1
|
Yanagihara K, Hayashi Y, Liu Y, Yamaguchi T, Hemmi Y, Kokunugi M, Yamada KU, Fukumoto K, Suga M, Terada S, Nikawa H, Kawabata K, Furue M. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024; 60:521-534. [PMID: 38169039 PMCID: PMC11126453 DOI: 10.1007/s11626-023-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.
Collapse
Affiliation(s)
- Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minako Kokunugi
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozue Uchio Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Ken Fukumoto
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Satoshi Terada
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Miho Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan.
- Cel-MiM, Ltd., Tokyo, Japan.
| |
Collapse
|
2
|
Hamada A, Mukasa H, Taguchi Y, Akagi E, Obayashi F, Yamasaki S, Kanda T, Koizumi K, Toratani S, Okamoto T. Identification of a familial cleidocranial dysplasia with a novel RUNX2 mutation and establishment of patient-derived induced pluripotent stem cells. Odontology 2021; 110:444-451. [PMID: 34779963 PMCID: PMC9170643 DOI: 10.1007/s10266-021-00674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant hereditary disease associated with the gene RUNX2. Disease-specific induced pluripotent stem cells (iPSCs) have emerged as a useful resource to further study human hereditary diseases such as CCD. In this study, we identified a novel CCD-specific RUNX2 mutation and established iPSCs with this mutation. Biopsies were obtained from familial CCD patients and mutation analyses were performed through Sanger sequencing and next generation sequencing. CCD-specific human iPSCs (CCD-hiPSCs) were established and maintained under completely defined serum, feeder, and integration-free condition using a non-integrating replication-defective Sendai virus vector. We identified the novel mutation RUNX2_c.371C>G and successfully established CCD-hiPSCs. The CCD-hiPSCs inherited the same mutation, possessed pluripotency, and showed the ability to differentiate the three germ layers. We concluded that RUNX2_c.371C>G was likely pathogenic because our results, derived from next generation sequencing, are supported by actual clinical evidence, familial tracing, and genetic data. Thus, we concluded that hiPSCs with a novel CCD-specific RUNX2 mutation are viable as a resource for future studies on CCD.
Collapse
Affiliation(s)
- Atsuko Hamada
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan.
| | - Hanae Mukasa
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan.,Mukasa Dental Clinic, Kanagawa, Japan
| | - Yuki Taguchi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Eri Akagi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Fumitaka Obayashi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Taku Kanda
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Koichi Koizumi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,School of Medical Sciences, The University of East Asia, Shimonoseki, Yamaguchi, 751-8503, Japan
| |
Collapse
|
3
|
Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem cell pluripotency. Mater Today Bio 2021; 12:100153. [PMID: 34765963 PMCID: PMC8569722 DOI: 10.1016/j.mtbio.2021.100153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022] Open
Abstract
The capacity of human induced pluripotent stem cells (hiPSCs) for indefinite self-renewal warrants their application in disease modeling, drug discovery, toxicity assays and efficacy screening. However, their poor proliferation ability, inability to adhere to surfaces without Matrigel coating and tendency to spontaneously differentiate in vitro hinder the application of hiPSCs in these fields. Here we study the ability to culture hiPSCs inside 200 nL droplets on the droplet microarray (DMA) platform. We demonstrate that (1) hiPSCs can attach to the Matrigel (MG)-free surface of DMA and show good viability after 24 h culture; (2) hiPSC do not spontaneously differentiate when cultured on the MG-free surface of DMAs; (3) culturing of hiPSCs in 200 nL as compared to 2 mL culture leads to higher expression of the Nanog pluripotency marker. Overall, the results demonstrate the possibility to culture undifferentiated hiPSCs in 200 nL droplets on DMA, thereby opening the possibility for high-throughput screenings of hiPSCs with various factors without compromising the results through the involvement of animal-derived materials, such as Matrigel.
Collapse
|
4
|
Hamada A, Akagi E, Yamasaki S, Nakatao H, Obayashi F, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell Dev Biol Anim 2019; 56:85-95. [PMID: 31768763 PMCID: PMC6989583 DOI: 10.1007/s11626-019-00412-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have shown great potential toward practical and scientific applications. We previously reported the generation of human dental pulp stem cells using non-integrating replication-defective Sendai virus (SeVdp) vector in feeder-free culture with serum-free medium hESF9. This study describes the generation of hiPSCs from peripheral blood mononuclear cells to increase the donor population, while reducing biopsy invasiveness. From 6-d-old primary culture of peripheral blood mononuclear cells (PBMCs) with IL-2, hiPSCs were established using SeVdp(KOSM)302L with recombinant Laminin-511 E8 fragments under serum-free condition. The established PBMC-derived hiPSCs showed pluripotency and differentiation ability both in vivo and in vitro. In addition, we evaluated microarray data from PBMC- and dental pulp–derived hiPSCs. These hiPSCs will be beneficial for characterizing the molecular mechanisms of cellular differentiation and may provide useful substrates for developing cellular therapeutics.
Collapse
Affiliation(s)
- Atsuko Hamada
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Eri Akagi
- Department of Oral Maxillofacial Surgery, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Fumitaka Obayashi
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okamoto
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan. .,Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
5
|
Hayashi Y, Matsumoto J, Kumagai S, Morishita K, Xiang L, Kobori Y, Hori S, Suzuki M, Kanamori T, Hotta K, Sumaru K. Automated adherent cell elimination by a high-speed laser mediated by a light-responsive polymer. Commun Biol 2018; 1:218. [PMID: 30534610 PMCID: PMC6286311 DOI: 10.1038/s42003-018-0222-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/10/2018] [Indexed: 11/25/2022] Open
Abstract
Conventional cell handling and sorting methods require manual labor, which decreases both cell quality and quantity. To purify adherent cultured cells, cell purification technologies that are high throughput without dissociation and can be utilized in an on-demand manner are expected. Here, we developed a Laser-induced, Light-responsive-polymer-Activated, Cell Killing (LiLACK) system that enables high-speed and on-demand adherent cell sectioning and purification. This system employs a visible laser beam, which does not kill cells directly, but induces local heat production through the trans-cis-trans photo-isomerization of azobenzene moieties. Using this system in each passage for sectioning, human induced pluripotent stem cells (hiPSCs) maintained their pluripotency and self-renewal during long-term culture. Furthermore, combined with deep machine-learning analysis on fluorescent and phase contrast images, a label-free and automatic cell processing system has been developed by eliminating unwanted spontaneously differentiated cells in undifferentiated hiPSC culture conditions. Yohei Hayashi et al. present a method for high-speed adherent cell sectioning and purification, along with a label-free and automatic cell processing system. They show that this method is able to section human induced pluripotent stem cells without losing pluripotency and viability.
Collapse
Affiliation(s)
- Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Junichi Matsumoto
- Kataoka Corporation, 140 Tsukiyama-cho, Kuze, Minami-ku, Kyoto 601-8203 Japan
| | - Shohei Kumagai
- 3Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 Japan
| | - Kana Morishita
- 4Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Long Xiang
- iPS Portal, Inc., 448-5 Kajii-cho, Kamigyo-ku, Kyoto 602-0841 Japan
| | - Yohei Kobori
- iPS Portal, Inc., 448-5 Kajii-cho, Kamigyo-ku, Kyoto 602-0841 Japan
| | - Seiji Hori
- iPS Portal, Inc., 448-5 Kajii-cho, Kamigyo-ku, Kyoto 602-0841 Japan
| | - Masami Suzuki
- Kataoka Corporation, 140 Tsukiyama-cho, Kuze, Minami-ku, Kyoto 601-8203 Japan
| | - Toshiyuki Kanamori
- 4Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Kazuhiro Hotta
- 3Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 Japan
| | - Kimio Sumaru
- 4Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| |
Collapse
|
6
|
Yamamoto Y, Miyazaki S, Maruyama K, Kobayashi R, Le MNT, Kano A, Kondow A, Fujii S, Ohnuma K. Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm. PLoS One 2018; 13:e0201960. [PMID: 30199537 PMCID: PMC6130871 DOI: 10.1371/journal.pone.0201960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023] Open
Abstract
Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial–mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial–mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Shota Miyazaki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ryo Kobayashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Ayumu Kano
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Akiko Kondow
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Shuji Fujii
- Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, NIIGATA, Japan
- * E-mail:
| |
Collapse
|
7
|
Le MNT, Takahi M, Maruyama K, Kurisaki A, Ohnuma K. Cardiac differentiation at an initial low density of human-induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2018; 54:513-522. [PMID: 29967976 DOI: 10.1007/s11626-018-0276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
A high density of human-induced pluripotent stem cells (hiPSCs) improves the efficiency of cardiac differentiation, suggesting the existence of indispensable cell-cell interaction signals. The complexity of interactions among cells at high density hinders the understanding of the roles of cell signals. In this study, we determined the minimum cell density that can initiate differentiation to facilitate cell-cell interaction studies. First, we co-induced cardiac differentiation in the presence of the glycogen synthase kinase-3β inhibitor CHIR99021 and activin A at various cell densities. At an initial low density, cells died within a few days in RPMI-based medium. We then investigated the culture conditions required to maintain cell viability. We used a basal medium excluding important components for the maintenance of hiPSC pluripotency, including activin A, basic fibroblast growth factor, and insulin. Supplementation of the basal medium with Rho-associated protein kinase inhibitor and insulin improved cell viability. Interestingly, addition of basic fibroblast growth factor enabled the expression of cardiac markers at the mRNA level but not the protein level. After further modification of the culture conditions, 10% of the cells expressed the cardiac troponin T protein, which is associated with cell contraction. The novel protocol for cardiac differentiation at an initial low cell density can also be used to evaluate high cell density conditions. The findings will facilitate the identification of cell signals required for cardiomyocyte formation.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Mika Takahi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8560, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
8
|
Tachikawa S, Shimizu M, Maruyama K, Ohnuma K. Thalidomide induces apoptosis during early mesodermal differentiation of human induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2018; 54:231-240. [PMID: 29435726 DOI: 10.1007/s11626-018-0234-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
Thalidomide was once administered to pregnant women as a mild sedative; however, it was subsequently shown to be strongly teratogenic. Recently, there has been renewed interest in thalidomide because of its curative effects against intractable diseases. However, the teratogenicity of thalidomide is manifested in various ways and is still not fully understood. In the present study, we evaluated the effects of thalidomide on early mesodermal differentiation by examining the differentiation of human induced pluripotent stem cells (hiPSCs). The most common symptom of thalidomide teratogenicity is limb abnormality, which led us to hypothesize that thalidomide prevents early mesodermal differentiation. Therefore, mesodermal differentiation of hiPSCs was induced over a 6-d period. To induce early mesoderm differentiation, 1 d after seeding, the cells were incubated with the small molecule compound CHIR99021 for 3 d. Thalidomide exposure was initiated at the same time as CHIR99021 treatment. After 5 d of thalidomide exposure, the hiPSCs began expressing a mesodermal marker; however, the number of viable cells decreased significantly as compared to that of control cells. We observed that the proportion of apoptotic and dead cells increased on day 2; however, the proportion of dead cells on day 5 had decreased, suggesting that the cells were damaged by thalidomide during early mesodermal differentiation (days 0-2). Our findings may help elucidate the mechanism underlying thalidomide teratogenicity and bring us closer to the safe use of this drug.
Collapse
Affiliation(s)
- Saoko Tachikawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Maho Shimizu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kenshiro Maruyama
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
9
|
Tachikawa S, Nishimura T, Nakauchi H, Ohnuma K. Thalidomide induces apoptosis in undifferentiated human induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2017; 53:841-851. [PMID: 28849348 DOI: 10.1007/s11626-017-0192-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Thalidomide, which was formerly available commercially to control the symptoms of morning sickness, is a strong teratogen that causes fetal abnormalities. However, the mechanism of thalidomide teratogenicity is not fully understood; thalidomide toxicity is not apparent in rodents, and the use of human embryos is ethically and technically untenable. In this study, we designed an experimental system featuring human-induced pluripotent stem cells (hiPSCs) to investigate the effects of thalidomide. These cells exhibit the same characteristics as those of epiblasts originating from implanted fertilized ova, which give rise to the fetus. Therefore, theoretically, thalidomide exposure during hiPSC differentiation is equivalent to that in the human fetus. We examined the effects of thalidomide on undifferentiated hiPSCs and early-differentiated hiPSCs cultured in media containing bone morphogenetic protein-4, which correspond, respectively, to epiblast (future fetus) and trophoblast (future extra-embryonic tissue). We found that only the number of undifferentiated cells was reduced. In undifferentiated cells, application of thalidomide increased the number of apoptotic and dead cells at day 2 but not day 4. Application of thalidomide did not affect the cell cycle. Furthermore, immunostaining and flow cytometric analysis revealed that thalidomide exposure had no effect on the expression of specific markers of undifferentiated and early trophectodermal differentiated cells. These results suggest that the effect of thalidomide was successfully detected in our experimental system and that thalidomide eliminated a subpopulation of undifferentiated hiPSCs. This study may help to elucidate the mechanisms underlying thalidomide teratogenicity and reveal potential strategies for safely prescribing this drug to pregnant women.
Collapse
Affiliation(s)
- Saoko Tachikawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Toshinobu Nishimura
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
10
|
Baek JA, Seol HW, Jung J, Kim HS, Oh SK, Choi YM. Clean-Up Human Embryonic Stem Cell Lines Using Humanized Culture Condition. Tissue Eng Regen Med 2017; 14:453-464. [PMID: 30603501 DOI: 10.1007/s13770-017-0053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cell (hESC) culture system has been changing culture conditions from conventional to xeno-free for therapeutic cell applications, and N-glycolylneuraminic acid (Neu5Gc) could be a useful indicator of xenogeneic contaminations in hESCs because human cells can no longer produce it genetically. We set up the humanized culture condition using commercially available humanized materials and two different adaptation methods: sequential or direct. SNUhES4 and H1 hESC lines, previously established in conventional culture conditions, were maintained using the humanized culture condition and were examined for the presence of Neu5Gc. The hESCs showed the same morphology and character as those of the conventional culture condition. Moreover, they were negative for Neu5Gc within two passages without loss of pluripotency. This study suggested that this method can effectively cleanse previously established hESC lines, bringing them one step closer to being clinical-grade hESCs.
Collapse
Affiliation(s)
- Jin Ah Baek
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hye Won Seol
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Juwon Jung
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hee Sun Kim
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Sun Kyung Oh
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Young Min Choi
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
11
|
Kondo Y, Hattori K, Tashiro S, Nakatani E, Yoshimitsu R, Satoh T, Sugiura S, Kanamori T, Ohnuma K. Compartmentalized microfluidic perfusion system to culture human induced pluripotent stem cell aggregates. J Biosci Bioeng 2017; 124:234-241. [PMID: 28434976 DOI: 10.1016/j.jbiosc.2017.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/24/2017] [Indexed: 01/31/2023]
Abstract
Microfluidic perfusion systems enable small-volume cell cultures under precisely controlled microenvironments, and are typically developed for cell-based high-throughput screening. However, most such systems are designed to manipulate dissociated single cells, not cell aggregates, and are thus unsuitable to induce differentiation in human induced pluripotent stem cells (hiPSCs), which is conventionally achieved by using cell aggregates to increase cell-cell interactions. We have now developed a compartmentalized microfluidic perfusion system with large flow channels to load, culture, and observe cell aggregates. Homogeneously sized cell aggregates to be loaded into the device were prepared by shredding flat hiPSC colonies into squares. These aggregates were then seeded into microchambers coated with fibronectin and bovine serum albumin (BSA) to establish adherent and floating cultures, respectively, both of which are frequently used to differentiate hiPSCs. However, the number of aggregates loaded in fibronectin-coated microchambers was much lower than in BSA-coated microchambers, suggesting that fibronectin traps cell aggregates before they reach the chambers. Accordingly, hiPSCs that reached the microchambers subsequently adhered. In contrast, BSA-coated microchambers did not allow cell aggregates to adhere, but were sufficiently deep to prevent cell aggregates from flowing out during perfusion of media. Immunostaining for markers of undifferentiated cells showed that cultures on both fibronectin- and BSA-coated microchambers were successfully established. Notably, we found that floating aggregates eventually adhered to surfaces coated with BSA upon differentiation, and that differentiation depends on the initial size of aggregates. Collectively, these results suggest that the microfluidic system is suitable for manipulating hiPSC aggregates in compartmentalized microchambers.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryosuke Yoshimitsu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
12
|
Hayashi Y. Human Mutations Affecting Reprogramming into Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2017. [DOI: 10.3934/celltissue.2017.1.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells Int 2016; 2016:5380560. [PMID: 27656216 PMCID: PMC5021488 DOI: 10.1155/2016/5380560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023] Open
Abstract
In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.
Collapse
|
14
|
Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumour Biol 2016; 37:13237-13245. [DOI: 10.1007/s13277-016-5226-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
|
15
|
Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, Munusamy MA, Murugan K, Chang SC, Lee HC, Hsu ST, Kumar SS, Umezawa A. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep 2015; 5:18136. [PMID: 26656754 PMCID: PMC4677349 DOI: 10.1038/srep18136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 12/18/2022] Open
Abstract
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan.,Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.,Nano Medical Engineering Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shih-Hsuan Kao
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Yen-Ming Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jhongli, Taoyuan, 32001 Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Shih-Chang Chang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan
| | - Hsin-Chung Lee
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei, 10693, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, College of Health Science and Technology, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001 Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Slangor, Malaysia
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
16
|
Yamasaki S, Hamada A, Akagi E, Nakatao H, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cell Dev Biol Anim 2015; 52:252-64. [PMID: 26559068 PMCID: PMC4746228 DOI: 10.1007/s11626-015-9968-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Human pluripotent stem cells hold great promise for their practical and scientific potentials. To improve understanding of self-renewal and differentiation, we previously reported a defined serum-free medium hESF9 could generate and maintain human induced pluripotent stem cells (iPSCs) in serum- and feeder-free culture conditions using retroviral vectors. To avoid the unpredictable side effects associated with retrovirus integration, we report here the successful generation of hiPSCs from dental pulp cells with a non-integrating replication-defective and persistent Sendai virus (SeVdp) vector expressing four key reprogramming genes. We found that hESF9 medium in combination with fibronectin are effective for generating and maintaining hiPSCs with SeVdp (KOSM). Using this system, pluripotent and self-renewing hiPSCs could be easily and stably generated and propagated. With this system, we successfully generated hiPSCs from cleidocranial dysplasia (CCD) caused by a heterozygous germ-line mutation of runt-related protein2 (RUNX2), which has an important role in the differentiation of osteoblasts and maturation of chondrocytes. This is the first report of the establishment of CCD-specific iPSCs. The cartilage in the teratomas of CCD-iPSCs showed abnormalities. These CCD-iPSCs would be beneficial to clarify the molecular mechanism and for development of medical applications. Moreover, it brings new pathophysiological role of RUNX2 in the differentiation of the human chondrocytes and osteocytes.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsuko Hamada
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Eri Akagi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manami Ohtaka
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
17
|
Nishishita N, Muramatsu M, Kawamata S. An effective freezing/thawing method for human pluripotent stem cells cultured in chemically-defined and feeder-free conditions. AMERICAN JOURNAL OF STEM CELLS 2015; 4:38-49. [PMID: 25973330 PMCID: PMC4396159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Culturing human Pluripotent Stem Cells (hPSC)s in chemically defined medium and feeder-free condition can facilitate metabolome and proteome analysis of culturing cells and medium, and reduce regulatory concerns for clinical application of cells. And in addition, if hPSC are passaged and cryopreserved in single cells it also facilitates quality control of cells at single cell level. Here we report a robust single cell freezing and thawing method of hPSCs cultured in chemically-defined medium TeSR(TM)-E8(TM) and on cost-effective recombinant human Vitronectin-N (rhVTN-N)-coated dish. Cells are dissociated into single cells with recombinant TrypLE(TM) Select and 0.5 mM EDTA/PBS (3:1 solution) in the presence of Rock inhibitor and cryopreserved with chemically defined CryoStem(TM). Approximately 60% of cells were viable after dissociation. Aggrewell(TM) 400 was used to form cell clumps of 500 cells after thaw in the presence of Rock inhibitor and cells were cultured for two days with TeSR-E8. Cells clumps were then seeded on rhVTN-N-coated dish and cultured with TeSR-E8 for two days prior to the first passage after thawing. Number of viable cells at the first passage increased around 10 times of that just before freezing. This robust single cell freezing method for hPSCs cultured in chemically defined medium will facilitate quality control of cultured cells at single cell level before cryopreservation and consequently assure the quality of cells in frozen vials for further manipulation after thawing.
Collapse
Affiliation(s)
- Naoki Nishishita
- Research and Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation TRI#308, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Marie Muramatsu
- Research and Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation TRI#308, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| | - Shin Kawamata
- Research and Development Center for Cell Therapy, Foundation for Biomedical Research and Innovation TRI#308, 1-5-4 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0043, Japan
| |
Collapse
|
18
|
Higuchi A, Ling QD, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, Wu GJ. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Ohnuma K. Assays of traditional drugs using human neurons derived from pluripotent stem cells. Neurosci Lett 2014; 570:124-5. [PMID: 24269371 DOI: 10.1016/j.neulet.2013.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Kiyoshi Ohnuma
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
20
|
Enzyme-free passage of human pluripotent stem cells by controlling divalent cations. Sci Rep 2014; 4:4646. [PMID: 24721898 PMCID: PMC3983606 DOI: 10.1038/srep04646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg2+ and Ca2+ control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions without enzyme. The hPSCs were detached from fibronectin-, vitronectin- or laminin-coated dishes in low concentrations of Mg2+ and remained as large colonies in high concentrations of Ca2+. Using enzyme-free solutions containing Ca2+ without Mg2+, we successfully passaged hPSCs as large cell clumps that showed less damage than cells passaged using a divalent cation-free solution or dispase. Under the same conditions, the undifferentiated and early-differentiated cells could also be harvested as a cell sheet without being split off. Our enzyme-free passage of hPSCs under a serum- and feeder-free culture condition reduces cell damage and facilitates easier and safer cultures of hPSCs.
Collapse
|
21
|
Donai K, Inagaki A, So KH, Kuroda K, Sone H, Kobayashi M, Nishimori K, Fukuda T. Low-molecular-weight inhibitors of cell differentiation enable efficient growth of mouse iPS cells under feeder-free conditions. Cytotechnology 2014; 67:191-7. [PMID: 24682663 DOI: 10.1007/s10616-013-9686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/25/2013] [Indexed: 12/31/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem (iPS) cells are usually maintained on feeder cells derived from mouse embryonic fibroblasts (MEFs). In recent years, the cell culture of iPS cells under serum- and feeder-free conditions is gaining attention in overcoming the biosafety issues for clinical applications. In this study, we report on the use of multiple small-molecular inhibitors (i.e., CHIR99021, PD0325901, and Thiazovivin) to efficiently cultivate mouse iPS cells without feeder cells in a chemically-defined and serum-free condition. In this condition, we showed that mouse iPS cells are expressing the Nanog, Oct3/4, and SSEA-1 pluripotent markers, indicating that the culture condition is optimized to maintain the pluripotent status of iPS cells. Without these small-molecular inhibitors, mouse iPS cells required the adaptation period to start the stable cell proliferation. The application of these inhibitors enabled us the shortcut culture method for the cellular adaptation. This study will be useful to efficiently establish mouse iPS cell lines without MEF-derived feeder cells.
Collapse
Affiliation(s)
- Kenichiro Donai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai, 981-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yamada R, Hattori K, Tachikawa S, Tagaya M, Sasaki T, Sugiura S, Kanamori T, Ohnuma K. Control of adhesion of human induced pluripotent stem cells to plasma-patterned polydimethylsiloxane coated with vitronectin and γ-globulin. J Biosci Bioeng 2014; 118:315-22. [PMID: 24656306 DOI: 10.1016/j.jbiosc.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 01/09/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising source of cells for medical applications. Recently, the development of polydimethylsiloxane (PDMS) microdevices to control the microenvironment of hiPSCs has been extensively studied. PDMS surfaces are often treated with low-pressure air plasma to facilitate protein adsorption and cell adhesion. However, undefined molecules present in the serum and extracellular matrix used to culture cells complicate the study of cell adhesion. Here, we studied the effects of vitronectin and γ-globulin on hiPSC adhesion to plasma-treated and untreated PDMS surfaces under defined culture conditions. We chose these proteins because they have opposite properties: vitronectin mediates hiPSC attachment to hydrophilic siliceous surfaces, whereas γ-globulin is adsorbed by hydrophobic surfaces and does not mediate cell adhesion. Immunostaining showed that, when applied separately, vitronectin and γ-globulin were adsorbed by both plasma-treated and untreated PDMS surfaces. In contrast, when PDMS surfaces were exposed to a mixture of the two proteins, vitronectin was preferentially adsorbed onto plasma-treated surfaces, whereas γ-globulin was adsorbed onto untreated surfaces. Human iPSCs adhered to the vitronectin-rich plasma-treated surfaces but not to the γ-globulin-rich untreated surfaces. On the basis of these results, we used perforated masks to prepare plasma-patterned PDMS substrates, which were then used to pattern hiPSCs. The patterned hiPSCs expressed undifferentiated-cell markers and did not escape from the patterned area for at least 7 days. The patterned PDMS could be stored for up to 6 days before hiPSCs were plated. We believe that our results will be useful for the development of hiPSC microdevices.
Collapse
Affiliation(s)
- Ryotaro Yamada
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Hattori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, 5 Ibaraki 305-8565, Japan
| | - Saoko Tachikawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Toru Sasaki
- Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shinji Sugiura
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, 5 Ibaraki 305-8565, Japan
| | - Toshiyuki Kanamori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5th, 1-1-1 Higashi, Tsukuba, 5 Ibaraki 305-8565, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
23
|
Yamasaki S, Taguchi Y, Shimamoto A, Mukasa H, Tahara H, Okamoto T. Generation of human induced pluripotent stem (Ips) cells in serum- and feeder-free defined culture and TGF-Β1 regulation of pluripotency. PLoS One 2014; 9:e87151. [PMID: 24489856 PMCID: PMC3906124 DOI: 10.1371/journal.pone.0087151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/19/2013] [Indexed: 11/19/2022] Open
Abstract
Human Embryonic Stem cells (hESCs) and human induced Pluripotent Stem cells (hiPSCs) are commonly maintained on inactivated mouse embryonic fibroblast as feeder cells in medium supplemented with FBS or proprietary replacements. Use of culture medium containing undefined or unknown components has limited the development of applications for pluripotent cells because of the relative lack of knowledge regarding cell responses to differentiating growth factors. In addition, there is no consensus as to the optimal formulation, or the nature of the cytokine requirements of the cells to promote their self-renewal and inhibit their differentiation. In this study, we successfully generated hiPSCs from human dental pulp cells (DPCs) using Yamanaka's factors (Oct3/4, Sox2, Klf4, and c-Myc) with retroviral vectors in serum- and feeder-free defined culture conditions. These hiPSCs retained the property of self-renewal as evaluated by the expression of self-renewal marker genes and proteins, morphology, cell growth rates, and pluripotency evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo. In this study, we found that TGF-β1 increased the expression levels of pluripotency markers in a dose-dependent manner. However, increasing doses of TGF-β1 suppressed the growth rate of hiPSCs cultured under the defined conditions. Furthermore, over short time periods the hiPSCs cultured in hESF9 or hESF9T exhibited similar morphology, but hiPSCs maintained in hESF9 could not survive beyond 30 passages. This result clearly confirmed that hiPSCs cultured in hESF9 medium absolutely required TGF-β1 to maintain pluripotency. This simple serum-free adherent monoculture system will allow us to elucidate the cell responses to growth factors under defined conditions and can eliminate the risk might be brought by undefined pathogens.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Taguchi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Akira Shimamoto
- Department of Cellular and Molecular Biology, Basic Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hanae Mukasa
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Basic Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Japan
- * E-mail:
| |
Collapse
|
24
|
Scheiner ZS, Talib S, Feigal EG. The potential for immunogenicity of autologous induced pluripotent stem cell-derived therapies. J Biol Chem 2013; 289:4571-7. [PMID: 24362036 DOI: 10.1074/jbc.r113.509588] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology offers the promise of immune-matched cell therapies for a wide range of diseases and injuries. It is generally assumed that cells derived from autologous iPSCs will be immune-privileged. However, there are reasons to question this assumption, including recent studies that have tested iPSC immunogenicity in various ways with conflicting results. Understanding the risk of an immune response and developing strategies to minimize it will be important steps before clinical testing. Here, we review the evidence for autologous iPSC immunogenicity, its potential causes, and approaches for assessment and mitigation.
Collapse
Affiliation(s)
- Zachary S Scheiner
- From the California Institute for Regenerative Medicine, San Francisco, California 94107
| | | | | |
Collapse
|
25
|
Yoshimitsu R, Hattori K, Sugiura S, Kondo Y, Yamada R, Tachikawa S, Satoh T, Kurisaki A, Ohnuma K, Asashima M, Kanamori T. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol Bioeng 2013; 111:937-47. [PMID: 24222619 DOI: 10.1002/bit.25150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/09/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.
Collapse
Affiliation(s)
- Ryosuke Yoshimitsu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kawamoto T, Sasajima J, Sugiyama Y, Nakamura K, Tanabe H, Fujiya M, Nata T, Iuchi Y, Ashida T, Torimoto Y, Mizukami Y, Kohgo Y. Ex vivo activation of angiogenic property in human peripheral blood-derived monocytes by thrombopoietin. Int J Hematol 2013; 98:417-29. [DOI: 10.1007/s12185-013-1423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022]
|
27
|
Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS One 2013; 8:e69009. [PMID: 23894393 PMCID: PMC3720876 DOI: 10.1371/journal.pone.0069009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Healthy corneal endothelium is essential for maintaining corneal clarity, as the damage of corneal endothelial cells and loss of cell count causes severe visual impairment. Corneal transplantation is currently the only therapy for severe corneal disorders. The greatly limited proliferative ability of human corneal endothelial cells (HCECs), even in vitro, has challenged researchers to establish efficient techniques for the cultivating HCECs, a pivotal issue for clinical applications. The aim of this study was to evaluate conditioned medium (CM) obtained from human bone marrow-derived mesenchymal stem cells (MSCs) (MSC-CM) for use as a consistent expansion protocol of HCECs. When HCECs were maintained in the presence of MSC-CM, cell morphology assumed a hexagonal shape similar to corneal endothelial cells in vivo, as opposed to the irregular cell shape observed in control cultures in the absence of MSC-CM. They also maintained the functional protein phenotypes; ZO-1 and Na(+)/K(+)-ATPase were localized at the intercellular adherent junctions and pump proteins of corneal endothelium were accordingly expressed. In comparison to the proliferative potential observed in the control cultures, HCECs maintained in MSC-CM were found to have more than twice as many Ki67-positive cells and a greatly increased incorporation of BrdU into DNA. MSC-CM further facilitated the cell migration of HCECs. Lastly, the mechanism of cell proliferation mediated by MSC-CM was investigated, and phosphorylation of Akt and ERK1/2 was observed in HCECs after exposure to MSC-CM. The inhibitor to PI 3-kinase maintained the level of p27(Kip1) for up to 24 hours and greatly blocked the expression of cyclin D1 and D3 during the early G1 phase, leading to the reduction of cell density. These findings indicate that MSC-CM not only stimulates the proliferation of HCECs by regulating the G1 proteins of the cell cycle but also maintains the characteristic differentiated phenotypes necessary for the endothelial functions.
Collapse
|
28
|
Fukusumi H, Shofuda T, Kanematsu D, Yamamoto A, Suemizu H, Nakamura M, Yamasaki M, Ohgushi M, Sasai Y, Kanemura Y. Feeder-free generation and long-term culture of human induced pluripotent stem cells using pericellular matrix of decidua derived mesenchymal cells. PLoS One 2013; 8:e55226. [PMID: 23383118 PMCID: PMC3561375 DOI: 10.1371/journal.pone.0055226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/20/2012] [Indexed: 12/15/2022] Open
Abstract
Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells’ pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.
Collapse
Affiliation(s)
- Hayato Fukusumi
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Protein kinase C regulates human pluripotent stem cell self-renewal. PLoS One 2013; 8:e54122. [PMID: 23349801 PMCID: PMC3549959 DOI: 10.1371/journal.pone.0054122] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/10/2012] [Indexed: 12/26/2022] Open
Abstract
Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though hPS cells were dissociated into single cells for passage. This study untangles the cross-talk between molecular mechanisms regulating self-renewal and differentiation of hPS cells.
Collapse
|
30
|
Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 2012; 23:70-80. [PMID: 23229514 DOI: 10.1038/cr.2012.171] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.
Collapse
|
31
|
Human stem cells and articular cartilage regeneration. Cells 2012; 1:994-1009. [PMID: 24710539 PMCID: PMC3901135 DOI: 10.3390/cells1040994] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 01/12/2023] Open
Abstract
The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.
Collapse
|
32
|
Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 2012; 119:6234-42. [PMID: 22592606 DOI: 10.1182/blood-2011-07-367441] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated by the expression of defined transcription factors not only from normal tissue, but also from malignant cells. Cancer-derived iPSCs are expected to provide a novel experimental opportunity to establish the disease model. We generated iPSCs from imatinib-sensitive chronic myelogenous leukemia (CML) patient samples. Remarkably, the CML-iPSCs were resistant to imatinib although they consistently expressed BCR-ABL oncoprotein. In CML-iPSCs, the phosphorylation of ERK1/2, AKT, and JNK, which are essential for the maintenance of both BCR-ABL (+) leukemia cells and iPSCs, were unchanged after imatinib treatment, whereas the phosphorylation of signal transducer and activator of transcription (STAT)5 and CRKL was significantly decreased. These results suggest that the signaling for iPSCs maintenance compensates for the inhibition of BCR-ABL. CML-iPSC-derived hematopoietic cells recovered the sensitivity to imatinib although CD34(+)38(-)90(+)45(+) immature cells were resistant to imatinib, which recapitulated the pathophysiologic feature of the initial CML. CML-iPSCs provide us with a novel platform to investigate CML pathogenesis on the basis of patient-derived samples.
Collapse
|
33
|
Nakamura M, Tsuji O, Nori S, Toyama Y, Okano H. Cell transplantation for spinal cord injury focusing on iPSCs. Expert Opin Biol Ther 2012; 12:811-21. [DOI: 10.1517/14712598.2012.681774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Mochiduki Y, Okita K. Methods for iPS cell generation for basic research and clinical applications. Biotechnol J 2012; 7:789-97. [PMID: 22378737 DOI: 10.1002/biot.201100356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/05/2012] [Accepted: 01/26/2012] [Indexed: 12/27/2022]
Abstract
The induction of pluripotency can be achieved by forced expression of defined factors in somatic cells. The established cells, termed induced pluripotent stem (iPS) cells, have pluripotency and an infinite capacity for self-renewal in common with embryonic stem (ES) cells. Patient-specific iPS cells could be a useful source for drug discovery and cell transplantation therapies; however, the original method for iPS cell generation had several issues that were obstacles to their clinical application. Recent studies have brought about various improvements for iPS cell generation and uncovered several characteristics of iPS cells. Here we summarize the current status of iPS cell studies, with a focus on the improved methods that can be used to generate iPS cells, and also refer to the future challenges.
Collapse
Affiliation(s)
- Yuji Mochiduki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | |
Collapse
|
35
|
Padler-Karavani V, Varki A. Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 2011; 18:1-5. [PMID: 21342282 DOI: 10.1111/j.1399-3089.2011.00622.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vered Padler-Karavani
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | | |
Collapse
|