1
|
Soliani L, Alcalá San Martín A, Balsells S, Hernando‐Davalillo C, Ortigoza‐Escobar JD. Chromosome Microarray Analysis for the Investigation of Deletions in Pediatric Movement Disorders: A Systematic Review of the Literature. Mov Disord Clin Pract 2023; 10:547-557. [PMID: 37070051 PMCID: PMC10105116 DOI: 10.1002/mdc3.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Background Chromosome microarray analysis (CMA) can detect copy number variants (CNV) beyond the resolution of standard G-banded karyotyping. De novo or inherited microdeletions may cause autosomal dominant movement disorders. Objectives The purpose of this study was to analyze the clinical characteristics, associated features, and genetic information of children with deletions in known genes that cause movement disorders and to make recommendations regarding the diagnostic application of CMA. Methods Clinical cases published in English were identified in scientific databases (PubMed, ClinVar, and DECIPHER) from January 1998 to July 2019 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Cases with deletions or microdeletions greater than 300 kb were selected. Information collected included age, sex, movement disorders, associated features, and the size and location of the deletion. Duplications or microduplications were not included. Results A total of 18.097 records were reviewed, and 171 individuals were identified. Ataxia (30.4%), stereotypies (23.9%), and dystonia (21%) were the most common movement disorders. A total of 16% of the patients demonstrated more than one movement disorder. The most common associated features were intellectual disability or developmental delay (78.9%) and facial dysmorphism (57.8%). The majority (77.7%) of microdeletions were smaller than 5 Mb. We find no correlation between movement disorders, their associated features, and the size of microdeletions. Conclusions Our results support the use of CMA as an investigational test in children with movement disorders. As the majority of identified articles were case reports and small case series (low quality), future efforts should focus on larger prospective studies to examine the causation of microdeletions in pediatric movement disorders.
Collapse
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età PediatricaBolognaItaly
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC) Università di BolognaBolognaItaly
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Sol Balsells
- Department of StatisticsInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Cristina Hernando‐Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
2
|
McCammon JM, Blaker-Lee A, Chen X, Sive H. The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes. Hum Mol Genet 2018; 26:3699-3712. [PMID: 28934389 PMCID: PMC5886277 DOI: 10.1093/hmg/ddx255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/29/2017] [Indexed: 01/28/2023] Open
Abstract
Deletion of the 16p11.2 CNV affects 25 core genes and is associated with multiple symptoms affecting brain and body, including seizures, hyperactivity, macrocephaly, and obesity. Available data suggest that most symptoms are controlled by haploinsufficiency of two or more 16p11.2 genes. To identify interacting 16p11.2 genes, we used a pairwise partial loss of function antisense screen for embryonic brain morphology, using the accessible zebrafish model. fam57ba, encoding a ceramide synthase, was identified as interacting with the doc2a gene, encoding a calcium-sensitive exocytosis regulator, a genetic interaction not previously described. Using genetic mutants, we demonstrated that doc2a+/− fam57ba+/− double heterozygotes show hyperactivity and increased seizure susceptibility relative to wild-type or single doc2a−/− or fam57ba−/− mutants. Additionally, doc2a+/− fam57ba+/− double heterozygotes demonstrate the increased body length and head size. Single doc2a+/− and fam57ba+/− heterozygotes do not show a body size increase; however, fam57ba−/− homozygous mutants show a strongly increased head size and body length, suggesting a greater contribution from fam57ba to the haploinsufficient interaction between doc2a and fam57ba. The doc2a+/− fam57ba+/− interaction has not been reported before, nor has any 16p11.2 gene previously been linked to increased body size. These findings demonstrate that one pair of 16p11.2 homologs can regulate both brain and body phenotypes that are reflective of those in people with 16p11.2 deletion. Together, these findings suggest that dysregulation of ceramide pathways and calcium sensitive exocytosis underlies seizures and large body size associated with 16p11.2 homologs in zebrafish. The data inform consideration of mechanisms underlying human 16p11.2 deletion symptoms.
Collapse
Affiliation(s)
| | - Alicia Blaker-Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xiao Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Nguyen K, Putoux A, Busa T, Cordier M, Sigaudy S, Till M, Chabrol B, Michel-Calemard L, Bernard R, Julia S, Malzac P, Labalme A, Missirian C, Edery P, Popovici C, Philip N, Sanlaville D. Incidental findings on array comparative genomic hybridization: detection of carrier females of dystrophinopathy without any family history. Clin Genet 2014; 87:488-91. [DOI: 10.1111/cge.12421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 01/19/2023]
Affiliation(s)
- K. Nguyen
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - A. Putoux
- Service de Génétique; Hospices Civils de Lyon; Lyon France
- CNRL, INSERM U1028, CNRS UMR5292; Université Claude Bernard Lyon 1; Lyon France
| | - T. Busa
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - M.P. Cordier
- Service de Génétique; Hospices Civils de Lyon; Lyon France
| | - S. Sigaudy
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - M. Till
- Service de Génétique; Hospices Civils de Lyon; Lyon France
| | - B. Chabrol
- Service de Pédiatrie et Neuropédiatrie; Hôpital d'enfants de la Timone; Marseille France
| | - L. Michel-Calemard
- Service d'Endocrinologie Moléculaire et Maladies Rares; Hospices Civils de Lyon; Lyon France
| | - R. Bernard
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - S. Julia
- Service de Génétique; CHU de Toulouse; Toulouse France
| | - P. Malzac
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
- UMR 7268 ADES; Aix-Marseille Université-EFS-CNRS; Marseille France
| | - A. Labalme
- Service de Génétique; Hospices Civils de Lyon; Lyon France
| | - C. Missirian
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - P. Edery
- Service de Génétique; Hospices Civils de Lyon; Lyon France
- CNRL, INSERM U1028, CNRS UMR5292; Université Claude Bernard Lyon 1; Lyon France
| | - C. Popovici
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - N. Philip
- Département de Génétique Médicale; Hôpital d'enfants de la Timone; Marseille France
| | - D. Sanlaville
- Service de Génétique; Hospices Civils de Lyon; Lyon France
- CNRL, INSERM U1028, CNRS UMR5292; Université Claude Bernard Lyon 1; Lyon France
| |
Collapse
|
4
|
Dimassi S, Labalme A, Lesca G, Rudolf G, Bruneau N, Hirsch E, Arzimanoglou A, Motte J, de Saint Martin A, Boutry-Kryza N, Cloarec R, Benitto A, Ameil A, Edery P, Ryvlin P, De Bellescize J, Szepetowski P, Sanlaville D. A subset of genomic alterations detected in rolandic epilepsies contains candidate or known epilepsy genes includingGRIN2AandPRRT2. Epilepsia 2013; 55:370-8. [DOI: 10.1111/epi.12502] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Sarra Dimassi
- Department of Genetics; Lyon University Hospital; Lyon France
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
| | - Audrey Labalme
- Department of Genetics; Lyon University Hospital; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
| | - Gaetan Lesca
- Department of Genetics; Lyon University Hospital; Lyon France
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
| | - Gabrielle Rudolf
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
- UMR_S; INSERM U1119; Strasbourg France
| | - Nadine Bruneau
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- INSERM Unit U901; Marseille France
- Mediterranean Institute of Neurobiology (INMED); Marseille France
- UMR_S901; Aix-Marseille University; Marseille France
| | - Edouard Hirsch
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Neurology; Strasbourg University Hospital; Strasbourg France
| | - Alexis Arzimanoglou
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Departments of Epilepsy, Sleep and Pediatric Neurophysiology (ESEFNP); University Hospitals of Lyon (HCL); Lyon France
| | - Jacques Motte
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Pediatry A; American Memorial Hospital; Reims University Hospital; Reims France
| | - Anne de Saint Martin
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Pediatry I; Strasbourg University Hospital; Strasbourg France
| | - Nadia Boutry-Kryza
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Molecular Genetics; Lyon University Hospital; Lyon France
| | - Robin Cloarec
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- INSERM Unit U901; Marseille France
- Mediterranean Institute of Neurobiology (INMED); Marseille France
- UMR_S901; Aix-Marseille University; Marseille France
| | - Afaf Benitto
- Department of Pediatry A; American Memorial Hospital; Reims University Hospital; Reims France
| | - Agnès Ameil
- Department of Pediatry A; American Memorial Hospital; Reims University Hospital; Reims France
| | - Patrick Edery
- Department of Genetics; Lyon University Hospital; Lyon France
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
| | - Philippe Ryvlin
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Department of Neurology; Lyon University Hospital; Lyon France
| | - Julitta De Bellescize
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- Departments of Epilepsy, Sleep and Pediatric Neurophysiology (ESEFNP); University Hospitals of Lyon (HCL); Lyon France
| | - Pierre Szepetowski
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
- INSERM Unit U901; Marseille France
- Mediterranean Institute of Neurobiology (INMED); Marseille France
- UMR_S901; Aix-Marseille University; Marseille France
| | - Damien Sanlaville
- Department of Genetics; Lyon University Hospital; Lyon France
- Claude Bernard Lyon I University; Lyon France
- CRNL; CNRS UMR 5292; INSERM U1028; Lyon France
- The French EPILAND (Epilepsy, Language and Development) Consortium; Marseille France
| |
Collapse
|
5
|
Lesca G, Moizard MP, Bussy G, Boggio D, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Des Portes V, Labalme A, Sanlaville D, Edery P, Raynaud M, Lespinasse J. Clinical and neurocognitive characterization of a family with a novel MED12 gene frameshift mutation. Am J Med Genet A 2013; 161A:3063-71. [PMID: 24039113 DOI: 10.1002/ajmg.a.36162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 11/07/2022]
Abstract
FG syndrome, Lujan syndrome, and Ohdo syndrome, the Maat-Kievit-Brunner type, have been described as distinct syndromes with overlapping non-specific features and different missense mutations of the MED12 gene have been reported in all of them. We report a family including 10 males and 1 female affected with profound non-specific intellectual disability (ID) which was linked to a 30-cM region extending from Xp11.21 (ALAS2) to Xq22.3 (COL4A5). Parallel sequencing of all X-chromosome exons identified a frameshift mutation (c.5898dupC) of MED12. Mutated mRNA was not affected by non-sense mediated RNA decay and induced an additional abnormal isoform due to activation of cryptic splice-sites in exon 41. Dysmorphic features common to most affected males were long narrow face, high forehead, flat malar area, high nasal bridge, and short philtrum. Language was absent or very limited. Most patients had a friendly personality. Cognitive impairment, varying from borderline to profound ID was similarly observed in seven heterozygous females. There was no correlation between cognitive function and X-chromosome inactivation profiles in blood cells. The severe degree of ID in male patients, as well as variable cognitive impairment in heterozygous females suggests that the duplication observed in the present family may have a more severe effect on MED12 function than missense mutations. In a cognitively impaired male from this family, who also presented with tall stature and dysmorphism and did not have the MED12 mutation, a 600-kb duplication at 17p13.3 including the YWHAE gene, was found in a mosaic state.
Collapse
Affiliation(s)
- Gaetan Lesca
- Service de Génétique and Centre de Référence des Anomalies du Développement, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France; INSERM U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, TIGER Team, University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, Salmi M, Tsintsadze T, Addis L, Motte J, Wright S, Tsintsadze V, Michel A, Doummar D, Lascelles K, Strug L, Waters P, de Bellescize J, Vrielynck P, de Saint Martin A, Ville D, Ryvlin P, Arzimanoglou A, Hirsch E, Vincent A, Pal D, Burnashev N, Sanlaville D, Szepetowski P. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 2013; 45:1061-6. [PMID: 23933820 DOI: 10.1038/ng.2726] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/18/2013] [Indexed: 12/20/2022]
Abstract
Epileptic encephalopathies are severe brain disorders with the epileptic component contributing to the worsening of cognitive and behavioral manifestations. Acquired epileptic aphasia (Landau-Kleffner syndrome, LKS) and continuous spike and waves during slow-wave sleep syndrome (CSWSS) represent rare and closely related childhood focal epileptic encephalopathies of unknown etiology. They show electroclinical overlap with rolandic epilepsy (the most frequent childhood focal epilepsy) and can be viewed as different clinical expressions of a single pathological entity situated at the crossroads of epileptic, speech, language, cognitive and behavioral disorders. Here we demonstrate that about 20% of cases of LKS, CSWSS and electroclinically atypical rolandic epilepsy often associated with speech impairment can have a genetic origin sustained by de novo or inherited mutations in the GRIN2A gene (encoding the N-methyl-D-aspartate (NMDA) glutamate receptor α2 subunit, GluN2A). The identification of GRIN2A as a major gene for these epileptic encephalopathies provides crucial insights into the underlying pathophysiology.
Collapse
Affiliation(s)
- Gaetan Lesca
- Department of Genetics, University Hospitals of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, Wali GM, Counihan T, Schapira AH, Spacey SD, Valente EM, Silveira-Moriyama L, Teive HAG, Raskin S, Sander JW, Lees A, Warner T, Kullmann DM, Wood NW, Hanna M, Houlden H. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology 2012; 79:2115-21. [PMID: 23077024 DOI: 10.1212/wnl.0b013e3182752c5a] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). METHODS The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. RESULTS PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. CONCLUSIONS This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders.
Collapse
Affiliation(s)
- Alice R Gardiner
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, MRC Centre for Neuromuscular Diseases, Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cloarec R, Bruneau N, Rudolf G, Massacrier A, Salmi M, Bataillard M, Boulay C, Caraballo R, Fejerman N, Genton P, Hirsch E, Hunter A, Lesca G, Motte J, Roubertie A, Sanlaville D, Wong SW, Fu YH, Rochette J, Ptácek LJ, Szepetowski P. PRRT2 links infantile convulsions and paroxysmal dyskinesia with migraine. Neurology 2012; 79:2097-103. [PMID: 23077017 DOI: 10.1212/wnl.0b013e3182752c46] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Whole genome sequencing and the screening of 103 families recently led us to identify PRRT2 (proline-rich-transmembrane protein) as the gene causing infantile convulsions (IC) with paroxysmal kinesigenic dyskinesia (PKD) (PKD/IC syndrome, formerly ICCA). There is interfamilial and intrafamilial variability and the patients may have IC or PKD. Association of IC with hemiplegic migraine (HM) has also been reported. In order to explore the mutational and clinical spectra, we analyzed 34 additional families with either typical PKD/IC or PKD/IC with migraine. METHODS We performed Sanger sequencing of all PRRT2 coding exons and of exon-intron boundaries in the probands and in their relatives whenever appropriate. RESULTS Two known and 2 novel PRRT2 mutations were detected in 18 families. The p.R217Pfs*8 recurrent mutation was found in ≈50% of typical PKD/IC, and the unreported p.R145Gfs*31 in one more typical family. PRRT2 mutations were also found in PKD/IC with migraine: p.R217Pfs*8 cosegregated with PKD associated with HM in one family, and was also detected in one IC patient having migraine with aura, in related PKD/IC familial patients having migraine without aura, and in one sporadic migraineur with abnormal MRI. Previously reported p.R240X was found in one patient with PKD with migraine without aura. The novel frameshift p.S248Afs*65 was identified in a PKD/IC family member with IC and migraine with aura. CONCLUSIONS We extend the spectrum of PRRT2 mutations and phenotypes to HM and to other types of migraine in the context of PKD/IC, and emphasize the phenotypic pleiotropy seen in patients with PRRT2 mutations.
Collapse
Affiliation(s)
- Robin Cloarec
- Institut de Neurobiologie de la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang YB, Li X, Zhang F, Wang DM, Yu J. A preliminary study of copy number variation in Tibetans. PLoS One 2012; 7:e41768. [PMID: 22844521 PMCID: PMC3402393 DOI: 10.1371/journal.pone.0041768] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/27/2012] [Indexed: 12/15/2022] Open
Abstract
Genetic features of Tibetans have been broadly investigated, but the properties of copy number variation (CNV) have not been well examined. To get a preliminary view of CNV in Tibetans, we scanned 29 Tibetan genomes with the Illumina Human-1 M high-resolution genotyping microarray and identified 139 putative copy number variable regions (CNVRs), consisting of 70 deletions, 61 duplications, and 8 multi-allelic loci. Thirty-four of the 139 CNVRs showed differential allele frequencies versus other East-Asian populations, with P values <0.0001. These results indicated a distinct pattern of CNVR allele frequency distribution in Tibetans. The Tibetan CNVRs are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and -DR gene clusters) and biological process categories of “response to DNA damage stimulus” and “DNA repair” (such as RAD51, RAD52, and MRE11A). These genes are related to the adaptive traits of high infant birth weight and darker skin tone of Tibetans, and may be attributed to recent local adaptation. Our results provide a different view of genetic diversity in Tibetans and new insights into their high-altitude adaptation.
Collapse
Affiliation(s)
- Yong-Biao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Feng Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| | - Duen-Mei Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Groffen AJA, Klapwijk T, van Rootselaar AF, Groen JL, Tijssen MAJ. Genetic and phenotypic heterogeneity in sporadic and familial forms of paroxysmal dyskinesia. J Neurol 2012; 260:93-9. [PMID: 22752065 PMCID: PMC3535363 DOI: 10.1007/s00415-012-6592-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/23/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Paroxysmal dyskinesia (PxD) is a group of movement disorders characterized by recurrent episodes of involuntary movements. Familial paroxysmal kinesigenic dyskinesia (PKD) is caused by PRRT2 mutations, but a distinct etiology has been suggested for sporadic PKD. Here we describe a cohort of patients collected from our movement disorders outpatient clinic in the period 1996–2011. Fifteen patients with sporadic PxD and 23 subjects from three pedigrees with familial PKD were screened for mutations in candidate genes. PRRT2 mutations co-segregated with PKD in two families and occurred in two sporadic cases of PKD. No mutations were detected in patients with non-kinesigenic or exertion-induced dyskinesia, and none in other candidate genes including PNKD1 (MR-1) and SLC2A1 (GLUT1). Thus, PRRT2 mutations also cause sporadic PKD as might be expected given the variable expressivity and reduced penetrance observed in familial PKD. Further genetic heterogeneity is suggested by the absence of candidate gene mutations in both sporadic and familial PKD suggesting a contribution of other genes or non-coding regions.
Collapse
Affiliation(s)
- Alexander J. A. Groffen
- Departments of Clinical Genetics and Functional Genomics, Center of Neurogenomics and Cognitive Research (CNCR), VU University and VU Medical Center, Amsterdam, The Netherlands
| | - Thom Klapwijk
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Justus L. Groen
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marina A. J. Tijssen
- Department of Neurology AB 51, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
11
|
Lesca G, Rudolf G, Labalme A, Hirsch E, Arzimanoglou A, Genton P, Motte J, de Saint Martin A, Valenti MP, Boulay C, De Bellescize J, Kéo-Kosal P, Boutry-Kryza N, Edery P, Sanlaville D, Szepetowski P. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia 2012; 53:1526-38. [PMID: 22738016 DOI: 10.1111/j.1528-1167.2012.03559.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE The continuous spike and waves during slow-wave sleep syndrome (CSWSS) and the Landau-Kleffner (LKS) syndrome are two rare epileptic encephalopathies sharing common clinical features including seizures and regression. Both CSWSS and LKS can be associated with the electroencephalography pattern of electrical status epilepticus during slow-wave sleep and are part of a clinical continuum that at its benign end also includes rolandic epilepsy (RE) with centrotemporal spikes. The CSWSS and LKS patients can also have behavioral manifestations that overlap the spectrum of autism disorders (ASD). An impairment of brain development and/or maturation with complex interplay between genetic predisposition and nongenetic factors has been suspected. A role for autoimmunity has been proposed but the pathophysiology of CSWSS and of LKS remains uncharacterized. METHODS In recent years, the participation of rare genomic alterations in the susceptibility to epileptic and autistic disorders has been demonstrated. The involvement of copy number variations (CNVs) in 61 CSWSS and LKS patients was questioned using comparative genomic hybridization assays coupled with validation by quantitative polymerase chain reaction (PCR). KEY FINDINGS Whereas the patients showed highly heterogeneous in genomic architecture, several potentially pathogenic alterations were detected. A large number of these corresponded to genomic regions or genes (ATP13A4, CDH9, CDH13, CNTNAP2, CTNNA3, DIAPH3, GRIN2A, MDGA2, SHANK3) that have been either associated with ASD for most of them, or involved in speech or language impairment, or in RE. Particularly, CNVs encoding cell adhesion proteins (cadherins, protocadherins, contactins, catenins) were detected with high frequency (≈20% of the patients) and significant enrichment (cell adhesion: p = 0.027; cell adhesion molecule binding: p = 9.27 × 10(-7)). SIGNIFICANCE Overall our data bring the first insights into the possible molecular pathophysiology of CSWSS and LKS. The overrepresentation of cell adhesion genes and the strong overlap with the genetic, genomic and molecular ASD networks, provide an exciting and unifying view on the clinical links among CSWSS, LKS, and ASD.
Collapse
Affiliation(s)
- Gaetan Lesca
- Department of Constitutional Cytogenetics, Lyon Hospices Civils, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012; 90:152-60. [PMID: 22243967 DOI: 10.1016/j.ajhg.2011.12.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 11/21/2022] Open
Abstract
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).
Collapse
|
13
|
Lee HY, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, Quinn E, Maas J, Edwards R, Ashizawa T, Baykan B, Bhatia K, Bressman S, Bruno MK, Brunt ER, Caraballo R, Echenne B, Fejerman N, Frucht S, Gurnett CA, Hirsch E, Houlden H, Jankovic J, Lee WL, Lynch DR, Mohammed S, Müller U, Nespeca MP, Renner D, Rochette J, Rudolf G, Saiki S, Soong BW, Swoboda KJ, Tucker S, Wood N, Hanna M, Bowcock AM, Szepetowski P, Fu YH, Ptáček LJ. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2011; 1:2-12. [PMID: 22832103 DOI: 10.1016/j.celrep.2011.11.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/21/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) is an episodic movement disorder with autosomal-dominant inheritance and high penetrance, but the causative genetic mutation is unknown. We have now identified four truncating mutations involving the gene PRRT2 in the vast majority (24/25) of well-characterized families with PKD/IC. PRRT2 truncating mutations were also detected in 28 of 78 additional families. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the t-SNARE, SNAP25. PRRT2 localizes to axons but not to dendritic processes in primary neuronal culture, and mutants associated with PKD/IC lead to dramatically reduced PRRT2 levels, leading ultimately to neuronal hyperexcitability that manifests in vivo as PKD/IC.
Collapse
Affiliation(s)
- Hsien-Yang Lee
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Espeche A, Cersosimo R, Caraballo RH. Benign infantile seizures and paroxysmal dyskinesia: A well-defined familial syndrome. Seizure 2011; 20:686-91. [DOI: 10.1016/j.seizure.2011.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
|