1
|
Wang X, Xie Q, Huang Y, Lu J, Chen L, Guo J, Jiang Y, Kang Q, Yu X, Zhang W, Lv M, Hu L, Wang R, Yang Z, Zheng T. Neutralizing chimeric anti-F1 monoclonal antibody against Yersinia pestis infection. Int J Antimicrob Agents 2024; 64:107354. [PMID: 39389387 DOI: 10.1016/j.ijantimicag.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Drug-resistant Yersinia pestis (Y. pestis) poses a threat to the use of antibiotics to treat Y. pestis infections. Passive immunization with neutralizing monoclonal antibodies (mAbs) is considered an effective approach for the treatment of infectious diseases. In this study, a murine single-chain fragment variable (scFv) phage antibody library targeting the F1 antigen was constructed and screened. Therapeutic intravenous injection of 400 μg chimeric mAb S1 through tail veins provided complete protection against Y. pestis 201 challenge in a pneumonic plague mouse model. Timely antibody treatment eliminated the bacteria and reduced lung inflammation. These data suggest that chimeric mAb S1 is a candidate treatment for Y. pestis infection that warrants further study.
Collapse
MESH Headings
- Animals
- Plague/immunology
- Plague/prevention & control
- Yersinia pestis/immunology
- Disease Models, Animal
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Mice
- Antibodies, Bacterial/therapeutic use
- Antibodies, Bacterial/immunology
- Female
- Mice, Inbred BALB C
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/therapeutic use
- Bacterial Proteins/immunology
- Immunization, Passive/methods
- Injections, Intravenous
Collapse
Affiliation(s)
- Xi Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Qing Xie
- Academy of Military Medical Sciences, Beijing, China
| | - Ying Huang
- Academy of Military Medical Sciences, Beijing, China
| | - Jiansheng Lu
- Academy of Military Medical Sciences, Beijing, China
| | - Lei Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Jiazheng Guo
- Academy of Military Medical Sciences, Beijing, China
| | - Yujia Jiang
- Academy of Military Medical Sciences, Beijing, China
| | - Qinglin Kang
- Academy of Military Medical Sciences, Beijing, China
| | - Xinrui Yu
- Academy of Military Medical Sciences, Beijing, China
| | - Wei Zhang
- Academy of Military Medical Sciences, Beijing, China
| | - Meng Lv
- Academy of Military Medical Sciences, Beijing, China
| | - Lingfei Hu
- Academy of Military Medical Sciences, Beijing, China
| | - Rong Wang
- Academy of Military Medical Sciences, Beijing, China.
| | - Zhixin Yang
- Academy of Military Medical Sciences, Beijing, China.
| | - Tao Zheng
- Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhou Y, Xiao X, Peng C, Song D, Ouyang F, Wang L. Progesterone induces glioblastoma cell apoptosis by coactivating extrinsic and intrinsic apoptotic pathways. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Zhu M, Zhang D, Zhang L, Zhao L, Xu L, Wang B, Zhang X, Chen J, Bei Z, Wang H, Zhou D, Yang W, Song Y. Spray-Dried Inhalable Powder Formulations of Gentamicin Designed for Pneumonic Plague Therapy in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122646. [PMID: 36559140 PMCID: PMC9782578 DOI: 10.3390/pharmaceutics14122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Infection with Yersinia pestis (Y. pestis) may cause pneumonic plague, which is inevitably fatal without treatment. Gentamicin (GM), an aminoglycoside antibiotic, is a drug commonly used in the treatment of plague. However, it requires repeated intramuscular or intravenous administration. Pulmonary drug delivery is noninvasive, with the advantages of local targeting and reduced risk of systemic toxicity. In this study, GM powders were prepared using spray-drying technology. The powders displayed good physical and chemical properties and met the requirements for human pulmonary inhalation. The formulation of the powders was optimized using a 32 full factorial design. A formulation of 15% (w/w) of L-leucine was prepared, and the spray-drying process parameters using an inlet temperature of 120°C and a 15% pump rate were determined to produce the best powder. In addition, the optimized GM spray-dried powders were characterized in terms of morphology, crystallinity, powder fluidity, and aerodynamic particle size distribution analysis. In a mouse model of pneumonic plague, we compared the therapeutic effects among three administration routes, including subcutaneous injection, liquid atomization, and dry powder atomization. In conclusion, our data suggest that inhalation therapy with GM spray-dried powders is an effective treatment for pneumonic plague.
Collapse
Affiliation(s)
- Menghuan Zhu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinyu Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinwei Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhuchun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| | - Yabin Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| |
Collapse
|
4
|
Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Commun Biol 2021; 4:1248. [PMID: 34728737 PMCID: PMC8563848 DOI: 10.1038/s42003-021-02759-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Plague caused by Yersinia pestis is one of the deadliest diseases. However, many molecular mechanisms of bacterial virulence remain unclear. This study engaged in the discovery of small open reading frame (sORF)-encoded peptides (SEPs) in Y. pestis. An integrated proteogenomic pipeline was established, and an atlas containing 76 SEPs was described. Bioinformatic analysis indicated that 20% of these SEPs were secreted or localized to the transmembrane and that 33% contained functional domains. Two SEPs, named SEPs-yp1 and -yp2 and encoded in noncoding regions, were selected by comparative peptidomics analysis under host-specific environments and high-salinity stress. They displayed important roles in the regulation of antiphagocytic capability in a thorough functional assay. Remarkable attenuation of virulence in mice was observed in the SEP-deleted mutants. Further global proteomic analysis indicated that SEPs-yp1 and -yp2 affected the bacterial metabolic pathways, and SEP-yp1 was associated with the bacterial virulence by modulating the expression of key virulence factors of the Yersinia type III secretion system. Our study provides a rich resource for research on Y. pestis and plague, and the findings on SEP-yp1 and SEP-yp2 shed light on the molecular mechanism of bacterial virulence. Shiyang Cao, Xinyue Liu, Yin Huang, and Yanfeng Yan et al. utilized an integrated proteogenomic approach to describe an atlas of small open reading frame-encoded peptides (SEPs) in the pathogen, Yersinia pestis. They demonstrate that two of these SEPs are associated with regulation of bacterial virulence, and altogether develop a valuable resource for future research into Y. pestis physiology.
Collapse
|
5
|
Böhme K, Heroven AK, Lobedann S, Guo Y, Stolle AS, Dersch P. The Small Protein YmoA Controls the Csr System and Adjusts Expression of Virulence-Relevant Traits of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:706934. [PMID: 34413840 PMCID: PMC8369931 DOI: 10.3389/fmicb.2021.706934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Virulence gene expression of Yersinia pseudotuberculosis changes during the different stages of infection and this is tightly controlled by environmental cues. In this study, we show that the small protein YmoA, a member of the Hha family, is part of this process. It controls temperature- and nutrient-dependent early and later stage virulence genes in an opposing manner and co-regulates bacterial stress responses and metabolic functions. Our analysis further revealed that YmoA exerts this function by modulating the global post-transcriptional regulatory Csr system. YmoA pre-dominantly enhances the stability of the regulatory RNA CsrC. This involves a stabilizing stem-loop structure within the 5'-region of CsrC. YmoA-mediated CsrC stabilization depends on H-NS, but not on the RNA chaperone Hfq. YmoA-promoted reprogramming of the Csr system has severe consequences for the cell: we found that a mutant deficient of ymoA is strongly reduced in its ability to enter host cells and to disseminate to the Peyer's patches, mesenteric lymph nodes, liver and spleen in mice. We propose a model in which YmoA controls transition from the initial colonization phase in the intestine toward the host defense phase important for the long-term establishment of the infection in underlying tissues.
Collapse
Affiliation(s)
- Katja Böhme
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Lobedann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yuzhu Guo
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System. Appl Environ Microbiol 2019; 85:AEM.00097-19. [PMID: 30979834 DOI: 10.1128/aem.00097-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Many genes in the bacterial pathogen Yersinia pestis, the causative agent of three plague pandemics, remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been shown to be an effective tool for gene knockdown in model bacteria. In this system, a catalytically dead Cas9 (dCas9) and a small guide RNA (sgRNA) form a complex, binding to the specific DNA target through base pairing, thereby impeding RNA polymerase binding and causing target gene repression. Here, we introduce an optimized CRISPRi system using Streptococcus pyogenes Cas9-derived dCas9 for gene knockdown in Y. pestis Multiple genes harbored on either the chromosome or plasmids of Y. pestis were efficiently knocked down (up to 380-fold) in a strictly anhydrotetracycline-inducible manner using this CRISPRi approach. Knockdown of hmsH (responsible for biofilm formation) or cspB (encoding a cold shock protein) resulted in greatly decreased biofilm formation or impaired cold tolerance in in vitro phenotypic assays. Furthermore, silencing of the virulence-associated genes yscB or ail using this CRISPRi system resulted in attenuation of virulence in HeLa cells and mice similar to that previously reported for yscB and ail null mutants. Taken together, our results confirm that this optimized CRISPRi system can reversibly and efficiently repress the expression of target genes in Y. pestis, providing an alternative to conventional gene knockdown techniques, as well as a strategy for high-throughput phenotypic screening of Y. pestis genes with unknown functions.IMPORTANCE Yersinia pestis is a lethal pathogen responsible for millions of human deaths in history. It has also attracted much attention for potential uses as a bioweapon or bioterrorism agent, against which new vaccines are desperately needed. However, many Y. pestis genes remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been successfully used in a variety of bacteria in functional genomic studies, but no such genetic tool has been reported in Y. pestis Here, we systematically optimized the CRISPRi approach for use in Y. pestis, which ultimately repressed target gene expression with high efficiency in a reversible manner. Knockdown of functional genes using this method produced phenotypes that were readily detected by in vitro assays, cell infection assays, and mouse infection experiments. This is a report of a CRISPRi approach in Y. pestis and highlights the potential use of this approach in high-throughput functional genomics studies of this pathogen.
Collapse
|
7
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
8
|
Protein Acetylation Mediated by YfiQ and CobB Is Involved in the Virulence and Stress Response of Yersinia pestis. Infect Immun 2018; 86:IAI.00224-18. [PMID: 29610260 DOI: 10.1128/iai.00224-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies revealed that acetylation is a widely used protein modification in prokaryotic organisms. The major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB have been found to be involved in basic physiological processes, such as primary metabolism, chemotaxis, and stress responses, in Escherichia coli and Salmonella However, little is known about protein acetylation modifications in Yersinia pestis, a lethal pathogen responsible for millions of human deaths in three worldwide pandemics. Here we found that Yp_0659 and Yp_1760 of Y. pestis encode the major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB, respectively, which can acetylate and deacetylate PhoP enzymatically in vitro Protein acetylation impairment in cobB and yfiQ mutants greatly decreased bacterial tolerance to cold, hot, high-salt, and acidic environments. Our comparative transcriptomic data revealed that the strongly decreased tolerance to stress stimuli was probably related to downregulation of the genes encoding the heat shock proteins (HtpG, HslV, HslR, and IbpA), cold shock proteins (CspC and CspA1), and acid resistance proteins (HdeB and AdiA). We found that the reversible acetylation mediated by CobB and YfiQ conferred attenuation of virulence, probably partially due to the decreased expression of the psaABCDEF operon, which encodes Psa fimbriae that play a key role in virulence of Y. pestis This is the first report, to our knowledge, on the roles of protein acetylation modification in stress responses, biofilm formation, and virulence of Y. pestis.
Collapse
|
9
|
Yersinia pestis YopK Inhibits Bacterial Adhesion to Host Cells by Binding to the Extracellular Matrix Adaptor Protein Matrilin-2. Infect Immun 2017; 85:IAI.01069-16. [PMID: 28533472 DOI: 10.1128/iai.01069-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
Pathogenic yersiniae harbor a type III secretion system (T3SS) that injects Yersinia outer protein (Yop) into host cells. YopK has been shown to control Yop translocation and prevent inflammasome recognition of the T3SS by the innate immune system. Here, we demonstrate that YopK inhibits bacterial adherence to host cells by binding to the extracellular matrix adaptor protein matrilin-2 (MATN2). YopK binds to MATN2, and deleting amino acids 91 to 124 disrupts binding of YopK to MATN2. A yopK null mutant exhibits a hyperadhesive phenotype, which could be responsible for the established Yop hypertranslocation phenotype of yopK mutants. Expression of YopK, but not YopKΔ91-124, in a yopK mutant restored the wild-type phenotypes of adhesion and Yop translocation, suggesting that binding to MATN2 might be essential for YopK to inhibit bacterial adhesion and negatively regulate Yop translocation. A green fluorescent protein (GFP)-YopK fusion specifically binds to the endogenous MATN2 on the surface of HeLa cells, whereas GFP-YopKΔ91-124 cannot. Addition of purified YopK protein during infection decreased adhesion of Y. pestis to HeLa cells, while YopKΔ91-124 protein showed no effect. Taking these results together, we propose a model that the T3SS-secreted YopK hinders bacterial adhesion to HeLa cells by binding to MATN2, which is ubiquitously exposed on eukaryotic cells.
Collapse
|
10
|
Cao SY, Liu WB, Tan YF, Yang HY, Zhang TT, Wang T, Wang XY, Song YJ, Yang RF, Du ZM. An Interaction between the Inner Rod Protein YscI and the Needle Protein YscF Is Required to Assemble the Needle Structure of the Yersinia Type Three Secretion System. J Biol Chem 2017; 292:5488-5498. [PMID: 28196868 DOI: 10.1074/jbc.m116.743591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
The type III secretion system is a highly conserved virulence mechanism that is widely distributed in Gram-negative bacteria. It has a syringe-like structure composed of a multi-ring basal body that spans the bacterial envelope and a projecting needle that delivers virulence effectors into host cells. Here, we showed that the Yersinia inner rod protein YscI directly interacts with the needle protein YscF inside the bacterial cells and that this interaction depends on amino acid residues 83-102 in the carboxyl terminus of YscI. Alanine substitution of Trp-85 or Ser-86 abrogated the binding of YscI to YscF as well as needle assembly and the secretion of effectors (Yops) and the needle tip protein LcrV. However, yscI null mutants that were trans-complemented with YscI mutants that bind YscF still assembled the needle and secreted Yops, demonstrating that a direct interaction between YscF and YscI is critical for these processes. Consistently, YscI mutants that did not bind YscF resulted in greatly decreased HeLa cell cytotoxicity. Together, these results show that YscI participates in needle assembly by directly interacting with YscF.
Collapse
Affiliation(s)
- Shi-Yang Cao
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wan-Bin Liu
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Fang Tan
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui-Ying Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ting-Ting Zhang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tong Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yi Wang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ya-Jun Song
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Fu Yang
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zong-Min Du
- From the State Key laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
11
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol 2016; 6:rsob.150198. [PMID: 26984293 PMCID: PMC4821237 DOI: 10.1098/rsob.150198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RovA is known to enhance Yersinia pestis virulence by directly upregulating the psa loci. This work presents a complex gene regulatory paradigm involving the reciprocal regulatory action of RovM and RovA on the expression of biofilm and virulence genes as well as on their own genes. RovM and RovA enhance and inhibit Y. pestis biofilm production, respectively, whereas RovM represses virulence in mice. RovM directly stimulates the transcription of hmsT, hmsCDE and rovM, while indirectly enhancing hmsHFRS transcription. It also indirectly represses hmsP transcription. By contrast, RovA directly represses hmsT transcription and indirectly inhibits waaAE-coaD transcription, while RovM inhibits psaABC and psaEF transcription by directly repressing rovA transcription. rovM expression is significantly upregulated at 26°C (the temperature of the flea gut) relative to 37°C (the warm-blooded host temperature). We speculate that upregulation of rovM together with downregulation of rovA in the flea gut would promote Y. pestis biofilm formation while inhibiting virulence gene expression, leading to a more transmissible infection of this pathogen in fleas. Once the bacterium shifts to a lifestyle in the warm-blooded hosts, inhibited RovM production accompanied by recovered RovA synthesis would encourage virulence factor production and inhibit biofilm gene expression.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
12
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
13
|
Abstract
Y. pestis exhibits dramatically different traits of pathogenicity and transmission, albeit their close genetic relationship with its ancestor-Y. pseudotuberculosis, a self-limiting gastroenteric pathogen. Y. pestis is evolved into a deadly pathogen and transmitted to mammals and/or human beings by infected flea biting or directly contacting with the infected animals. Various kinds of environmental changes are implicated into its complex life cycle and pathogenesis. Dynamic regulation of gene expression is critical for environmental adaptation or survival, primarily reflected by genetic regulation mediated by transcriptional factors and small regulatory RNAs at the transcriptional and posttranscriptional level, respectively. The effects of genetic regulation have been shown to profoundly influence Y. pestis physiology and pathogenesis such as stress resistance, biofilm formation, intracellular survival, and replication. In this chapter, we mainly summarize the progresses on popular methods of genetic regulation and on regulatory patterns and consequences of many key transcriptional and posttranscriptional regulators, with a particular emphasis on how genetic regulation influences the biofilm and virulence of Y. pestis.
Collapse
|
14
|
Abstract
Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters.
Collapse
|
15
|
Tian G, Qi Z, Qiu Y, Wu X, Zhang Q, Yang X, Xin Y, He J, Bi Y, Wang Q, Zhou J, Fan Y, Zhou Y, Jiang Y, Yang R, Wang X. Comparison of virulence between the Yersinia pestis Microtus 201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques, Macaca mulatta. Hum Vaccin Immunother 2015; 10:3552-60. [PMID: 25483697 DOI: 10.4161/hv.35119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our previous study has demonstrated that Yersinia pestis Microtus 201 is a low virulent strain to the Chinese-origin rhesus macaques, Macaca mulatta, and can protect it against high dose of virulent Y. pestis challenge by subcutaneous route. To investigate whether the Y. pestis Microtus 201 can be used as a live attenuated vaccine candidate, in this study its intravenous virulence was determined and compared with the live attenuated vaccine strain EV in the Chinese-origin rhesus macaque model. The results showed that the Chinese-origin rhesus macaques can survive intravenous infection with approximately 10(9) CFU of the Y. pestis Microtus 201, but all the animals succumbed to 10(10) CFU of intravenous infection. By contrast, all the animals survive intravenous infection with 10(10) CFU of the vaccine EV. Post-mortem examination showed multiple areas of severe abscess in the lungs of the dead animals infected with 10(10) CFU of the Y. pestis Microtus 201, whereas histopathology observation, microbiological examination and immunohistochemistry staining showed that the Y. pestis Microtus 201 also invaded hearts, livers, spleens, kidneys and lymph nodes and caused different degrees of pathological changes in these organs. These results indicated that the Y. pestis Microtus 201 is indeed low virulent to monkeys, but it is more virulent than the vaccine EV when administered by intravenous route. The Y. pestis Microtus 201 mainly attack the lungs when administered by intravenous infection, which may be the leading cause of animal death.
Collapse
Affiliation(s)
- Guang Tian
- a Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhou J, Bi Y, Xu X, Qiu Y, Wang Q, Feng N, Cui Y, Yan Y, Zhou L, Tan Y, Yang H, Du Z, Han Y, Song Y, Zhang P, Zhou D, Cheng Y, Zhou Y, Yang R, Wang X. Bioluminescent tracking of colonization and clearance dynamics of plasmid-deficient Yersinia pestis strains in a mouse model of septicemic plague. Microbes Infect 2014; 16:214-24. [DOI: 10.1016/j.micinf.2013.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/04/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023]
|
17
|
Zhang Q, Wang Q, Tian G, Qi Z, Zhang X, Wu X, Qiu Y, Bi Y, Yang X, Xin Y, He J, Zhou J, Zeng L, Yang R, Wang X. Yersinia pestis biovar Microtus strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Hum Vaccin Immunother 2013; 10:368-77. [PMID: 24225642 DOI: 10.4161/hv.27060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Yersinia pestis biovar Microtus is considered to be a virulent to larger mammals, including guinea pigs, rabbits and humans. It may be used as live attenuated plague vaccine candidates in terms of its low virulence. However, the Microtus strain's protection against plague has yet to be demonstrated in larger mammals. In this study, we evaluated the protective efficacy of the Microtus strain 201 as a live attenuated plague vaccine candidate. Our results show that this strain is highly attenuated by subcutaneous route, elicits an F1-specific antibody titer similar to the EV and provides a protective efficacy similar to the EV against bubonic plague in Chinese-origin rhesus macaques. The Microtus strain 201 could induce elevated secretion of both Th1-associated cytokines (IFN-γ, IL-2 and TNF-α) and Th2-associated cytokines (IL-4, IL-5, and IL-6), as well as chemokines MCP-1 and IL-8. However, the protected animals developed skin ulcer at challenge site with different severity in most of the immunized and some of the EV-immunized monkeys. Generally, the Microtus strain 201 represented a good plague vaccine candidate based on its ability to generate strong humoral and cell-mediated immune responses as well as its good protection against high dose of subcutaneous virulent Y. pestis challenge.
Collapse
Affiliation(s)
- Qingwen Zhang
- Anhui Medical University; Hefei, Anhui PR China; Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province; Xining, PR China
| | - Qiong Wang
- Anhui Medical University; Hefei, Anhui PR China; Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Guang Tian
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province; Xining, PR China
| | - Xuecan Zhang
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Xiaohong Wu
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Yefeng Qiu
- Laboratory Animal Research Center; Academy of Military Medical Science; Beijing; PR China
| | - Yujing Bi
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Xiaoyan Yang
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province; Xining, PR China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province; Xining, PR China
| | - Jian He
- Qinghai Institute for Endemic Disease Prevention and Control of Qinghai Province; Xining, PR China
| | - Jiyuan Zhou
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Lin Zeng
- Laboratory Animal Research Center; Academy of Military Medical Science; Beijing; PR China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| | - Xiaoyi Wang
- Anhui Medical University; Hefei, Anhui PR China; Laboratory of Analytical Microbiology; State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology; Beijing, PR China
| |
Collapse
|
18
|
Yang H, Tan Y, Zhang T, Tang L, Wang J, Ke Y, Guo Z, Yang X, Yang R, Du Z. Identification of novel protein-protein interactions of Yersinia pestis type III secretion system by yeast two hybrid system. PLoS One 2013; 8:e54121. [PMID: 23349800 PMCID: PMC3551969 DOI: 10.1371/journal.pone.0054121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 12/10/2012] [Indexed: 01/03/2023] Open
Abstract
Type III secretion system (T3SS) of the plague bacterium Y. pestis encodes a syringe-like structure consisting of more than 20 proteins, which can inject virulence effectors into host cells to modulate the cellular functions. Here in this report, interactions among the possible components in T3SS of Yersinia pestis were identified using yeast mating technique. A total of 57 genes, including all the pCD1-encoded genes except those involved in plasmid replication and partition, pseudogenes, and the putative transposase genes, were subjected to yeast mating analysis. 21 pairs of interaction proteins were identified, among which 9 pairs had been previously reported and 12 novel pairs were identified in this study. Six of them were tested by GST pull down assay, and interaction pairs of YscG-SycD, YscG-TyeA, YscI-YscF, and YopN-YpCD1.09c were successfully validated, suggesting that these interactions might play potential roles in function of Yersinia T3SS. Several potential new interactions among T3SS components could help to understand the assembly and regulation of Yersinia T3SS.
Collapse
Affiliation(s)
- Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tingting Zhang
- Department of Clinical Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Liujun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuehua Ke
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
19
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Thanikkal EJ, Mangu JCK, Francis MS. Interactions of the CpxA sensor kinase and cognate CpxR response regulator from Yersinia pseudotuberculosis. BMC Res Notes 2012; 5:536. [PMID: 23013530 PMCID: PMC3517363 DOI: 10.1186/1756-0500-5-536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 09/22/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The CpxA sensor kinase-CpxR response regulator two-component regulatory system is a sentinel of bacterial envelope integrity. Integrating diverse signals, it can alter the expression of a wide array of components that serve to shield the envelope from damage and to promote bacterial survival. In bacterial pathogens such as Yersinia pseudotuberculosis, this also extends to pathogenesis. CpxR is thought to dimerize upon phosphorylation by the sensor kinase CpxA. This phosphorylation enables CpxR binding to specific DNA sequences where it acts on gene transcription. As Cpx pathway activation is dependent on protein-protein interactions, we performed an interaction analysis of CpxR and CpxA from Y. pseudotuberculosis. RESULTS CpxR full-length and truncated versions that either contained or lacked a putative internal linker were all assessed for their ability to homodimerize and interact with CpxA. Using an adenylate cyclase-based bacterial two hybrid approach, full-length CpxR readily engaged with CpxA. The CpxR N-terminus could also homodimerize with itself and with a full-length CpxR. A second homodimerization assay based upon the λcI repressor also demonstrated that the CpxR C-terminus could homodimerize. While the linker was not specifically required, it enhanced CpxR homodimerization. Mutagenesis of cpxR identified the aspartate at residue 51, putative N-terminal coiled-coil and C-terminal winged-helix-turn-helix domains as mediators of CpxR homodimerization. Scrutiny of CpxA full-length and truncated versions revealed that dimerization involved the N-terminus and an internal dimerization and histidine phosphotransfer domain. CONCLUSIONS This interaction analysis mapped regions of CpxR and CpxA that were responsible for interactions with self or with each other. When combined with other physiological and biochemical tests both hybrid-based assays can be useful in dissecting molecular contacts that may underpin Cpx pathway activation and repression.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | | | | |
Collapse
|
21
|
Quade N, Mendonca C, Herbst K, Heroven AK, Ritter C, Heinz DW, Dersch P. Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia. J Biol Chem 2012; 287:35796-803. [PMID: 22936808 DOI: 10.1074/jbc.m112.379156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pathogens often rely on thermosensing to adjust virulence gene expression. In yersiniae, important virulence-associated traits are under the control of the master regulator RovA, which uses a built-in thermosensor to control its activity. Thermal upshifts encountered upon host entry induce conformational changes in the RovA dimer that attenuate DNA binding and render the protein more susceptible to proteolysis. Here, we report the crystal structure of RovA in the free and DNA-bound forms and provide evidence that thermo-induced loss of RovA activity is promoted mainly by a thermosensing loop in the dimerization domain and residues in the adjacent C-terminal helix. These determinants allow partial unfolding of the regulator upon an upshift to 37 °C. This structural distortion is transmitted to the flexible DNA-binding domain of RovA. RovA contacts mainly the DNA backbone in a low-affinity binding mode, which allows the immediate release of RovA from its operator sites. We also show that SlyA, a close homolog of RovA from Salmonella with a very similar structure, is not a thermosensor and remains active and stable at 37 °C. Strikingly, changes in only three amino acids, reflecting evolutionary replacements in SlyA, result in a complete loss of the thermosensing properties of RovA and prevent degradation. In conclusion, only minor alterations can transform a thermotolerant regulator into a thermosensor that allows adjustment of virulence and fitness determinants to their thermal environment.
Collapse
Affiliation(s)
- Nick Quade
- Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Gao H, Wang L, Xiao X, Tan Y, Guo Z, Zhou D, Yang R. Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis. PLoS One 2011; 6:e25484. [PMID: 21966533 PMCID: PMC3180457 DOI: 10.1371/journal.pone.0025484] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yersinia pestis is the causative agent of plague. The two transcriptional regulators, PhoP and RovA, are required for the virulence of Y. pestis through the regulation of various virulence-associated loci. They are the global regulators controlling two distinct large complexes of cellular pathways. METHODOLOGY/PRINCIPAL FINDINGS Based on the LacZ fusion, primer extension, gel mobility shift, and DNase I footprinting assays, RovA is shown to recognize both of the two promoters of its gene in Y. pestis. The autoregulation of RovA appears to be a conserved mechanism shared by Y. pestis and its closely related progenitor, Y. pseudotuberculosis. In Y. pestis, the PhoP regulator responds to low magnesium signals and then negatively controls only one of the two promoters of rovA through PhoP-promoter DNA association. CONCLUSIONS/SIGNIFICANCE RovA is a direct transcriptional activator for its own gene in Y. pestis, while PhoP recognizes the promoter region of rovA to repress its transcription. The direct regulatory association between PhoP and RovA bridges the PhoP and RovA regulons in Y. pestis.
Collapse
Affiliation(s)
- Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- * E-mail: (DZ); (RY)
| |
Collapse
|
23
|
Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis. PLoS One 2011; 6:e23314. [PMID: 21876746 PMCID: PMC3158067 DOI: 10.1371/journal.pone.0023314] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 07/15/2011] [Indexed: 01/06/2023] Open
Abstract
Background RovA is a global transcriptional regulator of gene expression in pathogenic Yersinia. RovA levels are kept in check by a sophisticated layering of distinct transcriptional and post-transcriptional regulatory mechanisms. In the enteropathogen Y. pseudotuberculosis, we have previously reported that the extracytoplasmic stress sensing CpxA-CpxR two-component regulatory system modulates rovA expression. Methodology/Principal Findings In this study, we characterized CpxR phosphorylation (CpxR∼P) in vitro, and determined that phosphorylation was necessary for CpxR to efficiently bind to the PCR-amplified upstream regulatory region of rovA. The precise CpxR∼P binding site was mapped by a nuclease protection assay and directed mutagenesis confirmed that in vivo binding to the rovA promoter inhibits transcription. Reduced RovA production was most pronounced following CpxR∼P accumulation in the Yersinia cytoplasm during chronic Cpx pathway activation and by the indiscriminate phosphodonor action of acetyl phosphate. Conclusions/Significance Cpx pathway activation restricts levels of the RovA global regulator. The regulatory influence of CpxR∼P must therefore extend well beyond periplasmic quality control in the Yersinia envelope, to include genes involved in environmental survival and pathogenicity.
Collapse
|