriksen C, Baek KT, Wacnik K, Gallay C, Veening JW, Foster SJ, Frees D. The ClpX chaperone and a hypermorphic FtsA variant with impaired self-interaction are mutually compensatory for coordinating Staphylococcus aureus cell division. Mol Microbiol 2024; 121:98-115. [PMID: 38041395 DOI: 10.1111/mmi.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.
Collapse
Affiliation(s)
- Camilla Henriksen
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| | - Kristoffer T Baek
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| | | | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dorte Frees
- Department of Veterinary and Animal Disease, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
3
|
Lade H, Kim JS. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics (Basel) 2023; 12:1362. [PMID: 37760659 PMCID: PMC10525618 DOI: 10.3390/antibiotics12091362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The development of antibiotic resistance in Staphylococcus aureus, particularly in methicillin-resistant S. aureus (MRSA), has become a significant health concern worldwide. The acquired mecA gene encodes penicillin-binding protein 2a (PBP2a), which takes over the activities of endogenous PBPs and, due to its low affinity for β-lactam antibiotics, is the main determinant of MRSA. In addition to PBP2a, other genetic factors that regulate cell wall synthesis, cell signaling pathways, and metabolism are required to develop high-level β-lactam resistance in MRSA. Although several genetic factors that modulate β-lactam resistance have been identified, it remains unclear how they alter PBP2a expression and affect antibiotic resistance. This review describes the molecular determinants of β-lactam resistance in MRSA, with a focus on recent developments in our understanding of the role of mecA-encoded PBP2a and on other genetic factors that modulate the level of β-lactam resistance. Understanding the molecular determinants of β-lactam resistance can aid in developing novel strategies to combat MRSA.
Collapse
Affiliation(s)
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| |
Collapse
|
4
|
Lallement C, Goldring WPD, Jelsbak L. Global transcriptomic response of the AI-3 isomers 3,5-DPO and 3,6-DPO in Salmonella Typhimurium. Arch Microbiol 2023; 205:117. [PMID: 36929450 DOI: 10.1007/s00203-023-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Bacterial intercellular signaling mediated by small molecules, also called autoinducers (AIs), enables synchronized behavior in response to environmental conditions, and in many bacterial pathogens, intercellular signaling controls virulence gene expression. However, in the intestinal pathogen Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), although three signals, named AI-1, AI-2 and AI-3, have been described, their roles in virulence remain elusive. AI-3 is the 3,6- isomer of a previously described Vibrio cholerae signaling molecule; 3,5-dimethylpyrazin-2-ol (3,5-DPO). To elucidate the role of AI-3/DPO in S. Typhimurium, we have mapped the global transcriptomic responses to 3,5- and 3,6-DPO isomers in S. Typhimurium. Our studies showed that DPO affects expression of almost 8% of all genes. Specifically, expression of several genes involved in gut-colonization respond to DPO. Interestingly, most of the affected genes are similarly regulated by 3,5-DPO and 3,6-DPO, respectively, indicating that the two isomers have overlapping roles in S. Typhimurium.
Collapse
Affiliation(s)
- Claire Lallement
- Department of Sciences and Environment, Roskilde University, Roskilde, Denmark
| | | | - Lotte Jelsbak
- Department of Sciences and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
5
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
6
|
Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proc Natl Acad Sci U S A 2021; 118:2109671118. [PMID: 34782466 DOI: 10.1073/pnas.2109671118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
The transition from growth to stationary phase is a natural response of bacteria to starvation and stress. When stress is alleviated and more favorable growth conditions return, bacteria resume proliferation without a significant loss in fitness. Although specific adaptations that enhance the persistence and survival of bacteria in stationary phase have been identified, mechanisms that help maintain the competitive fitness potential of nondividing bacterial populations have remained obscure. Here, we demonstrate that staphylococci that enter stationary phase following growth in media supplemented with excess glucose, undergo regulated cell death to maintain the competitive fitness potential of the population. Upon a decrease in extracellular pH, the acetate generated as a byproduct of glucose metabolism induces cytoplasmic acidification and extensive protein damage in nondividing cells. Although cell death ensues, it does not occur as a passive consequence of protein damage. Instead, we demonstrate that the expression and activity of the ClpXP protease is induced, resulting in the degeneration of cellular antioxidant capacity and, ultimately, cell death. Under these conditions, inactivation of either clpX or clpP resulted in the extended survival of unfit cells in stationary phase, but at the cost of maintaining population fitness. Finally, we show that cell death from antibiotics that interfere with bacterial protein synthesis can also be partly ascribed to the corresponding increase in clpP expression and activity. The functional conservation of ClpP in eukaryotes and bacteria suggests that ClpP-dependent cell death and fitness maintenance may be a widespread phenomenon in these domains of life.
Collapse
|
7
|
Illigmann A, Thoma Y, Pan S, Reinhardt L, Brötz-Oesterhelt H. Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis. Microb Physiol 2021; 31:260-279. [PMID: 34438398 DOI: 10.1159/000517718] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
Fast adaptation to environmental changes ensures bacterial survival, and proteolysis represents a key cellular process in adaptation. The Clp protease system is a multi-component machinery responsible for protein homoeostasis, protein quality control, and targeted proteolysis of transcriptional regulators in prokaryotic cells and prokaryote-derived organelles of eukaryotic cells. A functional Clp protease complex consists of the tetradecameric proteolytic core ClpP and a hexameric ATP-consuming Clp-ATPase, several of which can associate with the same proteolytic core. Clp-ATPases confer substrate specificity by recognising specific degradation tags, and further selectivity is conferred by adaptor proteins, together allowing for a fine-tuned degradation process embedded in elaborate regulatory networks. This review focuses on the contribution of the Clp protease system to prokaryotic survival and summarises the current state of knowledge for exemplary bacteria in an increasing degree of interaction with eukaryotic cells. Starting from free-living bacteria as exemplified by a non-pathogenic and a pathogenic member of the Firmicutes, i.e., Bacillus subtilis and Staphylococcus aureus, respectively, we turn our attention to facultative and obligate intracellular bacterial pathogens, i.e., Mycobacterium tuberculosis, Listeria monocytogenes, and Chlamydia trachomatis, and conclude with mitochondria. Under stress conditions, the Clp protease system exerts its pivotal role in the degradation of damaged proteins and controls the timing and extent of the heat-shock response by regulatory proteolysis. Key regulators of developmental programmes like natural competence, motility, and sporulation are also under Clp proteolytic control. In many pathogenic species, the Clp system is required for the expression of virulence factors and essential for colonising the host. In accordance with its evolutionary origin, the human mitochondrial Clp protease strongly resembles its bacterial counterparts, taking a central role in protein quality control and homoeostasis, energy metabolism, and apoptosis in eukaryotic cells, and several cancer cell types depend on it for proliferation.
Collapse
Affiliation(s)
- Astrid Illigmann
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yvonne Thoma
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Stefan Pan
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Laura Reinhardt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Hao Z, Guo Y, Rao L, Yu J, Zhan Q, Xu Y, Wang B, Wu X, Yu F. Deletion of SarX Decreases Biofilm Formation of Staphylococcus aureus in a Polysaccharide Intercellular Adhesin (PIA)-Dependent Manner by Downregulating spa. Infect Drug Resist 2021; 14:2241-2250. [PMID: 34163189 PMCID: PMC8214526 DOI: 10.2147/idr.s305650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Biofilm formation by Staphylococcus aureus is an important virulence determinant mediated by the polysaccharide intercellular adhesin (PIA) encoded by the ica operon or mediated by surface and extracellular proteins. SarX is a 250-residue two-domain SarA homolog that activates spa transcription. Previous studies demonstrated that Staphylococcus epidermidis SarX protein regulated the transcriptional activity of the agr and ica loci and controlled the biofilm phenotype, primarily by regulating icaADBC transcription and PIA production. Results In this study, biofilm formation and detachment of the clinical isolate S. aureus SA75 were significantly decreased in the sarX mutant strain. The effect of sarX mutation on S. aureus biofilm formation was related to the production of PIA and not to that of eDNA. Deletion of sarX was associated with a 1.8-fold reduction in spa transcription as determined by RT-PCR analysis, and this reduction could be restored by chromosomal complementation of sarX. Expression of Spa protein was also decreased in the S. aureus sarX mutant. Conclusion sarX promoted biofilm production of S. aureus that may primarily be mediated through increasing ica operon expression and PIA production. Furthermore, deletion of sarX reduced S. aureus biofilm formation by downregulating spa.
Collapse
Affiliation(s)
- Zhihao Hao
- Department of Laboratory Medicine, Shandong Provincial Third Hospital, Cheeloo College of Mdicine, Shandong University, Ji Nan, 250000, People's Republic of China
| | - Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Lulin Rao
- Department of Laboratory Medicine, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jingyi Yu
- Department of Laboratory Medicine, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Qing Zhan
- Department of Laboratory Medicine, Nanchang University, Nanchang, 330000, People's Republic of China
| | - Yanlei Xu
- Department of Laboratory Medicine, Nanchang University, Nanchang, 330000, People's Republic of China
| | - Bingjie Wang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Xiaocui Wu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| |
Collapse
|
9
|
Bæk KT, Jensen C, Farha MA, Nielsen TK, Paknejadi E, Mebus VH, Vestergaard M, Brown ED, Frees D. A Staphylococcus aureus clpX Mutant Used as a Unique Screening Tool to Identify Cell Wall Synthesis Inhibitors that Reverse β-Lactam Resistance in MRSA. Front Mol Biosci 2021; 8:691569. [PMID: 34150853 PMCID: PMC8212132 DOI: 10.3389/fmolb.2021.691569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bacterial infections world-wide. Staphylococcal infections are preferentially treated with β-lactam antibiotics, however, methicillin-resistant S. aureus (MRSA) strains have acquired resistance to this superior class of antibiotics. We have developed a growth-based, high-throughput screening approach that directly identifies cell wall synthesis inhibitors capable of reversing β-lactam resistance in MRSA. The screen is based on the finding that S. aureus mutants lacking the ClpX chaperone grow very poorly at 30°C unless specific steps in teichoic acid synthesis or penicillin binding protein (PBP) activity are inhibited. This property allowed us to exploit the S. aureus clpX mutant as a unique screening tool to rapidly identify biologically active compounds that target cell wall synthesis. We tested a library of ∼50,000 small chemical compounds and searched for compounds that inhibited growth of the wild type while stimulating growth of the clpX mutant. Fifty-eight compounds met these screening criteria, and preliminary tests of 10 compounds identified seven compounds that reverse β-lactam resistance of MRSA as expected for inhibitors of teichoic acid synthesis. The hit compounds are therefore promising candidates for further development as novel combination agents to restore β-lactam efficacy against MRSA.
Collapse
Affiliation(s)
- Kristoffer T Bæk
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maya A Farha
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Tobias K Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ervin Paknejadi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktor H Mebus
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Ju Y, An Q, Zhang Y, Sun K, Bai L, Luo Y. Recent advances in Clp protease modulation to address virulence, resistance and persistence of MRSA infection. Drug Discov Today 2021; 26:2190-2197. [PMID: 34048895 DOI: 10.1016/j.drudis.2021.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
The Clp protease is an AAA+ protease that executes abnormally folded or malfunctioning proteins, and has an important role in producing virulence factors, forming biofilms or persisters and developing methicillin-resistant Staphylococcus aureus (MRSA). Recent studies showed that Clp protease controls virulence via agr signaling and degrades antitoxins of the toxin-antitoxin system to modulate the formation of persisters and biofilms. In this review, we focus on recent developments concerning the virulence and persistence regulatory pathways and resistance-related mechanism of Clp protease in S. aureus, with an overview of the Clp modulators developed to treat MRSA infection.
Collapse
Affiliation(s)
- Yuan Ju
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Sichuan University Library, Sichuan University, Chengdu 610041, China
| | - Qi An
- Public Health Clinical Center of Chengdu, Chengdu 610041, China
| | - Yiwen Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ke Sun
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Kirsch VC, Fetzer C, Sieber SA. Global Inventory of ClpP- and ClpX-Regulated Proteins in Staphylococcus aureus. J Proteome Res 2020; 20:867-879. [PMID: 33210542 DOI: 10.1021/acs.jproteome.0c00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus represents an opportunistic pathogen, which utilizes elaborate quorum sensing mechanisms to precisely control the expression and secretion of virulence factors. Previous studies indicated a role of the ClpXP proteolytic system in controlling pathogenesis. While detailed transcriptome data for S. aureus ClpP and ClpX knockout mutants is available, corresponding studies on the proteome and secretome level are largely lacking. To globally decipher the functional roles of ClpP and ClpX, we utilized S. aureus genomic deletion mutants of the corresponding genes for in-depth proteomic liquid chromatography-mass spectrometry (LC-MS)/MS analysis. These studies were complemented by an inactive ClpP active-site mutant strain to monitor changes solely depending on the activity and not the presence of the protein. A comparison of these strains with the wildtype revealed, e.g., downregulation of virulence, purine/pyrimidine biosynthesis, iron uptake, and stress response. Correspondingly, the integration of metabolomics data showed a reduction in the subset of purine and pyrimidine metabolite levels. Interestingly, a comparison between the ClpP knockout and ClpP S98A active-site mutant strains revealed characteristic differences. These results are not only of fundamental importance to understand the cellular role of ClpXP but also have implications for the development of novel virulence inhibitor classes.
Collapse
Affiliation(s)
- Volker C Kirsch
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Protein Assemblies (CPA), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
12
|
Schelin J, Cohn MT, Frisk B, Frees D. A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec. Toxins (Basel) 2020; 12:E553. [PMID: 32872362 PMCID: PMC7551677 DOI: 10.3390/toxins12090553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal toxic shock syndrome is a potentially lethal illness attributed to superantigens produced by Staphylococcus aureus, in particular toxic shock syndrome toxin 1 (TSST-1), but staphylococcal enterotoxins (SEs) are also implicated. The genes encoding these important toxins are carried on mobile genetic elements, and the regulatory networks controlling expression of these toxins remain relatively unexplored. We show here that the highly conserved ClpXP protease stimulates transcription of tst (TSST-1), sec (SEC), and sed (SED) genes in the prototypical strains, SA564 and RN4282. In the wild-type cells, the post-exponential upregulation of toxin gene transcription was proposed to occur via RNAIII-mediated downregulation of the Rot repressor. Contradictive to this model, we showed that the post-exponential induction of tst, sed, and sec transcription did not occur in cells devoid of ClpXP activity, despite the Rot level being diminished. To identify transcriptional regulators with a changed expression in cells devoid of ClpXP activity, RNA sequencing was performed. The RNAseq analysis revealed a number of global virulence regulators that might act downstream of ClpXP, to control expression of tst and other virulence genes. Collectively, the results extend our understanding of the complex transcriptional regulation of the tst, sed, and sec genes.
Collapse
Affiliation(s)
- Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Marianne Thorup Cohn
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| | - Barbro Frisk
- Division of Applied Microbiology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden; (J.S.); (B.F.)
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederikberg C, Denmark;
| |
Collapse
|
13
|
Huang M, Zhao Y, Feng L, Zhu L, Zhan L, Chen X. Role of the ClpX from Corynebacterium crenatum involved in stress responses and energy metabolism. Appl Microbiol Biotechnol 2020; 104:5505-5517. [PMID: 32300856 DOI: 10.1007/s00253-020-10597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
ClpX and ClpP are involved in many important functions, including stress responses and energy metabolism, in microorganisms. However, the ClpX and ClpP of microbes used in industrial scale have rarely been studied. Industrial bacterial fermentation experiences a variety of stresses, and energy metabolism is extremely important for industrial bacteria. Thus, the role played by the ClpX and ClpP of industrial bacteria in fermentation should be investigated. Most microorganisms have a single clpP gene, while Corynebacterium crenatum AS 1.542 possesses two clpPs. Herein, the clpX, clpP1, and clpP2 of C. crenatum were cloned, and its fusion protein was expressed and characterized. We also constructed clpX deletion mutant and complementation strain. Results indicate that ClpX serves an important function in thermal, pH, and ethanol stresses. It is also involved in NADPH synthesis and glucose consumption during fermentation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China.,School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096, People's Republic of China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, 330096, People's Republic of China. .,School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
14
|
Guerra PR, Liu G, Lemire S, Nawrocki A, Kudirkiene E, Møller-Jensen J, Olsen JE, Jelsbak L. Polyamine depletion has global effects on stress and virulence gene expression and affects HilA translation in Salmonella enterica serovar typhimurium. Res Microbiol 2020; 171:143-152. [PMID: 31991172 DOI: 10.1016/j.resmic.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Polyamines are small cationic amines required for modulating multiple cell process, including cell growth and DNA and RNA stability. In Salmonella polyamines are primarily synthesized from L-arginine or L-ornithine. Based on a previous study, which demonstrated that polyamines affect the expression of virulence gene in S. Typhimurium, we investigated the role of polyamines in the global gene and protein expression in S. Typhimurium. The depletion of polyamine biosynthesis led to down-regulation of genes encoding structural components of the Type Three Secretion system 1 (TTSS1) and its secreted effectors. Interestingly, Expression of HilA, which is the master regulator of Salmonella Pathogenicity Island 1 (SPI1), was only reduced at the post-transcriptional in the polyamine mutant. Enzymes related to biosynthesis and/or transport of several amino acids were up-regulated, just as the Mg2+-transport systems were three to six-fold up-regulated at both the transcriptional and protein levels. Furthermore, in the polyamine depletion mutant, proteins related to stress response (IbpA, Dps, SodB), were 2-5 fold up-regulated. Together our data provide strong evidence that polyamine depletion affects expression of proteins linked with virulence and stress response of S. Typhimurium. Furthermore, polyamines positively affected translation of HilA, the major regulator of SPI1.
Collapse
Affiliation(s)
- Priscila R Guerra
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Gang Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | - Arkadiusz Nawrocki
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Jakob Møller-Jensen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
15
|
Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision. Sci Rep 2019; 9:16456. [PMID: 31712583 PMCID: PMC6848492 DOI: 10.1038/s41598-019-52823-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/12/2019] [Indexed: 11/25/2022] Open
Abstract
In all living cells, molecular chaperones are essential for facilitating folding and unfolding of proteins. ClpX is a highly conserved ATP-dependent chaperone that besides functioning as a classical chaperone can associate with ClpP to form the ClpXP protease. To investigate the relative impact of the ClpXP protease and the ClpX chaperone in cell physiology of the important pathogenic bacterium Staphylococcus aureus, we assessed the transcriptional changes induced by inactivating only ClpXP, or by completely deleting ClpX. This analysis revealed that ClpX has a profound impact on S. aureus cell physiology that is mediated primarily via ClpXP-dependent pathways. As an example, ClpX impacts expression of virulence genes entirely via ClpXP-dependent mechanisms. Furthermore, ClpX controls a high number of genes and sRNAs via pathways involving both ClpXP protease and ClpX chaperone activities; an interesting example being genes promoting excision and replication of the pathogenicity island SaPI5. Independently of ClpP, ClpX, impacts transcription of only a restricted number of genes involved in peptidoglycan synthesis, cell division, and type seven secretion. Finally, we demonstrate that ClpX localizes in single foci in close proximity to the division septum lending support to the idea that ClpX plays a role in S. aureus cell division.
Collapse
|
16
|
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that has evolved a complex regulatory network to control virulence. One of the main functions of this interconnected network is to sense various environmental cues and respond by altering the production of virulence factors necessary for survival in the host, including cell surface adhesins and extracellular enzymes and toxins. Of these S. aureus regulatory systems, one of the best studied is the accessory gene regulator (agr), which is a quorum-sensing system that senses the local concentration of a cyclic peptide signaling molecule. This system allows S. aureus to sense its own population density and translate this information into a specific gene expression pattern. Besides agr, this pathogen uses other two-component systems to sense specific cues and coordinates responses with cytoplasmic regulators of the SarA protein family and alternative sigma factors. These divergent regulatory systems integrate the various environmental and host-derived signals into a network that ensures optimal pathogen response to the changing conditions. This article gives an overview of the most important and best-studied S. aureus regulatory systems and summarizes the functions of these regulators during host interactions. The regulatory systems discussed include the agr quorum-sensing system; the SaeRS, SrrAB, and ArlRS two-component systems, the cytoplasmic SarA-family regulators (SarA, Rot, and MgrA); and the alternative sigma factors (SigB and SigH).
Collapse
|
17
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
18
|
Stahlhut SG, Alqarzaee AA, Jensen C, Fisker NS, Pereira AR, Pinho MG, Thomas VC, Frees D. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Sci Rep 2017; 7:11739. [PMID: 28924169 PMCID: PMC5603545 DOI: 10.1038/s41598-017-12122-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
In living cells intracellular proteolysis is crucial for protein homeostasis, and ClpP proteases are conserved between eubacteria and the organelles of eukaryotic cells. In Staphylococcus aureus, ClpP associates to the substrate specificity factors, ClpX and ClpC forming two ClpP proteases, ClpXP and ClpCP. To address how individual ClpP proteases impact cell physiology, we constructed a S. aureus mutant expressing ClpX with an I265E substitution in the ClpP recognition tripeptide of ClpX. This mutant cannot degrade established ClpXP substrates confirming that the introduced amino acid substitution abolishes ClpXP activity. Phenotypic characterization of this mutant showed that ClpXP activity controls cell size and is required for growth at low temperature. Cells expressing the ClpXI265E variant, in contrast to cells lacking ClpP, are not sensitive to heat-stress and do not accumulate protein aggregates showing that ClpXP is dispensable for degradation of unfolded proteins in S. aureus. Consistent with this finding, transcriptomic profiling revealed strong induction of genes responding to protein folding stress in cells devoid of ClpP, but not in cells lacking only ClpXP. In the latter cells, highly upregulated loci include the urease operon, the pyrimidine biosynthesis operon, the betA-betB operon, and the pathogenicity island, SaPI5, while virulence genes were dramatically down-regulated.
Collapse
Affiliation(s)
- Steen G Stahlhut
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Abdulelah A Alqarzaee
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Camilla Jensen
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Niclas S Fisker
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Ana R Pereira
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vinai Chittezham Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Dorte Frees
- Department of Veterinary Disease Biology, University of Copenhagen, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Krysiak J, Stahl M, Vomacka J, Fetzer C, Lakemeyer M, Fux A, Sieber SA. Quantitative Map of β-Lactone-Induced Virulence Regulation. J Proteome Res 2017; 16:1180-1192. [DOI: 10.1021/acs.jproteome.6b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joanna Krysiak
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Matthias Stahl
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Jan Vomacka
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Markus Lakemeyer
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Anja Fux
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair
of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
20
|
Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS One 2016; 11:e0168305. [PMID: 28005941 PMCID: PMC5179057 DOI: 10.1371/journal.pone.0168305] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation.
Collapse
|
21
|
The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone. mBio 2016; 7:mBio.01228-16. [PMID: 27507828 PMCID: PMC4981727 DOI: 10.1128/mbio.01228-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.
Collapse
|
22
|
Søndberg E, Jelsbak L. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice. BMC Microbiol 2016; 16:30. [PMID: 26955808 PMCID: PMC4784465 DOI: 10.1186/s12866-016-0646-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/25/2016] [Indexed: 01/27/2023] Open
Abstract
Background Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S. Typhi and serve as the reservoir for the disease. The specific mechanisms and adaptive strategies enabling S. Typhi to survive inside the host for extended periods are incompletely understood. Yet, elucidation of these processes is of major importance for improvement of therapeutic strategies. In the current study genetic adaptation during experimental chronic S. Typhimurium infections of mice, an established model of chronic typhoid fever, was probed as an approach for studying the molecular mechanisms of host-adaptation during long-term host-association. Results Individually sequence-tagged wild type strains of S. Typhimurium 4/74 were used to establish chronic infections of 129X1/SvJ mice. Over the course of infections, S. Typhimurium bacteria were isolated from feces and from livers and spleens upon termination of the experiment. In all samples dominant clones were identified and select clones were subjected to whole genome sequencing. Dominant clones isolated from either systemic organs or fecal samples exhibited distinct single nucleotide polymorphisms (SNPs). One mouse appeared to have distinct adapted clones in the spleen and liver, respectively. Three mice were colonized in the intestines by the same clone containing the same non-synonymous SNP in a transcriptional regulator, kdgR, of metabolic genes. This likely indicates transmission of this clone between mice. The mutation was tracked to have occurred prior to 2 weeks post infection in one of the three mice and had subsequently been transmitted to the other two mice. Re-infection with this clone confirmed that it is superior to the wild type for intestinal colonization. Conclusions During 4 to 6 weeks of chronic infections, S. Typhimurium acquired distinct SNPs in known regulators of metabolic and virulence genes. One SNP, the kdgR-SNP was confirmed to confer selective advantage during chronic infections and constitute a true patho-adaptive mutation. Together, the results provide evidence for rapid genetic adaptation to the host of S. Typhimurium and validate experimental evolution in the context of host infection as a strategy for elucidating pathogen host interactions at the molecular level. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0646-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emilie Søndberg
- Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| | - Lotte Jelsbak
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000, Roskilde, Denmark.
| |
Collapse
|
23
|
Stepwise decrease in daptomycin susceptibility in clinical Staphylococcus aureus isolates associated with an initial mutation in rpoB and a compensatory inactivation of the clpX gene. Antimicrob Agents Chemother 2015; 59:6983-91. [PMID: 26324273 DOI: 10.1128/aac.01303-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. The emergence of daptomycin-nonsusceptible S. aureus isolates during therapy is often associated with multiple genetic changes; however, the relative contributions of these changes to resistance and other phenotypic changes usually remain unclear. The present study was undertaken to investigate this issue using a genetically characterized series of four isogenic clinical MRSA strains derived from a patient with bacteremia before and during daptomycin treatment. The first strain obtained after daptomycin therapy carried a single-nucleotide polymorphism (SNP) in rpoB (RpoB A477D) that decreased susceptibility not only to daptomycin but also to vancomycin, β-lactams, and rifampin. Furthermore, the rpoB mutant exhibited pleiotropic phenotypes, including increased cell wall thickness, reduced expression of virulence traits, induced expression of the stress-associated transcriptional regulator Spx, and slow growth. A subsequently acquired loss-of-function mutation in clpX partly alleviated the growth defect conferred by the rpoB mutation without changing antibiotic susceptibility. The final isolate acquired three additional mutations, including an SNP in mprF (MprF S295L) known to confer daptomycin nonsusceptibility, and accordingly, this isolate was the only daptomycin-nonsusceptible strain of this series. Interestingly, in this isolate, the cell wall had regained the same thickness as that of the parental strain, while the level of transcription of the vraSR (cell wall stress regulator) was increased. In conclusion, this study illustrates how serial genetic changes selected in vivo contribute to daptomycin nonsusceptibility, growth fitness, and virulence traits.
Collapse
|
24
|
Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 2014; 196:4140-51. [PMID: 25225270 DOI: 10.1128/jb.02222-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.
Collapse
|
25
|
Wallrodt I, Jelsbak L, Thomsen LE, Brix L, Lemire S, Gautier L, Nielsen DS, Jovanovic G, Buck M, Olsen JE. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1. J Med Microbiol 2014; 63:788-795. [DOI: 10.1099/jmm.0.072223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA–D operon and the distantly located pspG gene. In Salmonella enterica serovar Typhimurium (S. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1+ mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA–D set of genes caused attenuation in both NRAMP1+ and NRAMP1− mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of pspB reduced virulence in both types of mice, while deletion of pspA only caused attenuation in NRAMP1+ mice, and deletion of pspD had a minor effect in NRAMP1− mice, while deletions of either pspC or pspG did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of S. Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA.
Collapse
Affiliation(s)
- Inke Wallrodt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lotte Jelsbak
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lena Brix
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sébastien Lemire
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Laurent Gautier
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Goran Jovanovic
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, UK
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, UK
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
26
|
β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 2014; 58:4593-603. [PMID: 24867990 DOI: 10.1128/aac.02802-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has acquired the mecA gene encoding a peptidoglycan transpeptidase, penicillin binding protein 2a (PBP2a), which has decreased affinity for β-lactams. Quickly spreading and highly virulent community-acquired (CA) MRSA strains recently emerged as a frequent cause of infection in individuals without exposure to the health care system. In this study, we found that the inactivation of the components of the ClpXP protease substantially increased the β-lactam resistance level of a CA-MRSA USA300 strain, suggesting that the proteolytic activity of ClpXP controls one or more pathways modulating β-lactam resistance. These pathways do not involve the control of mecA expression, as the cellular levels of PBP2a were unaltered in the clp mutants. An analysis of the cell envelope properties of the clpX and clpP mutants revealed a number of distinct phenotypes that may contribute to the enhanced β-lactam tolerance. Both mutants displayed significantly thicker cell walls, increased peptidoglycan cross-linking, and altered composition of monomeric muropeptide species compared to those of the wild types. Moreover, changes in Sle1-mediated peptidoglycan hydrolysis and altered processing of the major autolysin Atl were observed in the clp mutants. In conclusion, the results presented here point to an important role for the ClpXP protease in controlling cell wall metabolism and add novel insights into the molecular factors that determine strain-dependent β-lactam resistance.
Collapse
|
27
|
Regulation of expression of abcA and its response to environmental conditions. J Bacteriol 2014; 196:1532-9. [PMID: 24509312 DOI: 10.1128/jb.01406-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic β-lactams. In strain ISP794, abcA is regulated by the transcriptional regulators MgrA and NorG and shares a 420-nucleotide intercistronic region with the divergently transcribed pbp4 gene, which encodes the transpeptidase Pbp4. Exposure of exponentially growing cells to iron-limited media, oxidative stress, and acidic pH (5.5) for 0.5 to 2 h had no effect on abcA expression. In contrast, nutrient limitation produced a significant increase in abcA transcripts. We identified three additional regulators (SarA, SarZ, and Rot) that bind to the overlapping promoter region of abcA and pbp4 in strain MW2 and investigated their role in the regulation of abcA expression. Expression of abcA is decreased by 10.0-fold in vivo in a subcutaneous abscess model. In vitro, abcA expression depends on rot and sarZ regulators. Moenomycin A exposure of strain MW2 produced an increase in abcA transcripts. Relative to MW2, the MIC of moenomycin was decreased 8-fold for MW2ΔabcA and increased 10-fold for the MW2 abcA overexpresser, suggesting that moenomycin is a substrate of AbcA.
Collapse
|
28
|
Nielsen A, Månsson M, Bojer MS, Gram L, Larsen TO, Novick RP, Frees D, Frøkiær H, Ingmer H. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 2014; 9:e84992. [PMID: 24416329 PMCID: PMC3885660 DOI: 10.1371/journal.pone.0084992] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus.
Collapse
Affiliation(s)
- Anita Nielsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Månsson
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Martin S. Bojer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Gram
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas O. Larsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Richard P. Novick
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
29
|
Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol 2013; 304:142-9. [PMID: 24457183 DOI: 10.1016/j.ijmm.2013.11.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intracellular proteolysis carried out by energy-dependent proteases is one of the most conserved biological processes. In all cells proteolysis maintains and shapes the cellular proteome by ridding the cell of damaged proteins and by regulating abundance of functional proteins such as regulatory proteins. The ATP-dependent ClpP protease is highly conserved among eubacteria and in the chloroplasts and mitochondria of eukaryotic cells. In the serious human pathogen, Staphylococcus aureus inactivation of clpP rendered the bacterium avirulent emphasizing the central role of proteolysis in virulence. The contribution of the Clp proteins to virulence is likely to occur at multiple levels. First of all, both Clp ATPases and the Clp protease are central players in stress responses required to cope with the adverse conditions met in the host. The ClpP protease has a dual role herein, as it both eliminates stress-damaged proteins as well as ensures the timely degradation of major stress regulators such as Spx, LexA and CtsR. Additionally, as we will summarize in this review, Clp proteases and Clp chaperones impact on such central processes as virulence gene expression, cell wall metabolism, survival in stationary phase, and cell division. These observations together with recent findings that Clp proteins contribute to adaptation to antibiotics highlights the importance of this interesting proteolytic machinery both for understanding pathogenicity of the organism and for treating staphylococcal infections.
Collapse
|
30
|
Abstract
Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg, C 1870, Denmark
| | | | | |
Collapse
|
31
|
Nielsen A, Mansson M, Wietz M, Varming AN, Phipps RK, Larsen TO, Gram L, Ingmer H. Nigribactin, a novel siderophore from Vibrio nigripulchritudo, modulates Staphylococcus aureus virulence gene expression. Mar Drugs 2012. [PMID: 23203279 PMCID: PMC3509537 DOI: 10.3390/md10112584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp.) influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract) was a Vibrio nigripulchritudo. Extraction, purification and structural elucidation revealed a novel siderophore, designated nigribactin, which induces spa transcription. The effect of nigribactin on spa expression is likely to be independent from its siderophore activity, as another potent siderophore, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens.
Collapse
Affiliation(s)
- Anita Nielsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (A.N.V.)
| | - Maria Mansson
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.M.); (R.K.P.); (T.O.L.)
| | - Matthias Wietz
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.W.); (L.G.)
- Scripps Institution of Oceanography, Center for Marine Biotechnology and Biomedicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anders N. Varming
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (A.N.V.)
| | - Richard K. Phipps
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.M.); (R.K.P.); (T.O.L.)
| | - Thomas O. Larsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.M.); (R.K.P.); (T.O.L.)
| | - Lone Gram
- National Food Institute, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (M.W.); (L.G.)
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (A.N.V.)
- Author to whom correspondence should be addressed; ; Tel.: +45-35332773; Fax: +45-35332755
| |
Collapse
|
32
|
Junecko JM, Zielinska AK, Mrak LN, Ryan DC, Graham JW, Smeltzer MS, Lee CY. Transcribing virulence in Staphylococcus aureus. World J Clin Infect Dis 2012; 2:63-76. [DOI: 10.5495/wjcid.v2.i4.63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen capable of causing a diverse range of infections. Once regarded as an opportunistic pathogen causing primarily nosocomial infections, recent years have seen the emergence of S. aureus strains capable of causing serious infection even in otherwise healthy human hosts. There has been much debate about whether this transition is a function of unique genotypic characteristics or differences in the expression of conserved virulence factors, but irrespective of this debate it is clear that the ability of S. aureus to cause infection in all of its diverse forms is heavily influenced by its ability to modulate gene expression in response to changing conditions within the human host. Indeed, the S. aureus genome encodes more than 100 transcriptional regulators that modulate the production of virulence factors either directly via interactions with cis elements associated with genes encoding virulence factors or indirectly through their complex interactions with each other. The goal of this review is to summarize recent work describing these regulators and their contribution to defining S. aureus as a human pathogen.
Collapse
|
33
|
Chunhua M, Yu L, Yaping G, Jie D, Qiang L, Xiaorong T, Guang Y. The expression of LytM is down-regulated by RNAIII inStaphylococcus aureus. J Basic Microbiol 2012; 52:636-41. [DOI: 10.1002/jobm.201100426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/12/2011] [Indexed: 01/13/2023]
|
34
|
Jelsbak L, Thomsen LE, Wallrodt I, Jensen PR, Olsen JE. Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS One 2012; 7:e36149. [PMID: 22558361 PMCID: PMC3340349 DOI: 10.1371/journal.pone.0036149] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.
Collapse
Affiliation(s)
- Lotte Jelsbak
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
35
|
Frees D, Andersen JH, Hemmingsen L, Koskenniemi K, Bæk KT, Muhammed MK, Gudeta DD, Nyman TA, Sukura A, Varmanen P, Savijoki K. New Insights into Staphylococcus aureus Stress Tolerance and Virulence Regulation from an Analysis of the Role of the ClpP Protease in the Strains Newman, COL, and SA564. J Proteome Res 2011; 11:95-108. [DOI: 10.1021/pr200956s] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
| | - Julie Hove Andersen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
| | - Lene Hemmingsen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
- Department of Veterinary Biosciences, University of Helsinki, Finland
| | | | - Kristoffer T. Bæk
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
| | - Musemma Kedir Muhammed
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
| | - Dereje Dadi Gudeta
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4 DK-1870, Frederiksberg C, Denmark
| | - Tuula A. Nyman
- Institute of Biotechnology, University of Helsinki, Finland
| | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Kirsi Savijoki
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
36
|
Mansson M, Nielsen A, Kjærulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine photobacterium. Mar Drugs 2011; 9:2537-2552. [PMID: 22363239 PMCID: PMC3280567 DOI: 10.3390/md9122537] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022] Open
Abstract
During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA). To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium.
Collapse
Affiliation(s)
- Maria Mansson
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Author to whom correspondence should be addressed; ; Tel.: +45-4525-2724; Fax: +45-4588-4148
| | - Anita Nielsen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (H.I.)
| | - Louise Kjærulff
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (L.K.); (C.H.G.)
| | - Charlotte H. Gotfredsen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (L.K.); (C.H.G.)
| | - Matthias Wietz
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (M.W.); (L.G.)
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark; (A.N.); (H.I.)
| | - Lone Gram
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; (M.W.); (L.G.)
| | - Thomas O. Larsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
37
|
Rot and Agr system modulate fibrinogen-binding ability mainly by regulating clfB expression in Staphylococcus aureus NCTC8325. Med Microbiol Immunol 2011; 201:81-92. [DOI: 10.1007/s00430-011-0208-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Indexed: 01/19/2023]
|