1
|
Di Leva F, Arnoldi M, Santarelli S, Massonot M, Lemée MV, Bon C, Pellegrini M, Castellini ME, Zarantonello G, Messina A, Bozzi Y, Bernier R, Zucchelli S, Casarosa S, Dassi E, Ronzitti G, Golzio C, Morandell J, Gustincich S, Espinoza S, Biagioli M. SINEUP RNA rescues molecular phenotypes associated with CHD8 suppression in autism spectrum disorder model systems. Mol Ther 2024:S1525-0016(24)00843-8. [PMID: 39741407 DOI: 10.1016/j.ymthe.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Loss-of-function mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are strongly associated with autism spectrum disorders (ASDs). Indeed, the reduction of CHD8 causes transcriptional, epigenetic, and cellular phenotypic changes correlated to disease, which can be monitored in assessing new therapeutic approaches. SINEUPs are a functional class of natural and synthetic antisense long non-coding RNAs able to stimulate the translation of sense target mRNA, with no effect on transcription. Here, we employed synthetic SINEUP-CHD8 targeting the first and third AUG of the CHD8 coding sequence to efficiently stimulate endogenous CHD8 protein production. SINEUP-CHD8 were effective in cells with reduced levels of the target protein and in patient-derived fibroblasts with CHD8 mutations. Functionally, SINEUP-CHD8 were able to revert molecular phenotypes associated with CHD8 suppression, i.e., genome-wide transcriptional dysregulation, and the reduction of H3K36me3 levels. Strikingly, in chd8-morpholino-treated and ENU mutant zebrafish embryos, SINEUP-chd8 injection confirmed the ability of SINEUP RNA to rescue the chd8-suppression-induced macrocephaly phenotype and neuronal hyperproliferation. Thus, SINEUP-CHD8 molecule(s) represent a proof-of-concept toward the development of an RNA-based therapy for neurodevelopmental syndromes with implications for, and beyond ASD, and relevant to genetic disorders caused by protein haploinsufficiency.
Collapse
Affiliation(s)
- Francesca Di Leva
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Michele Arnoldi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Stefania Santarelli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Mathieu Massonot
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Marianne Victoria Lemée
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Carlotta Bon
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Maria Elena Castellini
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Giulia Zarantonello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Andrea Messina
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, 38060 Trento, Italy
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA 98195-6560, USA
| | - Silvia Zucchelli
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Simona Casarosa
- Neural Development and Regeneration Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France; Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Christelle Golzio
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104-UMR-S 1258, Department of Translational Medicine and Neurogenetics, 67404 Illkirch, France
| | - Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Stefano Espinoza
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy.
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
| |
Collapse
|
2
|
Rehman SU, Ullah N, Zhang Z, Zhen Y, Din AU, Cui H, Wang M. Recent insights into the functions and mechanisms of antisense RNA: emerging applications in cancer therapy and precision medicine. Front Chem 2024; 11:1335330. [PMID: 38274897 PMCID: PMC10809404 DOI: 10.3389/fchem.2023.1335330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The antisense RNA molecule is a unique DNA transcript consisting of 19-23 nucleotides, characterized by its complementary nature to mRNA. These antisense RNAs play a crucial role in regulating gene expression at various stages, including replication, transcription, and translation. Additionally, artificial antisense RNAs have demonstrated their ability to effectively modulate gene expression in host cells. Consequently, there has been a substantial increase in research dedicated to investigating the roles of antisense RNAs. These molecules have been found to be influential in various cellular processes, such as X-chromosome inactivation and imprinted silencing in healthy cells. However, it is important to recognize that in cancer cells; aberrantly expressed antisense RNAs can trigger the epigenetic silencing of tumor suppressor genes. Moreover, the presence of deletion-induced aberrant antisense RNAs can lead to the development of diseases through epigenetic silencing. One area of drug development worth mentioning is antisense oligonucleotides (ASOs), and a prime example of an oncogenic trans-acting long noncoding RNA (lncRNA) is HOTAIR (HOX transcript antisense RNA). NATs (noncoding antisense transcripts) are dysregulated in many cancers, and researchers are just beginning to unravel their roles as crucial regulators of cancer's hallmarks, as well as their potential for cancer therapy. In this review, we summarize the emerging roles and mechanisms of antisense RNA and explore their application in cancer therapy.
Collapse
Affiliation(s)
- Shahab Ur Rehman
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Numan Ullah
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Zhenbin Zhang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| | - Aziz-Ud Din
- Department of Human Genetics, Hazara University Mansehra, Mansehra, Pakistan
| | - Hengmi Cui
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics Yangzhou University, College of Animal Nutrition Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animals Science and Technology Yangzhou University, Yangzhou, China
- College of Animals Nutrition Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Xing Y, Lin Y, Zhang Y, Hu J, Liu J, Tian Y, Zhao J, Chen W, Han B. Novel cytoplasmic lncRNA IKBKBAS promotes lung adenocarcinoma metastasis by upregulating IKKβ and consequential activation of NF-κB signaling pathway. Cell Death Dis 2021; 12:1004. [PMID: 34702815 PMCID: PMC8548314 DOI: 10.1038/s41419-021-04304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
NF-κB signaling pathway is a critical link between inflammation and cancer. Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in dysregulation of NF-κB. Herein, we reported a novel lncRNA IKBKBAS that activated NF-κB in lung adenocarcinoma (LUAD) by upregulating IKKβ, a key member of NF-κB signaling pathway, thereby promoting the metastasis of LUAD both in vitro and in vivo. The upregulated IKBKBAS functioned as a competing endogenous RNA (ceRNA) via competing with IKKβ mRNA for binding miR-4741, consequently leading to upregulation and activation of IKKβ, and ultimately activation of NF-κB. The abnormally elevated IKBKBAS in LUAD was mainly resulted from the extremely decrease of miR-512-5p that targeting IKBKBAS. Furthermore, we identified a positive feedback loop between NF-κB and IKBKBAS, in which NF-κB activation induced by overexpression of IKBKBAS could promote the transcription of IKBKBAS by binding the κB sites within IKBKBAS promoter. Our studies revealed that IKBKBAS was involved in the activation of NF-κB signaling by upregulating the expression of IKKβ, which made it serve as a potential novel target for therapies to LUAD.
Collapse
Affiliation(s)
- Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yani Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Junmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanyuan Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jian Zhao
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
4
|
Ghanbarian H, Aghamiri S, Eftekhary M, Wagner N, Wagner KD. Small Activating RNAs: Towards the Development of New Therapeutic Agents and Clinical Treatments. Cells 2021; 10:cells10030591. [PMID: 33800164 PMCID: PMC8001863 DOI: 10.3390/cells10030591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Small double-strand RNA (dsRNA) molecules can activate endogenous genes via an RNA-based promoter targeting mechanism. RNA activation (RNAa) is an evolutionarily conserved mechanism present in diverse eukaryotic organisms ranging from nematodes to humans. Small activating RNAs (saRNAs) involved in RNAa have been successfully used to activate gene expression in cultured cells, and thereby this emergent technique might allow us to develop various biotechnological applications, without the need to synthesize hazardous construct systems harboring exogenous DNA sequences. Accordingly, this thematic issue aims to provide insights into how RNAa cellular machinery can be harnessed to activate gene expression leading to a more effective clinical treatment of various diseases.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/growth & development
- Brain/metabolism
- Genetic Therapy/methods
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Development/genetics
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurogenesis/genetics
- Neurons/cytology
- Neurons/metabolism
- Promoter Regions, Genetic
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Double-Stranded/therapeutic use
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Small Untranslated/therapeutic use
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran;
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran;
| | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-493-3776-65 (K.-D.W.)
| | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-493-3776-65 (K.-D.W.)
| |
Collapse
|
5
|
Koç B, Fucile G, Schmucki R, Giroud N, Bergauer T, Hall BJ. Identification of Natural Antisense Transcripts in Mouse Brain and Their Association With Autism Spectrum Disorder Risk Genes. Front Mol Neurosci 2021; 14:624881. [PMID: 33716665 PMCID: PMC7947803 DOI: 10.3389/fnmol.2021.624881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide sequencing technologies have greatly contributed to our understanding of the genetic basis of neurodevelopmental disorders such as autism spectrum disorder (ASD). Interestingly, a number of ASD-related genes express natural antisense transcripts (NATs). In some cases, these NATs have been shown to play a regulatory role in sense strand gene expression and thus contribute to brain function. However, a detailed study examining the transcriptional relationship between ASD-related genes and their NAT partners is lacking. We performed strand-specific, deep RNA sequencing to profile expression of sense and antisense reads with a focus on 100 ASD-related genes in medial prefrontal cortex (mPFC) and striatum across mouse post-natal development (P7, P14, and P56). Using de novo transcriptome assembly, we generated a comprehensive long non-coding RNA (lncRNA) transcriptome. We conducted BLAST analyses to compare the resultant transcripts with the human genome and identified transcripts with high sequence similarity and coverage. We assembled 32861 de novo antisense transcripts mapped to 12182 genes, of which 1018 are annotated by Ensembl as lncRNA. We validated the expression of a subset of selected ASD-related transcripts by PCR, including Syngap1 and Cntnap2. Our analyses revealed that more than 70% (72/100) of the examined ASD-related genes have one or more expressed antisense transcripts, suggesting more ASD-related genes than previously thought could be subject to NAT-mediated regulation in mice. We found that expression levels of antisense contigs were mostly positively correlated with their cognate coding sense strand RNA transcripts across developmental age. A small fraction of the examined transcripts showed brain region specific enrichment, indicating possible circuit-specific roles. Our BLAST analyses identified 110 of 271 ASD-related de novo transcripts with >90% identity to the human genome at >90% coverage. These findings, which include an assembled de novo antisense transcriptome, contribute to the understanding of NAT regulation of ASD-related genes in mice and can guide NAT-mediated gene regulation strategies in preclinical investigations toward the ultimate goal of developing novel therapeutic targets for ASD.
Collapse
Affiliation(s)
- Baran Koç
- Faculty of Science, University of Basel, Basel, Switzerland.,Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Geoffrey Fucile
- sciCORE Computing Center, University of Basel, Basel, Switzerland
| | - Roland Schmucki
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Giroud
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Tobias Bergauer
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Benjamin J Hall
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
6
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
7
|
Bon C, Luffarelli R, Russo R, Fortuni S, Pierattini B, Santulli C, Fimiani C, Persichetti F, Cotella D, Mallamaci A, Santoro C, Carninci P, Espinoza S, Testi R, Zucchelli S, Condò I, Gustincich S. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich's Ataxia. Nucleic Acids Res 2019; 47:10728-10743. [PMID: 31584077 PMCID: PMC6847766 DOI: 10.1093/nar/gkz798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.
Collapse
Affiliation(s)
- Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Riccardo Luffarelli
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Russo
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Bianca Pierattini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Chiara Santulli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Cristina Fimiani
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Francesca Persichetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| |
Collapse
|
8
|
Dai X, Kaushik AC, Zhang J. The Emerging Role of Major Regulatory RNAs in Cancer Control. Front Oncol 2019; 9:920. [PMID: 31608229 PMCID: PMC6771296 DOI: 10.3389/fonc.2019.00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations and personal variations of RNA interactions have been mechanistically coupled with disease etiology and phenotypical variations. RNA biomarkers, RNA mimics, and RNA antagonists have been developed for diagnostic, prognostic, and therapeutic uses. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two major types of RNA molecules with regulatory roles, deregulation of which has been implicated in the initiation and progression of many human malignancies. Accumulating evidence indicated the clinical roles of regulatory RNAs in cancer control, stimulating a surge in exploring the functionalities of regulatory RNAs for improved understanding on disease pathogenesis and management. In this review, we highlight the critical roles of lncRNAs and miRNAs played in tumorigenesis, scrutinize their potential functionalities as diagnostic/prognostic biomarkers and/or therapeutic targets in clinics, outline opportunities that ncRNAs may bring to complement current clinical practice for improved cancer management and identify challenges faced by translating frontier knowledge on non-coding RNAs (ncRNAs) to bedside clinics as well as possible solutions.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianying Zhang
- Henan Key Laboratory of Tumor Epidemiology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Espinoza S, Scarpato M, Damiani D, Managò F, Mereu M, Contestabile A, Peruzzo O, Carninci P, Santoro C, Papaleo F, Mingozzi F, Ronzitti G, Zucchelli S, Gustincich S. SINEUP Non-coding RNA Targeting GDNF Rescues Motor Deficits and Neurodegeneration in a Mouse Model of Parkinson's Disease. Mol Ther 2019; 28:642-652. [PMID: 31495777 PMCID: PMC7000958 DOI: 10.1016/j.ymthe.2019.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) has a potent action in promoting the survival of dopamine (DA) neurons. Several studies indicate that increasing GDNF levels may be beneficial for the treatment of Parkinson’s disease (PD) by reducing neurodegeneration of DA neurons. Despite a plethora of preclinical studies showing GDNF efficacy in PD animal models, its application in humans remains questionable for its poor efficacy and side effects due to its uncontrolled, ectopic expression. Here we took advantage of SINEUPs, a new class of antisense long non-coding RNA, that promote translation of partially overlapping sense protein-coding mRNAs with no effects on their mRNA levels. By synthesizing a SINEUP targeting Gdnf mRNA, we were able to increase endogenous GDNF protein levels by about 2-fold. Adeno-associated virus (AAV)9-mediated delivery in the striatum of wild-type (WT) mice led to an increase of endogenous GDNF protein for at least 6 months and the potentiation of the DA system’s functions while showing no side effects. Furthermore, SINEUP-GDNF was able to ameliorate motor deficits and neurodegeneration of DA neurons in a PD neurochemical mouse model. Our data indicate that SINEUP-GDNF could represent a new strategy to increase endogenous GDNF protein levels in a more physiological manner for therapeutic treatments of PD.
Collapse
Affiliation(s)
- Stefano Espinoza
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Margherita Scarpato
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Devid Damiani
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Francesca Managò
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Maddalena Mereu
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy; Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti 2, 35131 Padova, Italy
| | - Andrea Contestabile
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Omar Peruzzo
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Francesco Papaleo
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy
| | - Federico Mingozzi
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Univ Evry, Université Paris-Saclay, 91002 Evry, France
| | - Silvia Zucchelli
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), 28100 Novara, Italy; Area of Neuroscience, Scuola Internazionale degli Studi Avanzati (SISSA), 34012 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory and Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16263 Genova, Italy.
| |
Collapse
|
10
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
11
|
Oliver RJ, Mandyam CD. Regulation of Adult Neurogenesis by Non-coding RNAs: Implications for Substance Use Disorders. Front Neurosci 2018; 12:849. [PMID: 30524229 PMCID: PMC6261985 DOI: 10.3389/fnins.2018.00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.
Collapse
Affiliation(s)
- Robert J Oliver
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Wanowska E, Kubiak MR, Rosikiewicz W, Makałowska I, Szcześniak MW. Natural antisense transcripts in diseases: From modes of action to targeted therapies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1461. [PMID: 29341438 PMCID: PMC5838512 DOI: 10.1002/wrna.1461] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Antisense transcription is a widespread phenomenon in mammalian genomes, leading to production of RNAs molecules referred to as natural antisense transcripts (NATs). NATs apply diverse transcriptional and post-transcriptional regulatory mechanisms to carry out a wide variety of biological roles that are important for the normal functioning of living cells, but their dysfunctions can be associated with human diseases. In this review, we attempt to provide a molecular basis for the involvement of NATs in the etiology of human disorders such as cancers and neurodegenerative and cardiovascular diseases. We also discuss the pros and cons of oligonucleotide-based therapies targeted against NATs, and we comment on state-of-the-art progress in this promising area of clinical research. WIREs RNA 2018, 9:e1461. doi: 10.1002/wrna.1461 This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Institute of Antropology, Laboratory of Integrative GenomicsAdam Mickiewicz UniversityPoznanPoland
| | - Magdalena Regina Kubiak
- Institute of Antropology, Laboratory of Integrative GenomicsAdam Mickiewicz UniversityPoznanPoland
| | - Wojciech Rosikiewicz
- Institute of Antropology, Laboratory of Integrative GenomicsAdam Mickiewicz UniversityPoznanPoland
| | - Izabela Makałowska
- Institute of Antropology, Laboratory of Integrative GenomicsAdam Mickiewicz UniversityPoznanPoland
| | | |
Collapse
|
13
|
miR-498 promotes cell proliferation and inhibits cell apoptosis in retinoblastoma by directly targeting CCPG1. Childs Nerv Syst 2018; 34:417-422. [PMID: 29247256 DOI: 10.1007/s00381-017-3622-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/12/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Retinoblastoma (Rb) is the most common intraocular tumor in children. MicroRNAs (miRNAs) play a crucial role in gene regulation and cell growth/apoptosis/differentiation. The current study aimed to investigate the role of miR-498 in Rb. METHODS Quantitative real-time polymerase chain reaction (QRT-PCR) was used to test mRNA level of miR-498. http://www.targetscan.org and http://www.microrna.org were applied to predict target of miR-498. Dual-luciferase reporter assay was applied to investigate if miR-498 targeted cell cycle progression 1 (CCPG1). Western blot (WB) was carried out to assess CCPG1 protein levels. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to evaluate cell proliferation. Annexin-V Fluorescein (FITC) was adopted to explore cell apoptosis. RESULTS In Y79 cells, miR-498 was higher than in normal ARPE-19 cells. MiR-498 could recognize CCPG1-3' untranslated region (UTR). CCPG1 protein level was remarkably decreased when overexpressed miR-498, nevertheless, significantly increased when inhibiting miR-498. Y79 cells that were transfected with miR-498 mimics manifested notable cell apoptosis down-regulation and cell proliferation promotion; whereas, those transfected with miR-498 inhibitor displayed significant cell apoptosis up-regulation and cell proliferation inhibition compared with control group. CONCLUSION Taken together, miR-498 promotes cell proliferation and inhibits cell apoptosis in Rb by directly targeting CCPG1.
Collapse
|
14
|
Sartor GC, Powell SK, Velmeshev D, Lin DY, Magistri M, Wiedner HJ, Malvezzi AM, Andrade NS, Faghihi MA, Wahlestedt C. Cocaine alters Homer1 natural antisense transcript in the nucleus accumbens. Mol Cell Neurosci 2017; 85:183-189. [PMID: 29055697 PMCID: PMC5698162 DOI: 10.1016/j.mcn.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/29/2022] Open
Abstract
Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations.
Collapse
Affiliation(s)
- Gregory C Sartor
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Samuel K Powell
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dmitry Velmeshev
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - David Y Lin
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Marco Magistri
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Hannah J Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Andrea M Malvezzi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Nadja S Andrade
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Mohammad A Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| |
Collapse
|
15
|
Strategies to identify natural antisense transcripts. Biochimie 2017; 132:131-151. [DOI: 10.1016/j.biochi.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|
16
|
Gustincich S, Zucchelli S, Mallamaci A. The Yin and Yang of nucleic acid-based therapy in the brain. Prog Neurobiol 2016; 155:194-211. [PMID: 27887908 DOI: 10.1016/j.pneurobio.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 02/06/2023]
Abstract
The post-genomic era has unveiled the existence of a large repertory of non-coding RNAs and repetitive elements that play a fundamental role in cellular homeostasis and dysfunction. These may represent unprecedented opportunities to modify gene expression at the right time in the correct space in vivo, providing an almost unlimited reservoir of new potential pharmacological agents. Hijacking their mode of actions, the druggable genome can be extended to regulatory RNAs and DNA elements in a scalable fashion. Here, we discuss the state-of-the-art of nucleic acid-based drugs to treat neurodegenerative diseases. Beneficial effects can be obtained by inhibiting (Yin) and increasing (Yang) gene expression, depending on the disease and the drug target. Together with the description of the current use of inhibitory RNAs (small inhibitory RNAs and antisense oligonucleotides) in animal models and clinical trials, we discuss the molecular basis and applications of new classes of activatory RNAs at transcriptional (RNAa) and translational (SINEUP) levels.
Collapse
Affiliation(s)
- Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy; Area of Neuroscience, SISSA, Trieste, Italy.
| | - Silvia Zucchelli
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Health Sciences, Universita' del Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
17
|
Abstract
Cancer genome sequencing has created an opportunity for precision medicine. Thus far, genetic alterations can only be used to guide treatment for small subsets of certain cancer types with these key alterations. Similar to mutations, epigenetic events are equally suitable for personalized medicine. DNA methylation alterations have been used to identify tumor-specific drug responsive markers. Methylation of MGMT sensitizes gliomas to alkylating agents is an example of epigenetic personalized medicine. Recent studies have revealed that 5-azacytidine and decitabine show activity in myelodysplasia, lung and other cancers. There are currently at least 20 kinds of histone deacetylase inhibitors in clinical testing. Inhibitors targeting other epigenetic regulators are being clinically tested, such as EZH2 inhibitor EPZ-6438.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
18
|
Fimiani C, Goina E, Mallamaci A. Upregulating endogenous genes by an RNA-programmable artificial transactivator. Nucleic Acids Res 2015; 43:7850-64. [PMID: 26152305 PMCID: PMC4652751 DOI: 10.1093/nar/gkv682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/22/2015] [Indexed: 11/12/2022] Open
Abstract
To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action.
Collapse
Affiliation(s)
- Cristina Fimiani
- Laboratory of Cerebral Cortex Development, SISSA, Trieste, 34136, Italy
| | - Elisa Goina
- Laboratory of Cerebral Cortex Development, SISSA, Trieste, 34136, Italy
| | | |
Collapse
|
19
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
20
|
The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells. Tumour Biol 2014; 36:291-302. [PMID: 25252847 DOI: 10.1007/s13277-014-2614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Aquaporin genes are differentially expressed in primitive versus definitive erythropoiesis. Our previous research results showed that over-expression of aquaporin-1 (AQP1) gene greatly promotes the erythroid differentiation of erythroleukemia K562 cells, using benzidine staining and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis for representative erythroid-related genes, including γ-globin. But the molecular mechanisms underlying erythroid-specific gene regulation remain unknown. In this study, we demonstrated that AQP1 induced hemoglobins expression and altered erythroid gene expression by microarray analysis in K562 cells. The retroviral expression vector of AQP1 (pBABE-puro-AQP1) was constructed and infected K562 cells to establish a stable AQP1 over-expression cell line (K562-AQP1). AQP1 over-expression effectively inhibited cell proliferation and induced cell growth arrest in G1 phase of K562 cells. Then microarray profile was applied to analyze the differentially expressed genes which involved the mechanism of AQP1 in erythroid differentiation induction. The DAVID functional annotation clustering tool was used to identify biological functions enriched with the differentially expressed genes (n = 466 genes) and to group genes into clusters based on their functional similarity. Significant enrichment of genes involved in "oxygen transporter activity" (p = 3.8E-7) including hemoglobins (HBD, HBG, HBB, HBE1, and HBQ1), HEMGN, and EBP42 were validated by qRT-PCR. Moreover, silencing of HEMGN by RNA interference in K562-AQP1 cells resulted in down-regulation of these genes. These data provide a better understanding of the role of AQP1 in erythroid differentiation, by promoting HEMGN induction and other potential signaling pathways associated with hemoglobin induction.
Collapse
|
21
|
Abstract
Over the recent decade oligonucleotides have become an important new class of molecules, allowing therapeutic intervention through targets previously thought 'undruggable'. One of the new avenues opened up by oligonucleotide-based drugs was specific gene upregulation, which, historically, has been difficult to achieve using small-molecule drugs. This article will focus on patents covering this important development in the oligonucleotide field and highlight the different mechanisms through which the oligonucleotide-mediated gene upregulation can work, including inhibition of activity of natural antisense transcripts, interaction with promoter binding sites of noncoding regulatory RNAs, blocking of regulatory and/or miRNA binding sites in 3' UTRs, blocking splice inhibitor/enhancer sites or blocking interactions with polycomb repressive complex 2. Understanding the particular mechanism through which an oligonucleotide drug exerts its effects is highly important in drug development, as it determines the design of the drug molecule.
Collapse
|
22
|
Halley P, Kadakkuzha BM, Faghihi MA, Magistri M, Zeier Z, Khorkova O, Coito C, Hsiao J, Lawrence M, Wahlestedt C. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep 2014; 6:222-30. [PMID: 24388749 DOI: 10.1016/j.celrep.2013.12.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 04/03/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023] Open
Abstract
Apolipoprotein A1 (APOA1) is the major protein component of high-density lipoprotein (HDL) in plasma. We have identified an endogenously expressed long noncoding natural antisense transcript, APOA1-AS, which acts as a negative transcriptional regulator of APOA1 both in vitro and in vivo. Inhibition of APOA1-AS in cultured cells resulted in the increased expression of APOA1 and two neighboring genes in the APO cluster. Chromatin immunoprecipitation (ChIP) analyses of a ∼50 kb chromatin region flanking the APOA1 gene demonstrated that APOA1-AS can modulate distinct histone methylation patterns that mark active and/or inactive gene expression through the recruitment of histone-modifying enzymes. Targeting APOA1-AS with short antisense oligonucleotides also enhanced APOA1 expression in both human and monkey liver cells and induced an increase in hepatic RNA and protein expression in African green monkeys. Furthermore, the results presented here highlight the significant local modulatory effects of long noncoding antisense RNAs and demonstrate the therapeutic potential of manipulating the expression of these transcripts both in vitro and in vivo.
Collapse
Affiliation(s)
- Paul Halley
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA
| | - Beena M Kadakkuzha
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA
| | - Marco Magistri
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA
| | - Zane Zeier
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA
| | - Olga Khorkova
- OPKO-CURNA, 10320 USA Today Way, Miramar, FL 33025, USA
| | - Carlos Coito
- OPKO-CURNA, 10320 USA Today Way, Miramar, FL 33025, USA
| | - Jane Hsiao
- OPKO-CURNA, 10320 USA Today Way, Miramar, FL 33025, USA
| | | | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miller School of Medicine, NW 10(th) Avenue, Miami, FL 33136, USA; Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 2013; 264:25-38. [PMID: 24342564 DOI: 10.1016/j.neuroscience.2013.12.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 01/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been increasingly appreciated as an integral component of gene regulatory networks. Genome-wide features of their origin and expression patterns ascribed a prominent role for lncRNAs to the regulation of protein-coding genes, and also suggest a potential link to many human diseases. Recent studies have begun to unravel the intricate regulatory mechanism of lncRNAs occurring at multiple levels. The brain is one of the richest sources of lncRNAs, many of which have already shown a close relationship with genes or genetic loci implicated in a wide range of neurological disorders. This review describes recently emerging mechanistic principles of lncRNA functions to provide neuroscientists with molecular insights that will help future research on lncRNAs in the brain.
Collapse
|
24
|
Pang WJ, Lin LG, Xiong Y, Wei N, Wang Y, Shen QW, Yang GS. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. J Cell Biochem 2013; 114:2500-12. [PMID: 23749759 DOI: 10.1002/jcb.24595] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPβ which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU.1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes.
Collapse
Affiliation(s)
- Wei-Jun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, 77030
| | | | | | | | | | | | | |
Collapse
|
25
|
Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov 2013; 12:433-46. [DOI: 10.1038/nrd4018] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Ling MHT, Ban Y, Wen H, Wang SM, Ge SX. Conserved expression of natural antisense transcripts in mammals. BMC Genomics 2013; 14:243. [PMID: 23577827 PMCID: PMC3635984 DOI: 10.1186/1471-2164-14-243] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Recent studies had found thousands of natural antisense transcripts originating from the same genomic loci of protein coding genes but from the opposite strand. It is unclear whether the majority of antisense transcripts are functional or merely transcriptional noise. Results Using the Affymetrix Exon array with a modified cDNA synthesis protocol that enables genome-wide detection of antisense transcription, we conducted large-scale expression analysis of antisense transcripts in nine corresponding tissues from human, mouse and rat. We detected thousands of antisense transcripts, some of which show tissue-specific expression that could be subjected to further study for their potential function in the corresponding tissues/organs. The expression patterns of many antisense transcripts are conserved across species, suggesting selective pressure on these transcripts. When compared to protein-coding genes, antisense transcripts show a lesser degree of expression conservation. We also found a positive correlation between the sense and antisense expression across tissues. Conclusion Our results suggest that natural antisense transcripts are subjected to selective pressure but to a lesser degree compared to sense transcripts in mammals.
Collapse
Affiliation(s)
- Maurice H T Ling
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | |
Collapse
|
27
|
Halley P, Khorkova O, Wahlestedt C. Natural antisense transcripts as therapeutic targets. ACTA ACUST UNITED AC 2013; 10:e119-e125. [PMID: 25580147 DOI: 10.1016/j.ddstr.2013.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Paul Halley
- Department of Psychiatry and Behavioral Sciences, and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Olga Khorkova
- OPKO-CURNA 10320 USA Today Way, Miramar, FL 33025, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
28
|
Ehrensberger KM, Mason C, Corkins ME, Anderson C, Dutrow N, Cairns BR, Dalley B, Milash B, Bird AJ. Zinc-dependent regulation of the Adh1 antisense transcript in fission yeast. J Biol Chem 2012; 288:759-69. [PMID: 23223230 DOI: 10.1074/jbc.m112.406165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, Adh1 (alcohol dehydrogenase 1) is an abundant zinc-binding protein that is required for the conversion of acetaldehyde to ethanol. Through transcriptome profiling of the Schizosaccharomyces pombe genome, we identified a natural antisense transcript at the adh1 locus that is induced in response to zinc limitation. This antisense transcript (adh1AS) shows a reciprocal expression pattern to that of the adh1 mRNA partner. In this study, we show that increased expression of the adh1AS transcript in zinc-limited cells is necessary for the repression of adh1 gene expression and that the increased level of the adh1AS transcript in zinc-limited cells is a result of two mechanisms. At the transcriptional level, the adh1AS transcript is expressed at a high level in zinc-limited cells. In addition to this transcriptional control, adh1AS transcripts preferentially accumulate in zinc-limited cells when the adh1AS transcript is expressed from a constitutive promoter. This secondary mechanism requires the simultaneous expression of adh1. Our studies reveal how multiple mechanisms can synergistically control the ratio of sense to antisense transcripts and highlight a novel mechanism by which adh1 gene expression can be controlled by cellular zinc availability.
Collapse
Affiliation(s)
- Kate M Ehrensberger
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
St Laurent G, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-Inchima S. Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics 2012; 287:867-79. [PMID: 23052832 DOI: 10.1007/s00438-012-0722-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
The HuR protein regulates the expression of thousands of cellular transcripts by modulating mRNA splicing, trafficking, translation, and stability. Although it serves as a model of RNA-protein interactions, many features of HuR's interactions with RNAs remain unknown. In this report, we deployed the cryogenic RNA immunoprecipitation technique to analyze HuR-interacting RNAs with the Affymetrix all-exon microarray platform. We revealed several thousand novel HuR-interacting RNAs, including hundreds of non-coding RNAs such as natural antisense transcripts from stress responsive loci. To gain insight into the mechanisms of specificity and sensitivity of HuR's interaction with its target RNAs, we searched HuR-interacting RNAs for composite patterns of primary sequence and secondary structure. We provide evidence that secondary structures of 66-75 nucleotides enhance HuR's recognition of its specific RNA targets composed of short primary sequence patterns. We validated thousands of these RNAs by analysis of overlap with recently published findings, including HuR's interaction with RNAs in the pathways of RNA splicing and stability. Finally, we observed a striking enrichment for members of ubiquitin ligase pathways among the HuR-interacting mRNAs, suggesting a new role for HuR in the regulation of protein degradation to mirror its known function in protein translation.
Collapse
Affiliation(s)
- Georges St Laurent
- Grupo de Inmunovirologia, Universidad de Antioquia, Calle 67 Número 53-108, Medellin, Antioquia, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Smalheiser NR. The search for endogenous siRNAs in the mammalian brain. Exp Neurol 2011; 235:455-63. [PMID: 22062046 DOI: 10.1016/j.expneurol.2011.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
A decade ago, RNA interference was proposed to serve as a physiologic means of regulating long-term gene expression in the mammalian brain. However, during the intervening years, this hypothesis appeared to be contradicted by both experimental data and theoretical considerations. More recently, the advent of deep sequencing technology has permitted a re-assessment of this issue. As reviewed here, a large population of small RNAs having features characteristic of endogenous siRNAs are detected within adult mouse hippocampus, which derive from genes involved in synaptic structure and signaling, and which show a significant, though modest (16-22%) up-regulation during olfactory discrimination training. Small RNAs derived from abundant cellular noncoding RNAs are also detected; in particular, a subpopulation of RNAs 25-30 nt. in length shows very large (>100 fold) up-regulation during olfactory discrimination training. Preliminary data suggest that the 25-30 nt. RNAs may associate with MIWI rather than Argonaute 1-4 homologues. I conclude that, despite their apparent low abundance, endogenous siRNAs and noncoding RNA-derived small RNAs are likely to play an important role in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Neil R Smalheiser
- University of Illinois at Chicago, Psychiatric Institute MC912, Chicago, IL 60612, USA.
| |
Collapse
|
31
|
Kocerha J, Kouri N, Baker M, Finch N, DeJesus-Hernandez M, Gonzalez J, Chidamparam K, Josephs KA, Boeve BF, Graff-Radford NR, Crook J, Dickson DW, Rademakers R. Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics 2011; 12:527. [PMID: 22032330 PMCID: PMC3229715 DOI: 10.1186/1471-2164-12-527] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023] Open
Abstract
Background Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs) have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP) caused by genetic mutations in the progranulin (PGRN) gene. Results Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P < 0.05) of dysregulation in frontal cortex of eight FTLD-TDP patients carrying PGRN mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR) analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p) were also significantly dysregulated (unadjusted P < 0.05) in cerebellar tissue samples of PGRN mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology. Conclusions Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by PGRN mutations and provides new insight into potential future therapeutic options.
Collapse
Affiliation(s)
- Jannet Kocerha
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang M, Instrell R, Saunders B, Berven H, Howell M. Tales from an academic RNAi screening facility; FAQs. Brief Funct Genomics 2011; 10:227-37. [PMID: 21527443 DOI: 10.1093/bfgp/elr016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNAi technology is now a well-established and widely employed research technique that has been adopted by many researchers for use in large-scale screening campaigns. Here, we offer our experience of genome-wide siRNA screening from the perspective of a facility providing screening as a service to a wide range of researchers with diverse interests and approaches. We have experienced the emotional rollercoaster of screening from the exuberant early promise of a screen, the messy reality of the data through to the recognition of screen data as a potential information goldmine. Here, we use some of the questions we most frequently encounter to highlight the initial concerns of many researchers embarking on a siRNA screen and conclude that an informed view of what can be reasonably expected from a screen is essential to the most effective implementation of the technology. Along the way, we suggest that for this area of research at least, either centralization of the resources or close and open collaboration between interested parties offers distinct advantages.
Collapse
Affiliation(s)
- Ming Jiang
- High-Throughput Screening facility, Cancer Research UK, London Research Institute
| | | | | | | | | |
Collapse
|