1
|
Jaillard C, Ouechtati F, Clérin E, Millet-Puel G, Corsi M, Aït-Ali N, Blond F, Chevy Q, Gales L, Farinelli M, Dalkara D, Sahel JA, Portais JC, Poncer JC, Léveillard T. The metabolic signaling of the nucleoredoxin-like 2 gene supports brain function. Redox Biol 2021; 48:102198. [PMID: 34856436 PMCID: PMC8640531 DOI: 10.1016/j.redox.2021.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Céline Jaillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Farah Ouechtati
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Emmanuelle Clérin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | | | - Mariangela Corsi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Najate Aït-Ali
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Quentin Chevy
- Sorbonne Université, INSERM, CNRS, Institut du Fer à Moulin, F-75005, Paris, France
| | - Lara Gales
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | - Mélissa Farinelli
- E-Phy-Science, Bioparc de Sophia Antipolis, 2400 route des Colles, 06410, Biot, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France
| | - Jean-Charles Portais
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics, 31077, Toulouse, France
| | | | - Thierry Léveillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-7501b, Paris, France.
| |
Collapse
|
2
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
3
|
Transcriptional regulation of nucleoredoxin-like genes takes place on
a daily basis in the retina and pineal gland of rats. Vis Neurosci 2015; 32:E002. [DOI: 10.1017/s0952523814000352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe nucleoredoxin-like gene Nxnl1 (Txnl6) and
its paralogue Nxnl2 encode the rod-derived cone viability
factors (RdCVF and RdCVF2), which increase the resistance to photooxidative
damage and have therapeutic potential for the survival of cones in retinitis
pigmentosa. In this study, the transcription of Nxnl genes was
investigated as a function of the day/night cycle in rats. The transcript levels
of Nxnl1 and Nxnl2 were seen to display daily
rhythms with steadily increasing values during the light phase and peak
expression around dark onset in preparations of whole retina, photoreceptor
cells and—but only in regard to Nxnl1—in
photoreceptor-related pinealocytes. The cycling of Nxnl1 but
not that of Nxnl2 persisted in constant darkness in the retina.
This suggests that daily regulation of Nxnl1 is driven by a
circadian clock, whereas that of Nxnl2 is promoted by
environmental light. The present data indicate clock- and light-dependent
regulations of nucleoredoxin-like genes that may be part of a protective shield
against photooxidative damage.
Collapse
|
5
|
Hennig AK, Peng GH, Chen S. Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. PLoS One 2013; 8:e69721. [PMID: 23922782 PMCID: PMC3724885 DOI: 10.1371/journal.pone.0069721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 12/12/2022] Open
Abstract
Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP) on target gene promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects, with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining photoreceptor-specific structure, function and gene expression.
Collapse
Affiliation(s)
- Anne K. Hennig
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
The P23H-1 transgenic rat carries a mutated mouse opsin gene, in addition to endogenous opsin genes, and undergoes progressive photoreceptor loss that is generally characteristic of human autosomal dominant retinitis pigmentosa (RP). Here, we examined morphological changes correlated with visual function that is comparable to clinical application in the pigmented P23H-1 rat retina as photoreceptor degeneration progressed. We found that rod function was compromised as early as postnatal day 28 and was a good indicator for tracking retinal degeneration. Cone function was normal and did not change until the thickness of the photoreceptor layer was reduced by 75%. Similar to the threshold versus intensity curves used to evaluate vision of RP patients, light-adaptation curves showed that cone thresholds depended on the number of remaining functioning cones, but not on its length of outer segments (OS). By 1 year of age, both rod and cone functions were significantly compromised. Correlating with early abnormal rod function, rods and related secondary neurons also underwent progressive degeneration, including shortening of inner and OS of photoreceptors, loss of rod bipolar and horizontal cell dendrites, thickening of the outer Müller cell processes, and reduced density of pre- and postsynaptic markers. Similar early morphological modifications were also observed in cones and their related secondary neurons. However, cone function was maintained at nearly normal level for a long period. The dramatic loss of rods at late stage of degeneration may contribute to the dysfunction of cones. Attention has to be focused on preserving cone function and identifying factors that damage cones when therapeutic regimes are applied to treat retinal degeneration. As such, these findings provide a foundation for future studies involving treatments to counter photoreceptor loss.
Collapse
|
7
|
Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl-/- mouse retina. J Neurosci 2012; 32:528-41. [PMID: 22238088 DOI: 10.1523/jneurosci.3591-11.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cone photoreceptors are the primary initiator of visual transduction in the human retina. Dysfunction or death of rod photoreceptors precedes cone loss in many retinal and macular degenerative diseases, suggesting a rod-dependent trophic support for cone survival. Rod differentiation and homeostasis are dependent on the basic motif leucine zipper transcription factor neural retina leucine zipper (NRL). The loss of Nrl (Nrl(-/-)) in mice results in a retina with predominantly S-opsin-containing cones that exhibit molecular and functional characteristics of wild-type cones. Here, we report that Nrl(-/-) retina undergoes a rapid but transient period of degeneration in early adulthood, with cone apoptosis, retinal detachment, alterations in retinal vessel structure, and activation and translocation of retinal microglia. However, cone degeneration stabilizes by 4 months of age, resulting in a thinner but intact outer nuclear layer with residual cones expressing S- and M-opsins and a preserved photopic electroretinogram. At this stage, microglia translocate back to the inner retina and reacquire a quiescent morphology. Gene profiling analysis during the period of transient degeneration reveals misregulation of genes related to stress response and inflammation, implying their involvement in cone death. The Nrl(-/-) mouse illustrates the long-term viability of cones in the absence of rods and retinal pigment epithelium defects in a rodless retina. We propose that Nrl(-/-) retina may serve as a model for elucidating mechanisms of cone homeostasis and degeneration that would be relevant to understanding diseases of the cone-dominant human macula.
Collapse
|