1
|
Jiang W, Kakizaki T, Fujihara K, Miyata S, Zhang Y, Suto T, Kato D, Saito S, Shibasaki K, Ishizaki Y, Isoda K, Yokoo H, Obinata H, Hirano T, Miyasaka Y, Mashimo T, Yanagawa Y. Impact of GAD65 and/or GAD67 deficiency on perinatal development in rats. FASEB J 2022; 36:e22123. [PMID: 34972242 DOI: 10.1096/fj.202101389r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.
Collapse
Affiliation(s)
- Weiru Jiang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Isoda
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideru Obinata
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Touko Hirano
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Juvale IIA, Hassan Z, Has ATC. The Emerging Roles of π Subunit-Containing GABA A Receptors in Different Cancers. Int J Med Sci 2021; 18:3851-3860. [PMID: 34790061 PMCID: PMC8579298 DOI: 10.7150/ijms.60928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/10/2021] [Indexed: 01/15/2023] Open
Abstract
Cancer is one of the leading causes of death in both developed and developing countries. Due to its heterogenous nature, it occurs in various regions of the body and often goes undetected until later stages of disease progression. Feasible treatment options are limited because of the invasive nature of cancer and often result in detrimental side-effects and poor survival rates. Therefore, recent studies have attempted to identify aberrant expression levels of previously undiscovered proteins in cancer, with the hope of developing better diagnostic tools and pharmaceutical options. One class of such targets is the π-subunit-containing γ-aminobutyric acid type A receptors. Although these receptors were discovered more than 20 years ago, there is limited information available. They possess atypical functional properties and are expressed in several non-neuronal tissues. Prior studies have highlighted the role of these receptors in the female reproductive system. New research focusing on the higher expression levels of these receptors in ovarian, breast, gastric, cervical, and pancreatic cancers, their physiological function in healthy individuals, and their pro-tumorigenic effects in these cancer types is reviewed here.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Yang J, Li N, Zhen Y, Huang Q. γ-aminobutyric acid alleviates LPS-induced acute lung injury in mice through upregulating type B receptors. Arch Med Sci 2019; 19:1116-1123. [PMID: 37560718 PMCID: PMC10408013 DOI: 10.5114/aoms.2019.89984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION In recent years, studies have shown that GABA has a certain therapeutic effect on acute lung injury (ALI), but its specific mechanism has not been fully elucidated. The study was designed to investigate the protective effect and mechanism of γ-aminobutyric acid (GABA) on ALI induced by lipopolysaccharide (LPS) in mice. MATERIAL AND METHODS C57BL/6 mice were randomly divided into a control group, LPS group, LPS + GABA (10 mg/kg) group and LPS + dexamethasone (Dex, 5 mg/kg) group. The survival rate of each group was observed at different time points after modeling. The levels of tumor necrosis factor α (TNF-α), interleukin (IL) 1β, 10, myeloperoxidase (MPO) and the cell count and protein concentration in bronchoalveolar lavage fluid (BALF) were measured. Lung histopathology and the expression of GABA receptors were observed by HE staining and immunohistochemistry respectively. Lung water content was assessed by wet-dry weight ratio. RESULTS GABA could significantly improve the survival rate and prolong the survival time of animals, alleviate the degree of inflammatory injury and pulmonary edema, reduce the content of MPO, down-regulate the levels of pro-inflammatory cytokines IL-1β and TNF-α, and up-regulate the expression of anti-inflammatory cytokine IL-10. Moreover, GABA could significantly decrease the expression of type A receptors and enhance type B receptors. CONCLUSIONS GABA can effectively alleviate ALI induced by LPS in mice, and its effect may be related to the upregulation of type B receptors.
Collapse
Affiliation(s)
- Jing Yang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Na Li
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yuanyuan Zhen
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Qikun Huang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Suleiman S, Klassen S, Katz I, Balakirski G, Krabbe J, von Stillfried S, Kintsler S, Braunschweig T, Babendreyer A, Spillner J, Kalverkamp S, Schröder T, Moeller M, Coburn M, Uhlig S, Martin C, Rieg AD. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Sci Rep 2019; 9:1902. [PMID: 30760775 PMCID: PMC6374423 DOI: 10.1038/s41598-018-38267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Argon exerts neuroprotection. Thus, it might improve patients' neurological outcome after cerebral disorders or cardiopulmonary resuscitation. However, limited data are available concerning its effect on pulmonary vessel and airways. We used rat isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of rats and humans to assess this topic. IPL: Airway and perfusion parameters, oedema formation and the pulmonary capillary pressure (Pcap) were measured and the precapillary and postcapillary resistance (Rpost) was calculated. In IPLs and PCLS, the pulmonary vessel tone was enhanced with ET-1 or remained unchanged. IPLs were ventilated and PCLS were gassed with argon-mixture or room-air. IPL: Argon reduced the ET-1-induced increase of Pcap, Rpost and oedema formation (p < 0.05). PCLS (rat): Argon relaxed naïve pulmonary arteries (PAs) (p < 0.05). PCLS (rat/human): Argon attenuated the ET-1-induced contraction in PAs (p < 0.05). Inhibition of GABAB-receptors abolished argon-induced relaxation (p < 0.05) in naïve or ET-1-pre-contracted PAs; whereas inhibition of GABAA-receptors only affected ET-1-pre-contracted PAs (p < 0.01). GABAA/B-receptor agonists attenuated ET-1-induced contraction in PAs and baclofen (GABAB-agonist) even in pulmonary veins (p < 0.001). PLCS (rat): Argon did not affect the airways. Finally, argon decreases the pulmonary vessel tone by activation of GABA-receptors. Hence, argon might be applicable in patients with pulmonary hypertension and right ventricular failure.
Collapse
Affiliation(s)
- Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Sergej Klassen
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Ira Katz
- Medical Research & Development, Air Liquide Santé Internationale, Centre de Recherche Paris-Saclay, 78354, Jouy-en-Josas, France
| | - Galina Balakirski
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | | | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, 52064, Aachen, Germany
| | - Manfred Moeller
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Mark Coburn
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Jin S, Merchant ML, Ritzenthaler JD, McLeish KR, Lederer ED, Torres-Gonzalez E, Fraig M, Barati MT, Lentsch AB, Roman J, Klein JB, Rane MJ. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators. PLoS One 2015; 10:e0121637. [PMID: 25848767 PMCID: PMC4388838 DOI: 10.1371/journal.pone.0121637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.
Collapse
Affiliation(s)
- Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael L. Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jeffrey D. Ritzenthaler
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Eleanor D. Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Edilson Torres-Gonzalez
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mostafa Fraig
- Department of Pathology, University of Louisville, Louisville, Kentucky, United States of America
| | - Michelle T. Barati
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Jon B. Klein
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chintagari NR, Nguyen J, Belcher JD, Vercellotti GM, Alayash AI. Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease. Blood Cells Mol Dis 2014; 54:302-6. [PMID: 25582460 DOI: 10.1016/j.bcmd.2014.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/17/2023]
Abstract
Sickle cell disease (SCD), a hereditary hemolytic disorder is characterized by chronic hemolysis, oxidative stress, vaso-occlusion and end-organ damage. Hemolysis releases toxic cell-free hemoglobin (Hb) into circulation. Under physiologic conditions, plasma Hb binds to haptoglobin (Hp) and forms Hb-Hp dimers. The dimers bind to CD163 receptors on macrophages for further internalization and degradation. However, in SCD patients plasma Hp is depleted and free Hb is cleared primarily by proximal tubules of kidneys. Excess free Hb in plasma predisposes patients to renal damage. We hypothesized that administration of exogenous Hp reduces Hb-mediated renal damage. To test this hypothesis, human renal proximal tubular cells (HK-2) were exposed to HbA (50μM heme) for 24h. HbA increased the expression of heme oxygenase-1 (HO-1), an enzyme which degrades heme, reduces heme-mediated oxidative toxicity, and confers cytoprotection. Similarly, infusion of HbA (32μM heme/kg) induced HO-1 expression in kidneys of SCD mice. Immunohistochemistry confirmed the increased HO-1 expression in the proximal tubules of the kidney. Exogenous Hp attenuated the HbA-induced HO-1 expression in vitro and in SCD mice. Our results suggest that Hb-mediated oxidative toxicity may contribute to renal damage in SCD and that Hp treatment reduces heme/iron toxicity in the kidneys following hemolysis.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Julia Nguyen
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - John D Belcher
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - Gregory M Vercellotti
- University of Minnesota, Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Minneapolis, MN 55455, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
7
|
Takano K, Yatabe MS, Abe A, Suzuki Y, Sanada H, Watanabe T, Kimura J, Yatabe J. Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PLoS One 2014; 9:e105835. [PMID: 25188493 PMCID: PMC4154856 DOI: 10.1371/journal.pone.0105835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important neurotransmitter, but recent reports have revealed the expression of GABAergic components in peripheral, non-neural tissues. GABA administration induces natriuresis and lowers blood pressure, suggesting renal GABA targets. However, systematic evaluation of renal GABAergic components has not been reported. In this study, kidney cortices of Wistar-Kyoto rats (WKY) were used to assay for messenger RNAs of GABA-related molecules using RT-PCR. In WKY kidney cortex, GABAA receptor subunits, α1, β3, δ, ε and π, in addition to both types of GABAB receptors, R1 and R2, and GABAC receptor ρ1 and ρ2 subunit mRNAs were detected. Kidney cortex also expressed mRNAs of glutamate decarboxylase (GAD) 65, GAD67, 4-aminobutyrate aminotransferase and GABA transporter, GAT2. Western blot and/or immunohistochemistry were performed for those molecules detected by RT-PCR. By immunofluorescent observation, co-staining of α1, β3, and π subunits was observed mainly on the apical side of cortical tubules, and immunoblot of kidney protein precipitated with π subunit antibody revealed α1 and β3 subunit co-assembly. This is the first report of GABAA receptor π subunit in the kidney. In summary, unique set of GABA receptor subunits and subtypes were found in rat kidney cortex. As GABA producing enzymes, transporters and degrading enzyme were also detected, a possible existence of local renal GABAergic system with an autocrine/paracrine mechanism is suggested.
Collapse
Affiliation(s)
- Kozue Takano
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Midori Sasaki Yatabe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail: (MSY); (JY)
| | - Asami Abe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yu Suzuki
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Tsuyoshi Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junko Kimura
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junichi Yatabe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail: (MSY); (JY)
| |
Collapse
|
8
|
The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 2014; 279:187-219. [PMID: 25168736 DOI: 10.1016/j.neuroscience.2014.08.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/17/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022]
Abstract
The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways.
Collapse
|
9
|
Holm JB, Grygorczyk R, Lambert IH. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase. Am J Physiol Cell Physiol 2013; 305:C48-60. [PMID: 23485709 DOI: 10.1152/ajpcell.00412.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathophysiological conditions challenge cell volume homeostasis and perturb cell volume regulatory mechanisms leading to alterations of cell metabolism, active transepithelial transport, cell migration, and death. We report that inhibition of the 5-lipoxygenase (5-LO) with AA861 or ETH 615-139, the cysteinyl leukotriene 1 receptor (CysLT₁) with the antiasthmatic drug Zafirlukast, or the volume-sensitive organic anion channel (VSOAC) with DIDS blocks the release of organic osmolytes (taurine, meAIB) and the concomitant cell volume restoration following hypoosmotic swelling of human type II-like lung epithelial cells (A549). Reactive oxygen species (ROS) are produced in A549 cells upon hypotonic cell swelling by a diphenylene iodonium-sensitive NADPH oxidase. The swelling-induced taurine release is suppressed by ROS scavenging (butylated hydroxytoluene, N-acetyl cysteine) and potentiated by H₂O₂. Ca²⁺ mobilization with ionomycin or ATP stimulates the swelling-induced taurine release whereas calmodulin inhibition (W7) inhibits the release. Chelation of the extracellular Ca²⁺ (EGTA) had no effect on swelling-induced taurine release but prevented ATP-induced stimulation. H₂O₂, ATP, and ionomycin were unable to stimulate the taurine release in the presence of AA861 or Zafirlukast, placing 5-LO and CysLT₁ as essential elements in the swelling-induced activation of VSOAC with ROS and Ca²⁺ as potent modulators. Inhibition of tyrosine kinases (genistein, cucurbitacin) reduces volume-sensitive taurine release, adding tyrosine kinases (Janus kinase) as regulators of VSOAC activity. Caspase-3 activity during hypoxia is unaffected by inhibition of 5-LO/CysLT₁ but reduced when swelling-induced taurine loss via VSOAC is prevented by DIDS excess extracellular taurine, indicating a beneficial role of taurine under hypoxia.
Collapse
Affiliation(s)
- Jacob Bak Holm
- Department of Biology, Section of Cellular and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
10
|
Chintagari NR, Liu L. GABA receptor ameliorates ventilator-induced lung injury in rats by improving alveolar fluid clearance. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R55. [PMID: 22480160 PMCID: PMC3681384 DOI: 10.1186/cc11298] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/05/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Introduction Mechanical ventilators are increasingly used in critical care units. However, they can cause lung injury, including pulmonary edema. Our previous studies indicated that γ-aminobutyric acid (GABA) receptors are involved in alveolar-fluid homeostasis. The present study investigated the role of GABA receptors in ventilator-induced lung injury. Methods Adult female Sprague-Dawley rats were subjected to high-tidal-volume ventilation of 40 ml/kg body weight for 1 hour, and lung injuries were assessed. Results High-tidal-volume ventilation resulted in lung injury, as indicated by an increase in total protein in bronchoalveolar fluid, wet-to-dry ratio (indication of pulmonary edema), and Evans Blue dye extravasation (indication of vascular damage). Intratracheal administration of GABA before ventilation significantly reduced the wet-to-dry ratio. Further, histopathologic analysis indicated that GABA reduced ventilator-induced lung injury and apoptosis. GABA-mediated reduction was effectively blocked by the GABAA-receptor antagonist, bicuculline. The GABA-mediated effect was not due to the vascular damage, because no differences in Evans Blue dye extravasation were noted. However, the decrease in alveolar fluid clearance by high-tidal-volume ventilation was partly prevented by GABA, which was blocked by bicuculline. Conclusions These results suggest that GABA reduces pulmonary edema induced by high-tidal-volume ventilation via its effects on alveolar fluid clearance and apoptosis.
Collapse
Affiliation(s)
- Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK 74078, USA
| | | |
Collapse
|
11
|
Determination of GABA(Aα1) and GABA (B1) receptor subunits expression in tissues of gilts during the late gestation. Mol Biol Rep 2012; 40:1377-84. [PMID: 23086273 DOI: 10.1007/s11033-012-2181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
GABA(Aα1) and GABA(B1) receptor subunits are responsible for most behavioral, physiological and pharmacological effects of GABA receptors. We investigated the expression of GABA(Aα1) and GABA(B1) receptor subunits in different tissues of gilts during late pregnancy in hot summer. The mRNA abundance of GABA(Aα1) receptor subunit in different tissues of gilts at d 90 and d 110 of gestation was as follows: d 90: brain > lung > liver > ovary > spleen > kidney > heart; d 110: brain > lung > spleen > liver > ovary > kidney > heart. And, the mRNA abundance of GABA(B1) receptor subunit was as follows: d 90: spleen > lung > brain > kidney > ovary > liver > heart; d 110: spleen > lung > kidney > brain > ovary > liver > heart. The results in this trial indicated that the GABA(Aα1) receptor subunit was abundantly expressed in brain, while GABA(B1) receptor subunit was abundant in spleen and lung of gilts during late gestation. There were no gestation stage-dependent effects on GABA(Aα1) and GABA(B1) receptor subunits expression in all tissues.
Collapse
|
12
|
Zhao C, Huang C, Weng T, Xiao X, Ma H, Liu L. Computational prediction of MicroRNAs targeting GABA receptors and experimental verification of miR-181, miR-216 and miR-203 targets in GABA-A receptor. BMC Res Notes 2012; 5:91. [PMID: 22321448 PMCID: PMC3296612 DOI: 10.1186/1756-0500-5-91] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GABA receptors are well known as the inhibitory receptors in the central nervous system and are also found in peripheral tissues. We have previously shown that GABA receptors are involved in lung development and fluid homeostasis. However, the microRNAs that regulate GABA receptors have not yet been identified. RESULTS In this study, we used the online software, TargetScan and miRanda, to query the microRNAs that directly target GABA receptors and then selected some of them to verify experimentally using 3'-UTR reporter assays. Computational approaches predict many microRNA binding sites on the 3'-UTR of GABAA receptors, but not on GABAC receptors. 3'-UTR reporter assays only verified miR-181, miR-216, and miR-203 as the microRNAs that target GABA receptor α1-subunit among 10 microRNAs tested. CONCLUSIONS Our studies reinforce that microRNA target prediction needs to be verified experimentally. The identification of microRNAs that target GABA receptors provides a basis for further studies of post-transcriptional regulation of GABA receptors.
Collapse
Affiliation(s)
- Chunling Zhao
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
| | | | | | | | | | | |
Collapse
|