1
|
Peng Z, Cheng H, Sun G, Pan Z, Wang X, Geng X, He S, Du X. Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.). SCIENCE CHINA-LIFE SCIENCES 2020; 63:1565-1579. [PMID: 32112269 DOI: 10.1007/s11427-019-1618-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Naturally allotetraploid cotton has been widely used as an ideal model to investigate gene expression remodeling as a consequence of polyploidization. However, the global gene pattern variation during early fiber development was unknown. In this study, through RNA-seq technology, we comprehensively investigated the expression patterns of homologous genes between allotetraploid cotton (G. hirsutum) and its diploid progenitors (G. arboreum and G. raimondii) at the fiber early development stage. In tetraploid cotton, genes showed expression level dominance (ELD) bias toward the A genome. This phenomenon was explained by the up-/downregulation of the homologs from the nondominant progenitor (D genome). Gene ontology (GO) enrichment results indicated that the ELD-A genes might be a prominent cause responsible for fiber property change through regulating the fatty acid biosynthesis/metabolism and microtubule procession, and the ELD-D genes might be involved in transcription regulation and stress inducement. In addition, the number and proportion of completely A- and D-subfunctionalized gene were similar at different fiber development stages. However, for neofunctionalization, the number and proportion of reactivated D-derived genes were greater than those of A at 3 and 5 DPA. Eventually, we found that some homologous genes belonging to several specific pathways might create novel asymmetric transcripts between two subgenomes during polyploidization and domestication process, further making the fiber property meet the human demands. Our study identified determinate pathways and their involved genes between allotetraploid cotton and their progenitors at early fiber development stages, providing new insights into the mechanism of cotton fiber evolution.
Collapse
Affiliation(s)
- Zhen Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Cheng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China.,Anyang Institute of Technology, Anyang, 455000, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Zhaoe Pan
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xiao Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xiaoli Geng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Shoupu He
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiongming Du
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Map-Based Functional Analysis of the GhNLP Genes Reveals Their Roles in Enhancing Tolerance to N-Deficiency in Cotton. Int J Mol Sci 2019; 20:ijms20194953. [PMID: 31597268 PMCID: PMC6801916 DOI: 10.3390/ijms20194953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Nitrogen is a key macronutrient needed by plants to boost their production, but the development of cotton genotypes through conventional approaches has hit a bottleneck due to the narrow genetic base of the elite cotton cultivars, due to intensive selection and inbreeding. Based on our previous research, in which the BC2F2 generations developed from two upland cotton genotypes, an abiotic stress-tolerant genotype, G. tomentosum (donor parent) and a highly-susceptible, and a highly-susceptible, but very productive, G. hirsutum (recurrent parent), were profiled under drought stress conditions. The phenotypic and the genotypic data generated through genotyping by sequencing (GBS) were integrated to map drought-tolerant quantitative trait loci (QTLs). Within the stable QTLs region for the various drought tolerance traits, a nodule-inception-like protein (NLP) gene was identified. We performed a phylogenetic analysis of the NLP proteins, mapped their chromosomal positions, intron-exon structures and conducted ds/dn analysis, which showed that most NLP genes underwent negative or purifying selection. Moreover, the functions of one of the highly upregulated genes, Gh_A05G3286 (Gh NLP5), were evaluated using the virus gene silencing (VIGS) mechanism. A total of 226 proteins encoded by the NLP genes were identified, with 105, 61, and 60 in Gossypium hirsutum, G. raimondii, and G. arboreum, respectively. Comprehensive Insilico analysis revealed that the proteins encoded by the NLP genes had varying molecular weights, protein lengths, isoelectric points (pI), and grand hydropathy values (GRAVY). The GRAVY values ranged from a negative one to zero, showing that proteins were hydrophilic. Moreover, various cis-regulatory elements that are the binding sites for stress-associated transcription factors were found in the promoters of various NLP genes. In addition, many miRNAs were predicted to target NLP genes, notably miR167a, miR167b, miR160, and miR167 that were previously shown to target five NAC genes, including NAC1 and CUC1, under N-limited conditions. The real-time quantitative polymerase chain reaction (RT-qPCR) analysis, revealed that five genes, Gh_D02G2018, Gh_A12G0439, Gh_A03G0493, Gh_A03G1178, and Gh_A05G3286 were significantly upregulated and perhaps could be the key NLP genes regulating plant response under N-limited conditions. Furthermore, the knockdown of the Gh_A05G3286 (GhNLP5) gene by virus-induced silencing (VIGS) significantly reduced the ability of these plants to the knockdown of the Gh_A05G3286 (GhNLP5) gene by virus-induced gene silencing (VIGS) significantly reduced the ability of the VIGS-plants to tolerate N-limited conditions compared to the wild types (WT). The VIGS-plants registered lower chlorophyll content, fresh shoot biomass, and fresh root biomass, addition to higher levels of malondialdehyde (MDA) and significantly reduced levels of proline, and superoxide dismutase (SOD) compared to the WT under N-limited conditions. Subsequently, the expression levels of the Nitrogen-stress responsive genes, GhTap46, GhRPL18A, and GhKLU were shown to be significantly downregulated in VIGS-plants compared to their WT under N-limited conditions. The downregulation of the nitrogen-stress responsive genes provided evidence that the silenced gene had an integral role in enhancing cotton plant tolerance to N-limited conditions.
Collapse
|
3
|
Salih H, Odongo MR, Gong W, He S, Du X. Genome-wide analysis of cotton C2H2-zinc finger transcription factor family and their expression analysis during fiber development. BMC PLANT BIOLOGY 2019; 19:400. [PMID: 31510939 PMCID: PMC6739942 DOI: 10.1186/s12870-019-2003-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND C2H2-zinc finger protein family is commonly found in the plant, and it is known as the key actors in the regulation of transcription and vital component of chromatin structure. A large number of the C2H2-zinc finger gene members have not been well characterized based on their functions and structure in cotton. However, in other plants, only a few C2H2-zinc finger genes have been studied. RESULTS In this work, we performed a comprehensive analysis and identified 386, 196 and 195 C2H2-zinc finger genes in Gossypium hirsutum (upland cotton), Gossypium arboreum and Gossypium raimondii, respectively. Phylogenetic tree analysis of the C2H2-zinc finger proteins encoding the C2H2-zinc finger genes were classified into seven (7) subgroups. Moreover, the C2H2-zinc finger gene members were distributed in all cotton chromosomes though with asymmetrical distribution patterns. All the orthologous genes were detected between tetraploid and the diploid cotton, with 154 orthologous genes pair detected between upland cotton and Gossypium arboreum while 165 orthologous genes were found between upland cotton and Gossypium raimondii. Synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates (Ka/Ks) analysis indicated that the cotton C2H2-zinc finger genes were highly influenced mainly by negative selection, which maintained their protein levels after the duplication events. RNA-seq data and RT-qPCR validation of the RNA seq result revealed differential expression pattern of some the C2H2-zinc finger genes at different stages of cotton fiber development, an indication that the C2H2-zinc finger genes play an important role in initiating and regulating fiber development in cotton. CONCLUSIONS This study provides a strong foundation for future practical genome research on C2H2-zinc finger genes in upland cotton. The expression levels of C2H2-zinc finger genes family is a pointer of their involvement in various biochemical and physiological functions which are directly related to cotton fiber development during initiation and elongation stages. This work not only provides a basis for determining the nominal role of the C2H2-zinc finger genes in fiber development but also provide valuable information for characterization of potential candidate genes involved in regulation of cotton fiber development.
Collapse
Affiliation(s)
- Haron Salih
- College of life sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei China
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- Zalingei University, Central Darfur, Sudan
| | - Magwanga Richard Odongo
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Shoupu He
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology/ Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
4
|
Parekh MJ, Kumar S, Fougat RS, Zala HN, Pandit RJ. Transcriptomic profiling of developing fiber in levant cotton (Gossypium herbaceum L.). Funct Integr Genomics 2018; 18:211-223. [PMID: 29332190 DOI: 10.1007/s10142-017-0586-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022]
Abstract
Cotton (Gossypium spp.) is an imperative economic crop of the globe due to its natural textile fiber. Molecular mechanisms of fiber development have been greatly revealed in allotetraploid cotton but remained unexplored in Gossypium herbaceum. G. herbaceum can withstand the rigors of nature like drought and pests but produce coarse lint. This undesirable characteristic strongly needs the knowledge of fiber development at molecular basis. The present study reported the transcriptome sequence of the developing fiber of G. herbaceum on pyrosequencing and its analysis. About 1.38 million raw and 1.12 million quality trimmed reads were obtained followed by de novo assembly-generated 20,125 unigenes containing 14,882 coding sequences (CDs). BLASTx-based test of homology indicated that A1-derived transcripts shared a high similarity with Gossypium arboreum (A2). Functional annotation of the CDs using the UniProt categorized them into biological processes, cellular components, and molecular function, COG classification showed that a large number of CDs have significant homology in COG database (6215 CDs), and mapping of CDs with Kyoto Encyclopedia of Genes and Genomes (KEGG) database generated 200 pathways ultimately showing predominant engagement in the fiber development process. Transcription factors were predicted by comparison with Plant Transcription Factor Database, and their differential expression between stages exposed their important regulatory role in fiber development. Differential expression analysis based on reads per kilobase of transcript per million mapped reads (RPKM) value revealed activities of specific gene related to carbohydrate and lipid synthesis, carbon metabolism, energy metabolism, signal transduction, etc., at four stages of fiber development, and was validated by qPCR. Overall, this study will help as a valuable foundation for diploid cotton fiber improvement.
Collapse
Affiliation(s)
- Mithil J Parekh
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India.
| | - Ranbir S Fougat
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Harshvardhan N Zala
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388 110, India
| | - Ramesh J Pandit
- Department of Animal Biotechnology, Anand Agricultural University, Anand, 388 110, India
| |
Collapse
|
5
|
Wang T, Huang D, Chen B, Mao N, Qiao Y, Ji M. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genomics 2018; 40:321-331. [DOI: 10.1007/s13258-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
|
6
|
Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2017; 8:1657. [PMID: 28993786 PMCID: PMC5622203 DOI: 10.3389/fpls.2017.01657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.
Collapse
Affiliation(s)
- Yaning Guo
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- School of Life Science, Yulin UniversityYulin, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Dou
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Fengli Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
7
|
Zhang B, Du SJ, Hu J, Miao D, Liu JY. Comparative proteomic analyses of Asian cotton ovules with attached fibers in the early stages of fiber elongation process. Proteome Sci 2016; 14:13. [PMID: 27610046 PMCID: PMC5015342 DOI: 10.1186/s12953-016-0101-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plenty of proteomic studies were performed to characterize the allotetraploid upland cotton fiber elongation process, whereas little is known about the elongating diploid cotton fiber proteome. METHODS In this study, we used a two-dimensional electrophoresis-based comparative proteomic approach to profile dynamic proteomes of diploid Asian cotton ovules with attached fibers in the early stages of fiber elongation process. One-way ANOVA and Student-Newman-Keuls test were used to find the differentially displayed protein (DDP) spots. RESULTS A total of 55 protein spots were found having different abundance ranging from 1 to 9 days post-anthesis (DPA) in a two-day interval. These 55 DDP spots were all successfully identified using high-resolution mass spectrometric analyses. Gene ontology analyses revealed that proteoforms involved in energy/carbohydrate metabolism, redox homeostasis, and protein metabolism are the most abundant. In addition, orthologues of the 13 DDP spots were also found in differential proteome of allotetraploid elongating cotton fibers, suggesting their possible essential roles in fiber elongation process. CONCLUSIONS Our results not only revealed the dynamic proteome change of diploid Asian cotton fiber and ovule during early stages of fiber elongation process but also provided valuable resource for future studies on the molecular mechanism how the polyploidization improves the trait of fiber length.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Shao-Jun Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Jue Hu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Di Miao
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| |
Collapse
|
8
|
Xu Z, Yu J, Kohel RJ, Percy RG, Beavis WD, Main D, Yu JZ. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics 2015; 106:61-9. [PMID: 25796538 DOI: 10.1016/j.ygeno.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
Cotton fiber represents the largest single cell in plants and they serve as models to study cell development. This study investigated the distribution and evolution of fiber Unigenes anchored to recombination hotspots between tetraploid cotton (Gossypium hirsutum) At and Dt subgenomes, and within a parental diploid cotton (Gossypium raimondii) D genome. Comparative analysis of At vs D and Dt vs D showed that 1) the D genome provides many fiber genes after its merger with another parental diploid cotton (Gossypium arboreum) A genome although the D genome itself does not produce any spinnable fiber; 2) similarity of fiber genes is higher between At vs D than between Dt vs D genomic hotspots. This is the first report that fiber genes have higher similarity between At and D than between Dt and D. The finding provides new insights into cotton genomic regions that would facilitate genetic improvement of natural fiber properties.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Jing Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Russell J Kohel
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - Richard G Percy
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - William D Beavis
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA.
| |
Collapse
|
9
|
Yu JZ, Ulloa M, Hoffman SM, Kohel RJ, Pepper AE, Fang DD, Percy RG, Burke JJ. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Mol Genet Genomics 2014; 289:1347-67. [PMID: 25314923 DOI: 10.1007/s00438-014-0930-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/20/2014] [Indexed: 12/27/2022]
Abstract
A quantitative trait locus (QTL) mapping was conducted to better understand the genetic control of plant architecture (PA), yield components (YC), and fiber properties (FP) in the two cultivated tetraploid species of cotton (Gossypium hirsutum L. and G. barbadense L.). One hundred and fifty-nine genomic regions were identified on a saturated genetic map of more than 2,500 SSR and SNP markers, constructed with an interspecific recombinant inbred line (RIL) population derived from the genetic standards of the respective cotton species (G. hirsutum acc. TM-1 × G. barbadense acc. 3-79). Using the single nonparametric and MQM QTL model mapping procedures, we detected 428 putative loci in the 159 genomic regions that confer 24 cotton traits in three diverse production environments [College Station F&B Road (FB), TX; Brazos Bottom (BB), TX; and Shafter (SH), CA]. These putative QTL loci included 25 loci for PA, 60 for YC, and 343 for FP, of which 3, 12, and 60, respectively, were strongly associated with the traits (LOD score ≥ 3.0). Approximately 17.7 % of the PA putative QTL, 32.9 % of the YC QTL, and 48.3 % of the FP QTL had trait associations under multiple environments. The At subgenome (chromosomes 1-13) contributed 72.7 % of loci for PA, 46.2 % for YC, and 50.4 % for FP while the Dt subgenome (chromosomes 14-26) contributed 27.3 % of loci for PA, 53.8 % for YC, and 49.6 % for FP. The data obtained from this study augment prior evidence of QTL clusters or gene islands for specific traits or biological functions existing in several non-homoeologous cotton chromosomes. DNA markers identified in the 159 genomic regions will facilitate further dissection of genetic factors underlying these important traits and marker-assisted selection in cotton.
Collapse
Affiliation(s)
- John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX, 77845, USA,
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jin X, Li Q, Xiao G, Zhu YX. Using genome-referenced expressed sequence tag assembly to analyze the origin and expression patterns of Gossypium hirsutum transcripts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:576-85. [PMID: 23675784 DOI: 10.1111/jipb.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/12/2013] [Indexed: 05/09/2023]
Abstract
We assembled a total of 297,239 Gossypium hirsutum (Gh, a tetraploid cotton, AADD) expressed sequence tag (EST) sequences that were available in the National Center for Biotechnology Information database, with reference to the recently published G. raimondii (Gr, a diploid cotton, DD) genome, and obtained 49,125 UniGenes. The average lengths of the UniGenes were increased from 804 and 791 bp in two previous EST assemblies to 1,019 bp in the current analysis. The number of putative cotton UniGenes with lengths of 3 kb or more increased from 25 or 34 to 1,223. As a result, thousands of originally independent G. hirsutum ESTs were aligned to produce large contigs encoding transcripts with very long open reading frames, indicating that the G. raimondii genome sequence provided remarkable advantages to assemble the tetraploid cotton transcriptome. Significant different distribution patterns within several GO terms, including transcription factor activity, were observed between D- and A-derived assemblies. Transcriptome analysis showed that, in a tetraploid cotton cell, 29,547 UniGenes were possibly derived from the D subgenome while another 19,578 may come from the A subgenome. Finally, some of the in silico data were confirmed by reverse transcription polymerase chain reaction experiments to show the changes in transcript levels for several gene families known to play key role in cotton fiber development. We believe that our work provides a useful platform for functional and evolutionary genomic studies in cotton.
Collapse
Affiliation(s)
- Xiang Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
11
|
Feldman M, Levy AA, Fahima T, Korol A. Genomic asymmetry in allopolyploid plants: wheat as a model. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5045-59. [PMID: 22859676 DOI: 10.1093/jxb/ers192] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The evolvement of duplicated gene loci in allopolyploid plants has become the subject of intensive studies. Most duplicated genes remain active in neoallopolyploids contributing either to a favourable effect of an extra gene dosage or to the build-up of positive inter-genomic interactions when genes or regulation factors on homoeologous chromosomes are divergent. However, in a small number of loci (about 10%), genes of only one genome are active, while the homoeoalleles on the other genome(s) are either eliminated or partially or completely suppressed by genetic or epigenetic means. For several traits, the retention of controlling genes is not random, favouring one genome over the other(s). Such genomic asymmetry is manifested in allopolyploid wheat by the control of various morphological and agronomical traits, in the production of rRNA and storage proteins, and in interaction with pathogens. It is suggested that the process of cytological diploidization leading to exclusive intra-genomic meiotic pairing and, consequently, to complete avoidance of inter-genomic recombination, has two contrasting effects. Firstly, it provides a means for the fixation of positive heterotic inter-genomic interactions and also maintains genomic asymmetry resulting from loss or silencing of genes. The possible mechanisms and evolutionary advantages of genomic asymmetry are discussed.
Collapse
Affiliation(s)
- Moshe Feldman
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
12
|
Mansoor S, Paterson AH. Genomes for jeans: cotton genomics for engineering superior fiber. Trends Biotechnol 2012; 30:521-7. [PMID: 22831638 DOI: 10.1016/j.tibtech.2012.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 12/22/2022]
Abstract
Twenty years ago, scientists predicted that better understanding of fiber development would lead to novel ways to engineer superior cotton fiber. Advances in genetic resources, DNA markers, DNA sequence information, and gene expression data have indeed provided new insights into fiber initiation, elongation and maturation. Many exciting applications of this knowledge offer the potential to select better cotton genotypes more effectively in mainstream breeding programs or engineer genotypes with improved agronomic and/or quality traits. Here, we discuss recent progress in understanding genes involved in fiber development, and their regulation and manipulation to engineer improved fibers. Better understanding of quantitative trait loci/gene interactions that influence fiber quality and yield may help to tailor superior cotton genotypes to diverse environments.
Collapse
Affiliation(s)
- Shahid Mansoor
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA.
| | | |
Collapse
|