1
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
2
|
Dougill G, Brassey CA, Starostin EL, Andrews H, Kitchener A, van der Heijden GHM, Goss VGA, Grant RA. Describing whisker morphology of the Carnivora. J Morphol 2023; 284:e21628. [PMID: 37585221 DOI: 10.1002/jmor.21628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
One of the largest ecological transitions in carnivoran evolution was the shift from terrestrial to aquatic lifestyles, which has driven morphological diversity in skulls and other skeletal structures. In this paper, we investigate the association between those lifestyles and whisker morphology. However, comparing whisker morphology over a range of species is challenging since the number of whiskers and their positions on the mystacial pads vary between species. Also, each whisker will be at a different stage of growth and may have incurred damage due to wear and tear. Identifying a way to easily capture whisker morphology in a small number of whisker samples would be beneficial. Here, we describe individual and species variation in whisker morphology from two-dimensional scans in red fox, European otter and grey seal. A comparison of long, caudal whiskers shows inter-species differences most clearly. We go on to describe global whisker shape in 24 species of carnivorans, using linear approximations of curvature and taper, as well as traditional morphometric methods. We also qualitatively examine surface texture, or the presence of scales, using scanning electron micrographs. We show that gross whisker shape is highly conserved, with whisker curvature and taper obeying simple linear relationships with length. However, measures of whisker base radius, length, and maybe even curvature, can vary between species and substrate preferences. Specifically, the aquatic species in our sample have thicker, shorter whiskers that are smoother, with less scales present than those of terrestrial species. We suggest that these thicker whiskers may be stiffer and able to maintain their shape and position during underwater sensing, but being stiffer may also increase wear.
Collapse
Affiliation(s)
- Gary Dougill
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Charlotte A Brassey
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Eugene L Starostin
- School of Engineering, London South Bank University, London, UK
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - Hayley Andrews
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Andrew Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Gert H M van der Heijden
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - Victor G A Goss
- School of Engineering, London South Bank University, London, UK
| | - Robyn A Grant
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Gimranov DO. Morphotypic Characteristics of the First Molar (M1) of the Brown Bear (Ursus arctos) and the Polar Bear (Ursus maritimus) (Carnivora, Ursidae). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022070056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Microstructure, elemental composition and mechanical properties of enamel and dentine in the polar bear Ursus maritimus. Arch Oral Biol 2021; 134:105318. [PMID: 34847507 DOI: 10.1016/j.archoralbio.2021.105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the microstructure, elemental composition and mechanical properties of polar bear teeth. DESIGN Incisors, canines and fourth premolar teeth of two subadult male museum specimens were analysed. Teeth were measured, photographed, embedded in Epoxy resin, sectioned, polished and etched for scanning electron microscope (SEM) imaging, elemental composition and nanomechanical testing analyses. RESULTS The thickness of enamel ranged from 350-430 µm in canines, 220-330 µm in incisors and 320-510 µm in premolars. SEM images showed distinct transversely-oriented undulating Hunter Schreger bands from the enamel-dentine junction (EDJ) to the outer enamel surface. Enamel prisms had a hexagonal shape, with open prism sheaths. Prisms measured 6-8 µm in diameter. The EDJ was straight with no evidence of scalloping. Larger tubules adjacent to the EDJ were observed in the mantle dentine zone. Enamel Hardness and Elastic modulus values were higher in premolars (6.9 GPa and 269 GPa), followed by canines (6.5 GPa and 230 GPa) and incisors (4.9 GPa and 187 GPa). Dentine Hardness and Elastic modulus values were higher in canines. CaO and P2O5 were the components with higher oxide weight percentage in both enamel and dentine. CONCLUSIONS Understanding the microstructure, elemental composition and mechanical properties of polar bear teeth can help elucidate the biology and functional morphology of this globally threatened species and could be used as a proxy for studies with fossil ursids.
Collapse
|
5
|
Petherick AS, Reuther JD, Shirar SJ, Anderson SL, DeSantis LRG. Dietary ecology of Alaskan polar bears (Ursus maritimus) through time and in response to Arctic climate change. GLOBAL CHANGE BIOLOGY 2021; 27:3109-3119. [PMID: 33793039 DOI: 10.1111/gcb.15573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Arctic climate change poses serious threats to polar bears (Ursus maritimus) as reduced sea ice makes seal prey inaccessible and marine ecosystems undergo bottom-up reorganization. Polar bears' elongated skulls and reduced molar dentition, as compared to their sister species the grizzly bear (Ursus arctos), are adaptations associated with hunting seals on sea ice and a soft, lipid-rich diet of blubber and meat. With significant declines in sea ice, it is unclear if and how polar bears may be altering their diets. Clarifying polar bear dietary responses to changing climates, both today and in the past, is critical to proper conservation and management of this apex predator. This is particularly important when a dietary strategy may be maladaptive. Here, we test the hypothesis that hard-food consumption (i.e., less preferred foods including bone), inferred from dental microwear texture analysis, increased with Arctic warming. We find that polar bears demonstrate a conserved absence of hard-object feeding in Alaska through time (including approximately 1000 years ago), until the 21st century, consistent with a highly conserved and specialized diet of soft blubber and flesh. Notably, our results also suggest that some 21st-century polar bears may be consuming harder foods (e.g., increased carcass utilization, terrestrial foods including garbage), despite having skulls and metabolisms poorly suited for such a diet. Prior to the 21st century, only polar bears with larger mandibles demonstrated increased hard-object feeding, though to a much lower degree than closely related grizzly bears which regularly consume mechanically challenging foods. Polar bears, being morphologically specialized, have biomechanical constraints which may limit their ability to consume mechanically challenging diets, with dietary shifts occurring only under the most extreme scenarios. Collectively, the highly specialized diets and cranial morphology of polar bears may severely limit their ability to adapt to a warming Arctic.
Collapse
Affiliation(s)
- Ansley S Petherick
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Joshua D Reuther
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
- Department of Anthropology, University of Alaska, Fairbanks, AK, USA
| | - Scott J Shirar
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Shelby L Anderson
- Department of Anthropology, Portland State University, Portland, OR, USA
| | - Larisa R G DeSantis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Tseng ZJ. Polar bear diet in the face of Arctic climate change. GLOBAL CHANGE BIOLOGY 2021; 27:3004-3005. [PMID: 33735467 DOI: 10.1111/gcb.15599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Z Jack Tseng
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Milne AO, Muchlinski MN, Orton LD, Sullivan MS, Grant RA. Comparing vibrissal morphology and infraorbital foramen area in pinnipeds. Anat Rec (Hoboken) 2021; 305:556-567. [PMID: 34076956 DOI: 10.1002/ar.24683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Pinniped vibrissae are well-adapted to sensing in an aquatic environment, by being morphologically diverse and more sensitive than those of terrestrial species. However, it is both challenging and time-consuming to measure vibrissal sensitivity in many species. In terrestrial species, the infraorbital foramen (IOF) area is associated with vibrissal sensitivity and increases with vibrissal number. While pinnipeds are thought to have large IOF areas, this has not yet been systematically measured before. We investigated vibrissal morphology, IOF area, and skull size in 16 species of pinniped and 12 terrestrial Carnivora species. Pinnipeds had significantly larger skulls and IOF areas, longer vibrissae, and fewer vibrissae than the other Carnivora species. IOF area and vibrissal number were correlated in Pinnipeds, just as they are in terrestrial mammals. However, despite pinnipeds having significantly fewer vibrissae than other Carnivora species, their IOF area was not smaller, which might be due to pinnipeds having vibrissae that are innervated more. We propose that investigating normalized IOF area per vibrissa will offer an alternative way to approximate gross individual vibrissal sensitivity in pinnipeds and other mammalian species. Our data show that many species of pinniped, and some species of felids, are likely to have strongly innervated individual vibrissae, since they have high values of normalized IOF area per vibrissa. We suggest that species that hunt moving prey items in the dark will have more sensitive and specialized vibrissae, especially as they have to integrate between individual vibrissal signals to calculate the direction of moving prey during hunting.
Collapse
Affiliation(s)
- Alyx O Milne
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.,Events Team, Blackpool Zoo, Blackpool, UK
| | | | - Llwyd D Orton
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Matthew S Sullivan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
8
|
Rickert SS, Kass PH, Verstraete FJM. Temporomandibular Joint Pathology of Wild Carnivores in the Western USA. Front Vet Sci 2021; 8:657381. [PMID: 33898548 PMCID: PMC8063859 DOI: 10.3389/fvets.2021.657381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Skull specimens from: southern sea otter (Enhydra lutris nereis), Eastern Pacific harbor seal (Phoca vitulina), California sea lion (Zalophus californianus), northern fur seal (Callorhinus ursinus), walrus (Odobenus rosmarus), polar bear (Ursus maritimus), North American brown bear (Ursus arctos), American black bear (Ursus americanus), California mountain lion (Puma concolor couguar), California bobcat (Lynx rufus californicus), gray fox (Urocyon cinereoargenteus), kit fox (Vulpes macrotis), and gray wolf (Canis lupus) (n = 5,011) were macroscopically examined for dental and temporomandibular joint (TMJ) pathology. The presence of temporomandibular joint osteoarthritis (TMJ-OA) varied across species: 4.1% of southern sea otter, 34.5% of harbor seal, 85.5% of California sea lion, 20% of northern fur seal, 60.5% of walrus, 9.2% of polar bear, 13.2% of North American brown bear, 50% of American black bear, 20.9% of California mountain lion, 0% of California bobcat and gray fox, 6.3% of kit fox, and 11.6% of gray wolf specimens had lesions consistent with TMJ-OA. TMJ-OA was significantly more prevalent in males than females in walrus, North American brown bear, polar bear, American black bear, and California mountain lion (p < 0.001, p = 0.005, p = 0.005, p = 0.002, and p = 0.004, respectively). No other species showed a sex predilection. Adult specimens were significantly more affected with TMJ-OA than young adults in the harbor seal, fur seal, walrus (all p < 0.001), and kit fox (p = 0.001). Gray wolf and American black bear young adults were significantly (p = 0.047 and p < 0.001) more affected by TMJ-OA than adults. Of the 13 species analyzed, only three species, namely the harbor seal, northern fur seal, and polar bear, had a significant increase in the prevalence of TMJ-OA if their teeth had attrition and abrasion (p < 0.001, p < 0.001, and p = 0.033, respectively). TMJ-OA can lead to morbidity and mortality in wild animals, but its etiology is not yet fully understood.
Collapse
Affiliation(s)
- Siobhan S Rickert
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Philip H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Frank J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
McElroy EJ, Sustaita D, McBrayer LD. Applied Functional Biology: Linking Ecological Morphology to Conservation and Management. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synopsis
Many researchers work at the interface of organisms and environment. Too often, the insights that organismal, or functional, biologists can bring to the understanding of natural history, ecology, and conservation of species are overlooked. Likewise, natural resource managers are frequently focused on the management of populations and communities, while ignoring key functional traits that might explain variation in abundance and shifts in species composition at these ecological levels. Our intention for this symposium is two-fold: (1) to bring to light current and future research in functional and ecological morphology applicable to concerns and goals of wildlife management and conservation and (2) to show how such studies can result in measurable benchmarks useful to regulatory agencies. Symposium topics reveal past, present, and future collaborations between functional morphologists/biomechanists and conservation/wildlife biologists. During the SICB 2020 Annual Meeting, symposium participants demonstrated how data gathered to address fundamental questions regarding the causes and consequences of organismal form and function can also help address issues of conservation and wildlife management. Here we review how these, and other, studies of functional morphology, biomechanics, ecological development morphology and performance can inform wildlife conservation and management, principally by identifying candidate functional traits that have clear fitness consequences and population level implications.
Collapse
Affiliation(s)
- Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29412, USA
| | - Diego Sustaita
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
10
|
Pérez-Ramos A, Tseng ZJ, Grandal-D’Anglade A, Rabeder G, Pastor FJ, Figueirido B. Biomechanical simulations reveal a trade-off between adaptation to glacial climate and dietary niche versatility in European cave bears. SCIENCE ADVANCES 2020; 6:eaay9462. [PMID: 32270039 PMCID: PMC7112751 DOI: 10.1126/sciadv.aay9462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
The cave bear is one of the best known extinct large mammals that inhabited Europe during the "Ice Age," becoming extinct ≈24,000 years ago along with other members of the Pleistocene megafauna. Long-standing hypotheses speculate that many cave bears died during their long hibernation periods, which were necessary to overcome the severe and prolonged winters of the Last Glacial. Here, we investigate how long hibernation periods in cave bears would have directly affected their feeding biomechanics using CT-based biomechanical simulations of skulls of cave and extant bears. Our results demonstrate that although large paranasal sinuses were necessary for, and consistent with, long hibernation periods, trade-offs in sinus-associated cranial biomechanical traits restricted cave bears to feed exclusively on low energetic vegetal resources during the predormancy period. This biomechanical trade-off constitutes a new key factor to mechanistically explain the demise of this dominant Pleistocene megafaunal species as a direct consequence of climate cooling.
Collapse
Affiliation(s)
- Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Z. Jack Tseng
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | | | - Gernot Rabeder
- University of Vienna, Institute of Palaeontology and Naturkundliche Station Lunz am See, Vienna, Austria
| | - Francisco J. Pastor
- Departamento de Anatomía y Radiología, Universidad de Valladolid, Valladolid 47005, Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
11
|
Morales-García NM, Burgess TD, Hill JJ, Gill PG, Rayfield EJ. The use of extruded finite-element models as a novel alternative to tomography-based models: a case study using early mammal jaws. J R Soc Interface 2019; 16:20190674. [PMID: 31822222 PMCID: PMC6936041 DOI: 10.1098/rsif.2019.0674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium. In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.
Collapse
Affiliation(s)
| | - Thomas D Burgess
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Jennifer J Hill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Smithsonian Institution, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.,Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
12
|
Mehari Abraha H, Iriarte-Diaz J, Ross CF, Taylor AB, Panagiotopoulou O. The Mechanical Effect of the Periodontal Ligament on Bone Strain Regimes in a Validated Finite Element Model of a Macaque Mandible. Front Bioeng Biotechnol 2019; 7:269. [PMID: 31737614 PMCID: PMC6831558 DOI: 10.3389/fbioe.2019.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
The primary anatomical function of the periodontal ligament (PDL) is to attach teeth to their sockets. However, theoretical and constitutive mechanical models have proposed that during mastication the PDL redistributes local occlusal loads and reduces the jaw's resistance to torsional deformations. These hypotheses imply that accurately modeling the PDL's material properties and geometry in finite element analysis (FEA) is a prerequisite to obtaining precise strain and deformation data. Yet, many finite element studies of the human and non-human primate masticatory apparatus exclude the PDL or model it with simplicity, in part due to limitations in μCT/CT scan resolution and material property assignment. Previous studies testing the sensitivity of finite element models (FEMs) to the PDL have yielded contradictory results, however a major limitation of these studies is that FEMs were not validated against in vivo bone strain data. Hence, this study uses a validated and subject specific FEM to assess the effect of the PDL on strain and deformation regimes in the lower jaw of a rhesus macaque (Macaca mulatta) during simulated unilateral post-canine chewing. Our findings demonstrate that the presence of the PDL does influence local and global surface strain magnitudes (principal and shear) in the jaw. However, the PDL's effect is limited (diff. ~200-300 με) in areas away from the alveoli. Our results also show that varying the PDL's Young's Modulus within the range of published values (0.07-1750 MPa) has very little effect on global surface strains. These findings suggest that the mechanical importance of the PDL in FEMs of the mandible during chewing is dependent on the scope of the hypotheses being tested. If researchers are comparing strain gradients across species/taxa, the PDL may be excluded with minimal effect on results, but, if researchers are concerned with absolute strain values, sensitivity analysis is required.
Collapse
Affiliation(s)
- Hyab Mehari Abraha
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose Iriarte-Diaz
- Department of Biology, The University of the South, Sewanee, TN, United States
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Andrea B. Taylor
- Department of Basic Science, Touro University, Vallejo, CA, United States
| | - Olga Panagiotopoulou
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Monson TA, Boisserie J, Brasil MF, Clay SM, Dvoretzky R, Ravindramurthy S, Schmitt CA, Souron A, Takenaka R, Ungar PS, Yoo S, Zhou M, Zuercher ME, Hlusko LJ. Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions. Ecol Evol 2019; 9:7597-7612. [PMID: 31346425 PMCID: PMC6635932 DOI: 10.1002/ece3.5309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022] Open
Abstract
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.
Collapse
Affiliation(s)
- Tesla A. Monson
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
- Anthropologisches Institut und MuseumUniversität ZürichZürichSwitzerland
| | | | - Marianne F. Brasil
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Selene M. Clay
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Department of Human GeneticsUniversity of ChicagoChicagoIllinois
| | - Rena Dvoretzky
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | | | | | | | - Risa Takenaka
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| | - Peter S. Ungar
- Department of AnthropologyUniversity of ArkansasFayettevilleArkansas
| | - Sunwoo Yoo
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | - Michael Zhou
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | | | - Leslea J. Hlusko
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
- Human Evolution Research CenterUniversity of CaliforniaBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
14
|
Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A 2019; 116:13446-13451. [PMID: 31209046 DOI: 10.1073/pnas.1901093116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polar bear (Ursus maritimus) and brown bear (Ursus arctos) are recently diverged species that inhabit vastly differing habitats. Thus, analysis of the polar bear and brown bear genomes represents a unique opportunity to investigate the evolutionary mechanisms and genetic underpinnings of rapid ecological adaptation in mammals. Copy number (CN) differences in genomic regions between closely related species can underlie adaptive phenotypes and this form of genetic variation has not been explored in the context of polar bear evolution. Here, we analyzed the CN profiles of 17 polar bears, 9 brown bears, and 2 black bears (Ursus americanus). We identified an average of 318 genes per individual that showed evidence of CN variation (CNV). Nearly 200 genes displayed species-specific CN differences between polar bear and brown bear species. Principal component analysis of gene CN provides strong evidence that CNV evolved rapidly in the polar bear lineage and mainly resulted in CN loss. Olfactory receptors composed 47% of CN differentiated genes, with the majority of these genes being at lower CN in the polar bear. Additionally, we found significantly fewer copies of several genes involved in fatty acid metabolism as well as AMY1B, the salivary amylase-encoding gene in the polar bear. These results suggest that natural selection shaped patterns of CNV in response to the transition from an omnivorous to primarily carnivorous diet during polar bear evolution. Our analyses of CNV shed light on the genomic underpinnings of ecological adaptation during polar bear evolution.
Collapse
|
15
|
Machado FA, Zahn TMG, Marroig G. Evolution of morphological integration in the skull of Carnivora (Mammalia): Changes in Canidae lead to increased evolutionary potential of facial traits. Evolution 2018; 72:1399-1419. [PMID: 29803199 DOI: 10.1111/evo.13495] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
Morphological integration refers to the fact that different phenotypic traits of organisms are not fully independent from each other, and tend to covary to different degrees. The covariation among traits is thought to reflect properties of the species' genetic architecture and thus can have an impact on evolutionary responses. Furthermore, if morphological integration changes along the history of a group, inferences of past selection regimes might be problematic. Here, we evaluated the stability and evolution of the morphological integration of skull traits in Carnivora by using evolutionary simulations and phylogenetic comparative methods. Our results show that carnivoran species are able to respond to natural selection in a very similar way. Our comparative analyses show that the phylogenetic signal for pattern of integration is lower than that observed for morphology (trait averages), and that integration was stable throughout the evolution of the group. That notwithstanding, Canidae differed from other families by having higher integration, evolvability, flexibility, and allometric coefficients on the facial region. These changes might have allowed canids to rapidly adapt to different food sources, helping to explain not only the phenotypic diversification of the family, but also why humans were able to generate such a great diversity of dog breeds through artificial selection.
Collapse
Affiliation(s)
- Fabio Andrade Machado
- División Mastozoologa, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia". Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Thiago Macek Gonçalves Zahn
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP 05508-090, Brazil
| | - Gabriel Marroig
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP 05508-090, Brazil
| |
Collapse
|
16
|
Cahill JA, Heintzman PD, Harris K, Teasdale MD, Kapp J, Soares AER, Stirling I, Bradley D, Edwards CJ, Graim K, Kisleika AA, Malev AV, Monaghan N, Green RE, Shapiro B. Genomic Evidence of Widespread Admixture from Polar Bears into Brown Bears during the Last Ice Age. Mol Biol Evol 2018; 35:1120-1129. [DOI: 10.1093/molbev/msy018] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- James A Cahill
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Peter D Heintzman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA
- Tromsø University Museum, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Kelley Harris
- Department of Genetics, Stanford University, Stanford, CA
| | - Matthew D Teasdale
- Smurfit Institute of Genetics, Dublin 2, Ireland
- BioArCh, University of York, York, United Kingdom
| | - Joshua Kapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Andre E R Soares
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Ian Stirling
- Wildlife Research Division, Department of Environment, c/o Department of Biological Sciences, University of Alberta, Edmonton, AB
- Department of Biological Sciences, University of Alberta, Edmonton, AB
| | | | - Ceiridwen J Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Kiley Graim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ
- Flatiron Institute, Simons Foundation, New York, NY
| | | | | | - Nigel Monaghan
- National Museum of Ireland – Natural History, Dublin, Ireland
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
17
|
Tseng ZJ, Flynn JJ. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora. SCIENCE ADVANCES 2018; 4:eaao5441. [PMID: 29441363 PMCID: PMC5810607 DOI: 10.1126/sciadv.aao5441] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/08/2018] [Indexed: 05/06/2023]
Abstract
Skull shape convergence is pervasive among vertebrates. Although this is frequently inferred to indicate similar functional underpinnings, neither the specific structure-function linkages nor the selective environments in which the supposed functional adaptations arose are commonly identified and tested. We demonstrate that nonfeeding factors relating to sexual maturity and precipitation-related arboreality also can generate structure-function relationships in the skulls of carnivorans (dogs, cats, seals, and relatives) through covariation with masticatory performance. We estimated measures of masticatory performance related to ecological variables that covary with cranial shape in the mammalian order Carnivora, integrating geometric morphometrics and finite element analyses. Even after accounting for phylogenetic autocorrelation, cranial shapes are significantly correlated to both feeding and nonfeeding ecological variables, and covariation with both variable types generated significant masticatory performance gradients. This suggests that mechanisms of obligate shape covariation with nonfeeding variables can produce performance changes resembling those arising from feeding adaptations in Carnivora.
Collapse
Affiliation(s)
- Z. Jack Tseng
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- Corresponding author.
| | - John J. Flynn
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
18
|
Three-Dimensional Geometric Morphometrics in Paleoecology. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2018. [DOI: 10.1007/978-3-319-94265-0_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Meloro C, Guidarelli G, Colangelo P, Ciucci P, Loy A. Mandible size and shape in extant Ursidae (Carnivora, Mammalia): A tool for taxonomy and ecogeography. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology; School of Natural Sciences and Psychology; Liverpool John Moores University; Liverpool UK
| | | | - Paolo Colangelo
- CNR - Institute for Ecosystem Study; Verbania-Pallanza Italy
| | - Paolo Ciucci
- Department of Biology and Biotechnologies ‘Charles Darwin’; University of Rome ‘La Sapienza’; Roma Italy
| | - Anna Loy
- Department S.T.A.T.; University of Molise; Pesche Italy
| |
Collapse
|
20
|
Nanova O, Prôa M, Fitton LC, Evteev A, O’Higgins P. Comparison of cranial performance between mainland and two island subspecies of the Arctic fox Vulpes lagopus (Carnivora: Canidae) during simulated biting. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
21
|
Winer JN, Arzi B, Leale DM, Kass PH, Verstraete FJM. Dental and Temporomandibular Joint Pathology of the Polar Bear (Ursus maritimus). J Comp Pathol 2016; 155:231-241. [PMID: 27481648 DOI: 10.1016/j.jcpa.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Museum specimens (maxillae and/or mandibles) from 317 polar bears (Ursus maritimus) were examined macroscopically according to predefined criteria and 249 specimens were included in this study. The specimens were acquired between 1906 and 2011. There were 126 specimens (50.6%) from male animals, 93 (37.3%) from female animals and 30 (12.1%) from animals of unknown sex. The ages of the animals ranged from neonate to adult, with 125 adults (50.2%) and 124 young adults (49.8%) included and neonates/juveniles excluded from the study. The number of teeth available for examination was 7,638 (73.5%); 12.3% of teeth were absent artefactually, 0.8% were deemed absent due to acquired tooth loss and 13.4% were absent congenitally. With respect to tooth morphology, 20 teeth (0.26% of available teeth) in 18 specimens (7.2% of available specimens) were small vestigial structures with crowns that were flush with the level of surrounding alveolar bone. One supernumerary tooth and one tooth with enamel hypoplasia were encountered. Persistent deciduous teeth and teeth with an aberrant number of roots were not found. Relatively few teeth (3.7%) displayed attrition/abrasion, 90% of which were the maxillary and mandibular incisor teeth, in 41 polar bears (16.5%). Nearly twice as many adult specimens exhibited attrition/abrasion as those from young adults; significantly more males were affected than females. Dental fractures were noted in 52 polar bears, affecting 20.9% of specimens and 1.3% of the total number of teeth present. More adult polar bears had dental fractures than young adults. There were 21 specimens (8.4%) that displayed overt periapical disease, affecting a total of 24 dental alveoli (0.23%). Some degree of periodontitis was seen in 199 specimens (79.9%); however, only 12.6% of dental alveoli had bony changes indicative of periodontitis. Lesions consistent with temporomandibular joint osteoarthritis (TMJ-OA) were found in 23 specimens (9.2%). TMJ-OA was significantly more common in adults than in young adults and in males than in females. Although the clinical significance of dental and TMJ pathology in the polar bear remains elusive, the occurrence and severity of these lesions may play an important role in the morbidity and mortality of this species.
Collapse
Affiliation(s)
- J N Winer
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - B Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - D M Leale
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - P H Kass
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - F J M Verstraete
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
22
|
McLean BS, Bell KC, Dunnum JL, Abrahamson B, Colella JP, Deardorff ER, Weber JA, Jones AK, Salazar-Miralles F, Cook JA. Natural history collections-based research: progress, promise, and best practices. J Mammal 2016; 97:287-297. [PMID: 26989266 PMCID: PMC4794611 DOI: 10.1093/jmammal/gyv178] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Specimens and associated data in natural history collections (NHCs) foster substantial scientific progress. In this paper, we explore recent contributions of NHCs to the study of systematics and biogeography, genomics, morphology, stable isotope ecology, and parasites and pathogens of mammals. To begin to assess the magnitude and scope of these contributions, we analyzed publications in the Journal of Mammalogy over the last decade, as well as recent research supported by a single university mammal collection (Museum of Southwestern Biology, Division of Mammals). Using these datasets, we also identify weak links that may be hindering the development of crucial NHC infrastructure. Maintaining the vitality and growth of this foundation of mammalogy depends on broader engagement and support from across the scientific community and is both an ethical and scientific imperative given the rapidly changing environmental conditions on our planet.
Collapse
Affiliation(s)
- Bryan S. McLean
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Kayce C. Bell
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jonathan L. Dunnum
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Bethany Abrahamson
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jocelyn P. Colella
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Eleanor R. Deardorff
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Jessica A. Weber
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Amanda K. Jones
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Fernando Salazar-Miralles
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA (BSM, KCB, JLD, BA, JPC, ERD, JAW, AKJ, FS-M, JAC)
| |
Collapse
|
23
|
Therrien F, Quinney A, Tanaka K, Zelenitsky DK. Accuracy of mandibular force profiles for bite force estimation and feeding behavior reconstruction in extant and extinct carnivorans. J Exp Biol 2016; 219:3738-3749. [DOI: 10.1242/jeb.143339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022]
Abstract
Mandibular force profiles apply the principles of beam theory to identify mandibular biomechanical properties that reflect the bite force and feeding strategies of extant and extinct predators. While this method uses external dimensions of the mandibular corpus to determine its biomechanical properties, more accurate results could potentially be obtained by quantifying its internal cortical bone distribution. To test this possibility, mandibular force profiles were calculated using both external mandibular dimensions (‘solid mandible model’) and quantification of internal bone distribution of the mandibular corpus obtained from CT scans (‘hollow mandible model’) for five carnivorans (Canis lupus, Crocuta crocuta, Panthera leo, Neofelis nebulosa, and the extinct Canis dirus). Comparison reveals that the solid model slightly overestimates mandibular biomechanical properties, but the pattern of change in biomechanical properties along the mandible remains the same. As such, feeding behavior reconstructions are consistent between the two models and are not improved by computed tomography. Bite force estimates produced by the two models are similar, except for Crocuta where the solid model underestimates bite force by 10%-14%. This discrepancy is due to the more solid nature of the Crocuta mandible relative to other carnivorans. Therefore, computed tomography improves bite force estimation accuracy for taxa with thicker mandibular corpora, but not significantly so otherwise. Bite force estimates derived from mandibular force profiles are far closer to empirically-measured bite force than those inferred from jaw musculature dimension. Consequently, bite force estimates derived from this method can be used to calibrate finite-element analysis models.
Collapse
Affiliation(s)
- François Therrien
- Royal Tyrrell Museum of Palaeontology, PO Box 7500, Drumheller, AB, T0J 0Y0, Canada
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Annie Quinney
- Arctic Institute of North America, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Kohei Tanaka
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Darla K. Zelenitsky
- Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
24
|
Functional morphology of the cave bear (Ursus spelaeus) mandible: a 3D geometric morphometric analysis. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0238-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species. PLoS One 2015; 10:e0124020. [PMID: 25923776 PMCID: PMC4414467 DOI: 10.1371/journal.pone.0124020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.
Collapse
|
27
|
Cahill JA, Stirling I, Kistler L, Salamzade R, Ersmark E, Fulton TL, Stiller M, Green RE, Shapiro B. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol Ecol 2015; 24:1205-17. [PMID: 25490862 PMCID: PMC4409089 DOI: 10.1111/mec.13038] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 11/15/2014] [Accepted: 11/26/2014] [Indexed: 12/16/2022]
Abstract
Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction.
Collapse
Affiliation(s)
- James A Cahill
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tseng ZJ, Flynn JJ. Convergence analysis of a finite element skull model of Herpestes javanicus (Carnivora, Mammalia): Implications for robust comparative inferences of biomechanical function. J Theor Biol 2015; 365:112-48. [DOI: 10.1016/j.jtbi.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
29
|
Curtis AA, Lai G, Wei F, Van Valkenburgh B. Repeated loss of frontal sinuses in arctoid carnivorans. J Morphol 2014; 276:22-32. [PMID: 25069818 DOI: 10.1002/jmor.20313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/19/2014] [Accepted: 07/01/2014] [Indexed: 11/11/2022]
Abstract
Many mammal skulls contain air spaces inside the bones surrounding the nasal chamber including the frontal, maxilla, ethmoid, and sphenoid, all of which are called paranasal sinuses. Within the Carnivora, frontal sinuses are usually present, but vary widely in size and shape. The causes of this variation are unclear, although there are some functional associations, such as a correlation between expanded frontal sinuses and a durophagous diet in some species (e.g., hyenas) or between absent sinuses and semiaquatic lifestyle (e.g., pinnipeds). To better understand disparity in frontal sinus morphology within Carnivora, we quantified frontal sinus size in relationship to skull size and shape in 23 species within Arctoidea, a clade that is ecologically diverse including three independent invasions of aquatic habitats, by bears, otters, and pinnipeds, respectively. Our sampled species range in behavior from terrestrial (rarely or never forage in water), to semiterrestrial (forage in water and on land), to semiaquatic (forage only in water). Results show that sinuses are either lost or reduced in both semiterrestrial and semiaquatic species, and that sinus size is related to skull size and shape. Among terrestrial species, frontal sinus size was positively allometric overall, but several terrestrial species completely lacked sinuses, including two fossorial badgers, the kinkajou (a nocturnal, arboreal frugivore), and several species with small body size, indicating that factors other than aquatic habits, such as space limitations due to constraints on skull size and shape, can limit sinus size and presence.
Collapse
Affiliation(s)
- Abigail A Curtis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095-1606
| | | | | | | |
Collapse
|
30
|
Attard MRG, Parr WCH, Wilson LAB, Archer M, Hand SJ, Rogers TL, Wroe S. Virtual reconstruction and prey size preference in the mid Cenozoic thylacinid, Nimbacinus dicksoni (Thylacinidae, Marsupialia). PLoS One 2014; 9:e93088. [PMID: 24718109 PMCID: PMC3981708 DOI: 10.1371/journal.pone.0093088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/01/2014] [Indexed: 11/18/2022] Open
Abstract
Thylacinidae is an extinct family of Australian and New Guinean marsupial carnivores, comprizing 12 known species, the oldest of which are late Oligocene (∼24 Ma) in age. Except for the recently extinct thylacine (Thylacinus cynocephalus), most are known from fragmentary craniodental material only, limiting the scope of biomechanical and ecological studies. However, a particularly well-preserved skull of the fossil species Nimbacinus dicksoni, has been recovered from middle Miocene (∼16-11.6 Ma) deposits in the Riversleigh World Heritage Area, northwestern Queensland. Here, we ask whether N. dicksoni was more similar to its recently extinct relative or to several large living marsupials in a key aspect of feeding ecology, i.e., was N. dicksoni a relatively small or large prey specialist. To address this question we have digitally reconstructed its skull and applied three-dimensional Finite Element Analysis to compare its mechanical performance with that of three extant marsupial carnivores and T. cynocephalus. Under loadings adjusted for differences in size that simulated forces generated by both jaw closing musculature and struggling prey, we found that stress distributions and magnitudes in the skull of N. dicksoni were more similar to those of the living spotted-tailed quoll (Dasyurus maculatus) than to its recently extinct relative. Considering the Finite Element Analysis results and dental morphology, we predict that N. dicksoni likely occupied a broadly similar ecological niche to that of D. maculatus, and was likely capable of hunting vertebrate prey that may have exceeded its own body mass.
Collapse
Affiliation(s)
- Marie R. G. Attard
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Function, Evolution and Anatomy Research laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, New South Wales, Australia
- * E-mail:
| | - William C. H. Parr
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Laura A. B. Wilson
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Archer
- Evolution of Earth and Life Sciences Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanne J. Hand
- Evolution of Earth and Life Sciences Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tracey L. Rogers
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen Wroe
- Function, Evolution and Anatomy Research laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, New South Wales, Australia
| |
Collapse
|
31
|
Cronin M, McDonough M, Huynh H, Baker R. Genetic relationships of North American bears (Ursus) inferred from amplified fragment length polymorphisms and mitochondrial DNA sequences. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2013-0078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three species of bears in North America, polar bears (Ursus maritimus Phipps, 1774), brown bears (Ursus arctos L., 1758), and black bears (Ursus americanus Pallas, 1780), have differentiated morphologies and nuclear and mitochondrial genomes. An exception is a paraphyletic mitochondrial DNA relationship and some nuclear gene lineages common to polar bears and a population of brown bears from islands in southeast Alaska. In this study, we quantified the genetic relationships of extant brown bears and black bears from Alaska and Montana, and polar bears from Alaska, with amplified fragment length polymorphisms (AFLP) and mtDNA cytochrome-b sequences. Bayesian cluster analyses of the AFLP data show each species is distinct. All brown bears, including those from the islands in southeast Alaska, cluster separately from polar bears, and black bears cluster separately from brown bears and polar bears. The mtDNA of polar bears and southeast Alaska island brown bears is paraphyletic as reported previously, but the species have different haplotypes. These data indicate that extant populations of brown bears and polar bears have separate nuclear and mitochondrial gene pools and are supported as species under the genetic species concept.
Collapse
Affiliation(s)
- M.A. Cronin
- School of Natural Resources and Agricultural Sciences, University of Alaska, Fairbanks, AK 99645, USA
| | - M.M. McDonough
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - H.M. Huynh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - R.J. Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
32
|
Wroe S, Chamoli U, Parr WCH, Clausen P, Ridgely R, Witmer L. Comparative Biomechanical Modeling of Metatherian and Placental Saber-Tooths: A Different Kind of Bite for an Extreme Pouched Predator. PLoS One 2013; 8:e66888. [PMID: 23840547 PMCID: PMC3694156 DOI: 10.1371/journal.pone.0066888] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Questions surrounding the dramatic morphology of saber-tooths, and the presumably deadly purpose to which it was put, have long excited scholarly and popular attention. Among saber-toothed species, the iconic North American placental, Smilodon fatalis, and the bizarre South American sparassodont, Thylacosmilus atrox, represent extreme forms commonly forwarded as examples of convergent evolution. For S. fatalis, some consensus has been reached on the question of killing behaviour, with most researchers accepting the canine-shear bite hypothesis, wherein both head-depressing and jaw closing musculatures played a role in delivery of the fatal bite. However, whether, or to what degree, T. atrox may have applied a similar approach remains an open question. Here we apply a three-dimensional computational approach to examine convergence in mechanical performance between the two species. We find that, in many respects, the placental S. fatalis (a true felid) was more similar to the metatherian T. atrox than to a conical-toothed cat. In modeling of both saber-tooths we found that jaw-adductor-driven bite forces were low, but that simulations invoking neck musculature revealed less cranio-mandibular stress than in a conical-toothed cat. However, our study also revealed differences between the two saber-tooths likely reflected in the modus operandi of the kill. Jaw-adductor-driven bite forces were extremely weak in T. atrox, and its skull was even better-adapted to resist stress induced by head-depressors. Considered together with the fact that the center of the arc described by the canines was closer to the jaw-joint in Smilodon, our results are consistent with both jaw-closing and neck musculature playing a role in prey dispatch for the placental, as has been previously suggested. However, for T. atrox, we conclude that the jaw-adductors probably played no major part in the killing bite. We propose that the metatherian presents a more complete commitment to the already extreme saber-tooth 'lifestyle'.
Collapse
Affiliation(s)
- Stephen Wroe
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Uphar Chamoli
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
- St. George Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - William C. H. Parr
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
| | - Philip Clausen
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ryan Ridgely
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Lawrence Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|
33
|
Tseng ZJ. Testing adaptive hypotheses of convergence with functional landscapes: a case study of bone-cracking hypercarnivores. PLoS One 2013; 8:e65305. [PMID: 23734244 PMCID: PMC3667121 DOI: 10.1371/journal.pone.0065305] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/27/2013] [Indexed: 11/18/2022] Open
Abstract
Morphological convergence is a well documented phenomenon in mammals, and adaptive explanations are commonly employed to infer similar functions for convergent characteristics. I present a study that adopts aspects of theoretical morphology and engineering optimization to test hypotheses about adaptive convergent evolution. Bone-cracking ecomorphologies in Carnivora were used as a case study. Previous research has shown that skull deepening and widening are major evolutionary patterns in convergent bone-cracking canids and hyaenids. A simple two-dimensional design space, with skull width-to-length and depth-to-length ratios as variables, was used to examine optimized shapes for two functional properties: mechanical advantage (MA) and strain energy (SE). Functionality of theoretical skull shapes was studied using finite element analysis (FEA) and visualized as functional landscapes. The distribution of actual skull shapes in the landscape showed a convergent trend of plesiomorphically low-MA and moderate-SE skulls evolving towards higher-MA and moderate-SE skulls; this is corroborated by FEA of 13 actual specimens. Nevertheless, regions exist in the landscape where high-MA and lower-SE shapes are not represented by existing species; their vacancy is observed even at higher taxonomic levels. Results highlight the interaction of biomechanical and non-biomechanical factors in constraining general skull dimensions to localized functional optima through evolution.
Collapse
Affiliation(s)
- Zhijie Jack Tseng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
34
|
Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet 2013; 9:e1003345. [PMID: 23516372 PMCID: PMC3597504 DOI: 10.1371/journal.pgen.1003345] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.
Collapse
|
35
|
Stirling I, Derocher AE. Effects of climate warming on polar bears: a review of the evidence. GLOBAL CHANGE BIOLOGY 2012; 18:2694-706. [PMID: 24501049 DOI: 10.1111/j.1365-2486.2012.02753.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 05/25/2023]
Abstract
Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze-up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long-term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate-driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid-century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long-term viability, with a much reduced global population size in a remnant of their former range, is uncertain.
Collapse
Affiliation(s)
- Ian Stirling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | |
Collapse
|
36
|
Toward integration of geometric morphometrics and computational biomechanics: New methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models. J Theor Biol 2012; 301:1-14. [DOI: 10.1016/j.jtbi.2012.01.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/17/2022]
|
37
|
Hailer F, Kutschera VE, Hallström BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A. Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science 2012; 336:344-7. [PMID: 22517859 DOI: 10.1126/science.1216424] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Frank Hailer
- Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Piras P, Sansalone G, Teresi L, Kotsakis T, Colangelo P, Loy A. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis. J Morphol 2012; 273:696-711. [DOI: 10.1002/jmor.20015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 01/29/2012] [Indexed: 11/07/2022]
|
39
|
MELORO CARLO. Mandibular shape correlates of tooth fracture in extant Carnivora: implications to inferring feeding behaviour of Pleistocene predators. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01843.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
KUPCZIK KORNELIUS, STYNDER DEANOD. Tooth root morphology as an indicator for dietary specialization in carnivores (Mammalia: Carnivora). Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01779.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Oldfield CC, McHenry CR, Clausen PD, Chamoli U, Parr WCH, Stynder DD, Wroe S. Finite element analysis of ursid cranial mechanics and the prediction of feeding behaviour in the extinct giant Agriotherium africanum. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00862.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. C. Oldfield
- Mechanical Engineering; School of Engineering; The University of Newcastle; Newcastle; NSW; Australia
| | - C. R. McHenry
- Department of Anatomy and Developmental Biology; School of Biomedical Sciences; Monash University; Clayton; Vic.; Australia
| | - P. D. Clausen
- Mechanical Engineering; School of Engineering; The University of Newcastle; Newcastle; NSW; Australia
| | - U. Chamoli
- School of Biological, Environmental and Earth Sciences; University of New South Wales; Sydney; NSW; Australia
| | - W. C. H. Parr
- School of Biological, Environmental and Earth Sciences; University of New South Wales; Sydney; NSW; Australia
| | - D. D. Stynder
- Department of Archaeology; Faculty of Science; University of Cape Town; Rondebosch; South Africa
| | - S. Wroe
- School of Biological, Environmental and Earth Sciences; University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
42
|
Edwards CJ, Suchard MA, Lemey P, Welch JJ, Barnes I, Fulton TL, Barnett R, O'Connell TC, Coxon P, Monaghan N, Valdiosera CE, Lorenzen ED, Willerslev E, Baryshnikov GF, Rambaut A, Thomas MG, Bradley DG, Shapiro B. Ancient hybridization and an Irish origin for the modern polar bear matriline. Curr Biol 2011; 21:1251-8. [PMID: 21737280 DOI: 10.1016/j.cub.2011.05.058] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. RESULTS We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. CONCLUSIONS The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration.
Collapse
Affiliation(s)
- Ceiridwen J Edwards
- Smurfit Institute of Genetics, Trinity College, University of Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Model sensitivity and use of the comparative finite element method in mammalian jaw mechanics: mandible performance in the gray wolf. PLoS One 2011; 6:e19171. [PMID: 21559475 PMCID: PMC3084775 DOI: 10.1371/journal.pone.0019171] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Finite Element Analysis (FEA) is a powerful tool gaining use in studies of biological form and function. This method is particularly conducive to studies of extinct and fossilized organisms, as models can be assigned properties that approximate living tissues. In disciplines where model validation is difficult or impossible, the choice of model parameters and their effects on the results become increasingly important, especially in comparing outputs to infer function. To evaluate the extent to which performance measures are affected by initial model input, we tested the sensitivity of bite force, strain energy, and stress to changes in seven parameters that are required in testing craniodental function with FEA. Simulations were performed on FE models of a Gray Wolf (Canis lupus) mandible. Results showed that unilateral bite force outputs are least affected by the relative ratios of the balancing and working muscles, but only ratios above 0.5 provided balancing-working side joint reaction force relationships that are consistent with experimental data. The constraints modeled at the bite point had the greatest effect on bite force output, but the most appropriate constraint may depend on the study question. Strain energy is least affected by variation in bite point constraint, but larger variations in strain energy values are observed in models with different number of tetrahedral elements, masticatory muscle ratios and muscle subgroups present, and number of material properties. These findings indicate that performance measures are differentially affected by variation in initial model parameters. In the absence of validated input values, FE models can nevertheless provide robust comparisons if these parameters are standardized within a given study to minimize variation that arise during the model-building process. Sensitivity tests incorporated into the study design not only aid in the interpretation of simulation results, but can also provide additional insights on form and function.
Collapse
|
44
|
Van Valkenburgh B, Curtis A, Samuels JX, Bird D, Fulkerson B, Meachen-Samuels J, Slater GJ. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates. J Anat 2011; 218:298-310. [PMID: 21198587 DOI: 10.1111/j.1469-7580.2010.01329.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Inside the mammalian nose lies a labyrinth of bony plates covered in epithelium collectively known as turbinates. Respiratory turbinates lie anteriorly and aid in heat and water conservation, while more posterior olfactory turbinates function in olfaction. Previous observations on a few carnivorans revealed that aquatic species have relatively large, complex respiratory turbinates and greatly reduced olfactory turbinates compared with terrestrial species. Body heat is lost more quickly in water than air and increased respiratory surface area likely evolved to minimize heat loss. At the same time, olfactory surface area probably diminished due to a decreased reliance on olfaction when foraging under water. To explore how widespread these adaptations are, we documented scaling of respiratory and olfactory turbinate surface area with body size in a variety of terrestrial, freshwater, and marine carnivorans, including pinnipeds, mustelids, ursids, and procyonids. Surface areas were estimated from high-resolution CT scans of dry skulls, a novel approach that enabled a greater sampling of taxa than is practical with fresh heads. Total turbinate, respiratory, and olfactory surface areas correlate well with body size (r(2) ≥0.7), and are relatively smaller in larger species. Relative to body mass or skull length, aquatic species have significantly less olfactory surface area than terrestrial species. Furthermore, the ratio of olfactory to respiratory surface area is associated with habitat. Using phylogenetic comparative methods, we found strong support for convergence on 1:3 proportions in aquatic taxa and near the inverse in terrestrial taxa, indicating that aquatic mustelids and pinnipeds independently acquired similar proportions of olfactory to respiratory turbinates. Constraints on turbinate surface area in the nasal chamber may result in a trade-off between respiratory and olfactory function in aquatic mammals.
Collapse
|