1
|
Shankar UN, Andole S, Das K, Shiraz M, Akif M. Biophysical characterization and structural insights of leptospiral complement regulator-acquiring protein A. Biochem Biophys Res Commun 2024; 739:151003. [PMID: 39556937 DOI: 10.1016/j.bbrc.2024.151003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Many pathogens establish a successful infection by evading the host complement system, an essential arm of innate immunity. Pathogenic Leptospira is reported to escape complement-mediated killing by recruiting the host complement regulators by lipoproteins or outer surface proteins. One of the outer surface proteins, Leptospiral complement regulator-acquiring protein A (LcpA), is known to recruit complement regulators, C4b-binding protein (C4BP), and Factor H (FH) on the bacterial surface. Mapping of interacting domains from C4BP and FH with the LcpA has already been reported. However, the region or structural part of the LcpA mediating the interaction is not known yet. Here, we report cloning, expression, refolding and purification of recombinant LcpA from an inclusion body of E. coli heterologous expression system. We also demonstrate the biophysical characterization of recombinant LcpA and reveal its secondary structure contents. Moreover, the protein displays a moderate thermostability. The change of intrinsic fluorescence and CD spectra demonstrate a change in the secondary structure of protein due to binding with Zn2+ ions. Molecular docking of LcpA with the complement regulators displays important interface residues from both the individual counterparts. Molecular dynamic simulation analysis demonstrates the stability of interactions between LcpA and C4BP. In our understanding, this is the first report on the large-scale purification of LcpA through refolding experiments and biophysical characterization of LcpA. This study may provide additional information on the structural basis of binding with the complement regulators.
Collapse
Affiliation(s)
- Umate Nachiket Shankar
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Sowmya Andole
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Kousamvita Das
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Mohd Shiraz
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Mohd Akif
- Laboratory of Structural Biology, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Prof. CR Rao Road, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
2
|
Košenina S, Škerlová J, Zhang S, Dong M, Stenmark P. The cryo-EM structure of the BoNT/Wo-NTNH complex reveals two immunoglobulin-like domains. FEBS J 2024; 291:676-689. [PMID: 37746829 DOI: 10.1111/febs.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The botulinum neurotoxin-like toxin from Weissella oryzae (BoNT/Wo) is one of the BoNT-like toxins recently identified outside of the Clostridium genus. We show that, like the canonical BoNTs, BoNT/Wo forms a complex with its non-toxic non-hemagglutinin (NTNH) partner, which in traditional BoNT serotypes protects the toxin from proteases and the acidic environment of the hosts' guts. We here report the cryo-EM structure of the 300 kDa BoNT/Wo-NTNH/Wo complex together with pH stability studies of the complex. The structure reveals molecular details of the toxin's interactions with its protective partner. The overall structural arrangement is similar to other reported BoNT-NTNH complexes, but NTNH/Wo uniquely contains two extra bacterial immunoglobulin-like (Big) domains on the C-terminus. Although the function of these Big domains is unknown, they are structurally most similar to bacterial proteins involved in adhesion to host cells. In addition, the BoNT/Wo protease domain contains an internal disulfide bond not seen in other BoNTs. Mass photometry analysis revealed that the BoNT/Wo-NTNH/Wo complex is stable under acidic conditions and may dissociate at neutral to basic pH. These findings established that BoNT/Wo-NTNH/Wo shares the general fold of canonical BoNT-NTNH complexes. The presence of unique structural features suggests that it may have an alternative mode of activation, translocation and recognition of host cells, raising interesting questions about the activity and the mechanism of action of BoNT/Wo as well as about its target environment, receptors and substrates.
Collapse
Affiliation(s)
- Sara Košenina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
3
|
Jung H, Su Z, Inaba Y, West AC, Banta S. Genetic Modification of Acidithiobacillus ferrooxidans for Rare-Earth Element Recovery under Acidic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19902-19911. [PMID: 37983372 DOI: 10.1021/acs.est.3c05772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Zihang Su
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Yuta Inaba
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Alan C West
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
4
|
Outer surface protein E (OspE) mediates Borrelia burgdorferi sensu stricto strain-specific complement evasion in the eastern fence lizard, Sceloporus undulatus. Ticks Tick Borne Dis 2023; 14:102081. [PMID: 36403322 DOI: 10.1016/j.ttbdis.2022.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
In North America, Lyme disease is primarily caused by the spirochetal bacterium Borrelia burgdorferi sensu stricto (Bb), which is transmitted between multiple vertebrate hosts and ixodid ticks, and is a model commonly used to study host-pathogen interactions. While Bb is consistently observed in its mammalian and avian reservoirs, the bacterium is rarely isolated from North American reptiles. Two closely related lizard species, the eastern fence lizard (Sceloporus undulatus) and the western fence lizard (Sceloporus occidentalis), are examples of reptiles parasitized by Ixodes ticks. Vertebrates are known to generate complement as an innate defense mechanism, which can be activated before Bb disseminate to distal tissues. Complement from western fence lizards has proven lethal against one Bb strain, implying the role of complement in making those lizards unable to serve as hosts to Bb. However, Bb DNA is occasionally identified in distal tissues of field-collected eastern fence lizards, suggesting some Bb strains may overcome complement-mediated clearance in these lizards. These findings raise questions regarding the role of complement and its impact on Bb interactions with North American lizards. In this study, we found Bb seropositivity in a small population of wild-caught eastern fence lizards and observed Bb strain-specific survivability in lizard sera. We also found that a Bb outer surface protein, OspE, from Bb strains viable in sera, promotes lizard serum survivability and binds to a complement inhibitor, factor H, from eastern fence lizards. Our data thus identify bacterial and host determinants of eastern fence lizard complement evasion, providing insights into the role of complement influencing Bb interactions with North American lizards.
Collapse
|
5
|
Characterization of novel nuclease and protease activities among Leptospiral immunoglobulin-like proteins. Arch Biochem Biophys 2022; 727:109349. [PMID: 35820644 DOI: 10.1016/j.abb.2022.109349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022]
Abstract
Bacterial immunoglobulin-like (BIg) domain containing proteins play a variety of biological functions. Leptospiral Immunoglobulin-like (Lig) proteins are well-known virulence factors located on the surface of the pathogenic Leptospira that act during adhesion, invasion, and immune evasion. The Lig proteins have many roles and have been designated as multifaceted proteins. However, the hydrolyzing function of Lig proteins is not yet investigated in detail. Here, we report novel in-vitro nuclease and protease activities in the Ig-like domain of LigA protein. All Ig-like domains were able to cleave DNA in the presence of a divalent ion, but not RNA. Site-directed mutagenesis revealed Mg+2 binding residues in the Ig-like domain of LigA7. The basis of novel nuclease activity may be associated with protein adopting different conformation in the presence of divalent ions and substrate as investigated by change of intrinsic fluorescence. The docking of a stretch of double-strand DNA shows the binding on the positive surface of the protein. In addition, the protein is also observed to cleave a general protease substrate, β-casein, in our experimental condition. Our results proposed that the novel functions may be associated with neutrophil extracellular Trap (NET) evasion. Overall this study enhances the basic knowledge of non-nuclease proteins involved in the DNA cleavage activity and makes the foundation to explore its in-vivo activity in pathogenic Leptospira and other pathogens as well. Moreover, this information may be utilized to develop preventive strategies to interfere with Leptospira immune evasion.
Collapse
|
6
|
Gallois N, Alpha-Bazin B, Bremond N, Ortet P, Barakat M, Piette L, Mohamad Ali A, Lemaire D, Legrand P, Theodorakopoulos N, Floriani M, Février L, Den Auwer C, Arnoux P, Berthomieu C, Armengaud J, Chapon V. Discovery and characterization of UipA, a uranium- and iron-binding PepSY protein involved in uranium tolerance by soil bacteria. THE ISME JOURNAL 2022; 16:705-716. [PMID: 34556817 PMCID: PMC8857325 DOI: 10.1038/s41396-021-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Uranium is a naturally occurring radionuclide. Its redistribution, primarily due to human activities, can have adverse effects on human and non-human biota, which poses environmental concerns. The molecular mechanisms of uranium tolerance and the cellular response induced by uranium exposure in bacteria are not yet fully understood. Here, we carried out a comparative analysis of four actinobacterial strains isolated from metal and radionuclide-rich soils that display contrasted uranium tolerance phenotypes. Comparative proteogenomics showed that uranyl exposure affects 39-47% of the total proteins, with an impact on phosphate and iron metabolisms and membrane proteins. This approach highlighted a protein of unknown function, named UipA, that is specific to the uranium-tolerant strains and that had the highest positive fold-change upon uranium exposure. UipA is a single-pass transmembrane protein and its large C-terminal soluble domain displayed a specific, nanomolar binding affinity for UO22+ and Fe3+. ATR-FTIR and XAS-spectroscopy showed that mono and bidentate carboxylate groups of the protein coordinated both metals. The crystal structure of UipA, solved in its apo state and bound to uranium, revealed a tandem of PepSY domains in a swapped dimer, with a negatively charged face where uranium is bound through a set of conserved residues. This work reveals the importance of UipA and its PepSY domains in metal binding and radionuclide tolerance.
Collapse
Affiliation(s)
- Nicolas Gallois
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Béatrice Alpha-Bazin
- grid.5583.b0000 0001 2299 8025Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France
| | - Nicolas Bremond
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Philippe Ortet
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Mohamed Barakat
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Laurie Piette
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Abbas Mohamad Ali
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - David Lemaire
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Pierre Legrand
- grid.426328.9Synchrotron SOLEIL. L’Orme des Merisiers Saint-Aubin. BP 48, 91192 Gif-sur-Yvette, France
| | - Nicolas Theodorakopoulos
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France ,grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LR2T, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Magali Floriani
- grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LECO, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Laureline Février
- grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LR2T, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Christophe Den Auwer
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | - Pascal Arnoux
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Catherine Berthomieu
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Jean Armengaud
- grid.5583.b0000 0001 2299 8025Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France
| | - Virginie Chapon
- Aix Marseille Université, CEA, CNRS, BIAM, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
7
|
Oreste U, Ametrano A, Coscia MR. On Origin and Evolution of the Antibody Molecule. BIOLOGY 2021; 10:biology10020140. [PMID: 33578914 PMCID: PMC7916673 DOI: 10.3390/biology10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Like many other molecules playing vital functions in animals, the antibody molecule possesses a complex structure with distinctive features. The structure of the basic unit, i.e., the immunoglobulin domain of very ancient origin is substantially simple. However, high complexity resides in the types and numbers of the domains composing the whole molecule. The emergence of the antibody molecule during evolution overturned the effectiveness of the organisms’ defense system. The particular organization of the coding genes, the mechanisms generating antibody diversity, and the plasticity of the overall protein structure, attest to an extraordinary successful evolutionary history. Here, we attempt to trace, across the evolutionary scale, the very early origins of the most significant features characterizing the structure of the antibody molecule and of the molecular mechanisms underlying its major role in recognizing an almost unlimited number of pathogens. Abstract The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.
Collapse
Affiliation(s)
- Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
| | - Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Correspondence: ; Tel.: +39-081-6132556
| |
Collapse
|
8
|
Haake DA, Matsunaga J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front Immunol 2021; 11:579907. [PMID: 33488581 PMCID: PMC7821625 DOI: 10.3389/fimmu.2020.579907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 02/03/2023] Open
Abstract
The virulence mechanisms required for infection and evasion of immunity by pathogenic Leptospira species remain poorly understood. A number of L. interrogans surface proteins have been discovered, lying at the interface between the pathogen and host. Among these proteins, the functional properties of the Lig (leptospiral immunoglobulin-like domain) proteins have been examined most thoroughly. LigA, LigB, and LigC contain a series of, 13, 12, and 12 closely related domains, respectively, each containing a bacterial immunoglobulin (Big) -like fold. The multidomain region forms a mostly elongated structure that exposes a large surface area. Leptospires wield the Lig proteins to promote interactions with a range of specific host proteins, including those that aid evasion of innate immune mechanisms. These diverse binding events mediate adhesion of L. interrogans to the extracellular matrix, inhibit hemostasis, and inactivate key complement proteins. These interactions may help L. interrogans overcome the physical, hematological, and immunological barriers that would otherwise prevent the spirochete from establishing a systemic infection. Despite significant differences in the affinities of the LigA and LigB proteins for host targets, their functions overlap during lethal infection of hamsters; virulence is lost only when both ligA and ligB transcription is knocked down simultaneously. Lig proteins have been shown to be promising vaccine antigens through evaluation of a variety of different adjuvant strategies. This review serves to summarize current knowledge of Lig protein roles in virulence and immunity and to identify directions needed to better understand the precise functions of the Lig proteins during infection.
Collapse
Affiliation(s)
- David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Departments of Medicine, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Passalia FJ, Carvalho E, Heinemann MB, Vieira ML, Nascimento ALTO. The Leptospira interrogans LIC10774 is a multifunctional surface protein that binds calcium and interacts with host components. Microbiol Res 2020; 235:126470. [PMID: 32247916 DOI: 10.1016/j.micres.2020.126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, 05503-900, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Ana Lucia T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
10
|
Guttula D, Yao M, Baker K, Yang L, Goult BT, Doyle PS, Yan J. Calcium-mediated Protein Folding and Stabilization of Salmonella Biofilm-associated Protein A. J Mol Biol 2018; 431:433-443. [PMID: 30452884 DOI: 10.1016/j.jmb.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
Biofilm-associated proteins (BAPs) are important for early biofilm formation (adhesion) by bacteria and are also found in mature biofilms. BapA from Salmonella is a ~386-kDa surface protein, comprising 27 tandem repeats predicted to be bacterial Ig-like (BIg) domains. Such tandem repeats are conserved for BAPs across different bacterial species, but the function of these domains is not completely understood. In this work, we report the first study of the mechanical stability of the BapA protein. Using magnetic tweezers, we show that the folding of BapA BIg domains requires calcium binding and the folded domains have differential mechanical stabilities. Importantly, we identify that >100 nM concentration of calcium is needed for folding of the BIg domains, and the stability of the folded BIg domains is regulated by calcium over a wide concentration range from sub-micromolar (μM) to millimolar (mM). Only at mM calcium concentrations, as found in the extracellular environment, do the BIg domains have the saturated mechanical stability. BapA has been suggested to be involved in Salmonella invasion, and it is likely a crucial mechanical component of biofilms. Therefore, our results provide new insights into the potential roles of BapA as a structural maintenance component of Salmonella biofilm and also Salmonella invasion.
Collapse
Affiliation(s)
- Durgarao Guttula
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Mingxi Yao
- Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Patrick S Doyle
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Jie Yan
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602, Republic of Singapore; Mechanobiology Institute (MBI), National University of Singapore (NUS), 117411, Republic of Singapore; Department of Physics, National University of Singapore (NUS), 117542, Republic of Singapore.
| |
Collapse
|
11
|
Proteomic approach and expression analysis revealed the differential expression of predicted leptospiral proteases capable of ECM degradation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:712-721. [DOI: 10.1016/j.bbapap.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
12
|
Bradshaw WJ, Roberts AK, Shone CC, Acharya KR. The structure of the S-layer of Clostridium difficile. J Cell Commun Signal 2018; 12:319-331. [PMID: 29170885 PMCID: PMC5842191 DOI: 10.1007/s12079-017-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022] Open
Abstract
The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
13
|
Pawar AD, Verma D, Sankeshi V, Raman R, Sharma Y. Strategizing for the purification of a multiple Big domain-containing protein in native conformation is worth it! Protein Expr Purif 2017; 145:25-31. [PMID: 29287899 DOI: 10.1016/j.pep.2017.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
The reliability and accuracy of conformational or functional studies of any novel multidomain protein rely on the quality of protein. The bottleneck in structural studies with the complete Big_2 domain containing proteins like LigA, LigB or MpIBP is usually their large molecular size owing to their multidomain (>10-12 domains) architectures. Interestingly, a soil bacterium Paenarthrobacter aurescens TC1, harbours a gene that encodes a protein comprising of four predicted Big_2 domains. We report here the expression and purification of this novel, multiple Big_2 domains containing protein, Arig of P. aurescens TC1. During overexpression, recombinant Arig formed inclusion bodies and hence was purified by on-column refolding. The refolded Arig revealed a β-sheet conformation and a well-resolved near-UV CD spectra but did not exhibit a well-dispersed 2D [1H-15N]-HSQC NMR spectrum, as expected for a well-folded β-sheet native conformation. We, therefore, further optimized Arig overexpression in the soluble fraction by including osmolytes. CD spectroscopic and 2D [1H-15N]-HSQC analyses consolidate that Arig purified alternatively has a well-folded native conformation. While we describe different strategies for purification of Arig, we also present the spectral properties of this novel all-β-sheet protein.
Collapse
Affiliation(s)
- Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| | - Deepshikha Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Venu Sankeshi
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Rajeev Raman
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
14
|
Pawar AD, Verma D, Raman R, Sharma Y, Chary KVR. 1H, 13C and 15N NMR assignments of a bacterial immunoglobulin-like domain (group 2) of a protein of a bacterium Paenarthrobacter aurescens TC1. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:203-206. [PMID: 28593559 DOI: 10.1007/s12104-017-9748-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The bacterial immunoglobulin-like (Big) domain is one of the prevalent domain types, which facilitates cell-cell adhesion by assembling into multi-domain architectures. We selected a four Big_2 domain protein (named 'Arig') from a Gram positive, Paenarthrobacter aurescens TC1 (known earlier as Arthrobacter aurescens TC1). In an attempt to characterize structural and ligand-binding features of individual Big_2 domains, we have cloned, overexpressed, isolated and purified the second Big_2 domain of Arig along with a few of its adjacent Big_2 domain residues (residue 143 to 269) referred to as 'Arig2'. The 13C/15N-doubly-labeled His-tagged Arig2 (133 residues long) showed an ordered conformation as revealed by the well dispersed 2D [15N-1H]-HSQC spectrum. Subsequently, a suite of heteronuclear 3D NMR experiments has enabled almost complete 1H, 13C and 15N NMR resonance assignments of Arig2.
Collapse
Affiliation(s)
- Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Deepshikha Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21, Brindavan Colony, Narsingi, Hyderabad, 500075, India
| | - Rajeev Raman
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kandala V R Chary
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21, Brindavan Colony, Narsingi, Hyderabad, 500075, India.
| |
Collapse
|
15
|
Zeng L, Wang D, Hu N, Zhu Q, Chen K, Dong K, Zhang Y, Yao Y, Guo X, Chang YF, Zhu Y. A Novel Pan-Genome Reverse Vaccinology Approach Employing a Negative-Selection Strategy for Screening Surface-Exposed Antigens against leptospirosis. Front Microbiol 2017; 8:396. [PMID: 28352257 PMCID: PMC5348505 DOI: 10.3389/fmicb.2017.00396] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/27/2017] [Indexed: 01/18/2023] Open
Abstract
Reverse vaccinology (RV) has been widely used for screening of surface-exposed proteins (PSEs) of important pathogens, including outer membrane proteins (OMPs), and extracellular proteins (ECPs) as potential vaccine candidates. In this study, we applied a novel RV negative strategy and a pan-genome analysis for screening of PSEs from 17 L. interrogans strains covering 11 predominately epidemic serovars and 17 multilocus typing (MLST) sequence types (STs) worldwide. Our results showed, for instance, out of a total of 633 predicted PSEs in strain 56601, 92.8% were OMPs or ECPs (588/633). Among the 17 strains, 190 core PSEs, 913 dispensable PSEs and 861 unique PSEs were identified. Of the 190 PSEs, 121 were further predicted to be highly antigenic and thus may serve as potential vaccine candidates against leptospirosis. With the exception of LipL45, OmpL1, and LigB, the majority of the 121 PSEs were newly identified antigens. For example, hypothetical proteins BatC, LipL71, and the OmpA family proteins sharing many common features, such as surface-exposed localization, universal conservation, and eliciting strong antibody responses in patients, are regarded as the most promising vaccine antigens. Additionally, a wide array of potential virulence factors among the predicted PSEs including TonB-dependent receptor, sphingomyelinase 2, leucine-rich repeat protein, and 4 neighboring hypothetical proteins were identified as potential antigenicity, and deserve further investigation. Our results can contribute to the prediction of suitable antigens as potential vaccine candidates against leptospirosis and also provide further insights into mechanisms of leptospiral pathogenicity. In addition, our novel negative-screening strategy combined with pan-genome analysis can be a routine RV method applied to numerous other pathogens.
Collapse
Affiliation(s)
- LingBing Zeng
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang UniversityNanchang, China; Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dongliang Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing, China
| | - NiYa Hu
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Qing Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Kaishen Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of NanChang University Nanchang, China
| | - Ke Dong
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yan Zhang
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - YuFeng Yao
- Deparment of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College Kunming, China
| | - XiaoKui Guo
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - YongZhang Zhu
- Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
16
|
Gomez-Cavazos JS, Hetzer MW. The nucleoporin gp210/Nup210 controls muscle differentiation by regulating nuclear envelope/ER homeostasis. ACTA ACUST UNITED AC 2015; 208:671-81. [PMID: 25778917 PMCID: PMC4362455 DOI: 10.1083/jcb.201410047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The luminal domain of Nup210 that lacks NPC sorting signals is sufficient for myogenesis, which suggests that Nup210 may operate within the nuclear envelope/ER lumen during differentiation. Previously, we identified the nucleoporin gp210/Nup210 as a critical regulator of muscle and neuronal differentiation, but how this nucleoporin exerts its function and whether it modulates nuclear pore complex (NPC) activity remain unknown. Here, we show that gp210/Nup210 mediates muscle cell differentiation in vitro via its conserved N-terminal domain that extends into the perinuclear space. Removal of the C-terminal domain, which partially mislocalizes gp210/Nup210 away from NPCs, efficiently rescues the differentiation defect caused by the knockdown of endogenous gp210/Nup210. Unexpectedly, a gp210/Nup210 mutant lacking the NPC-targeting transmembrane and C-terminal domains is sufficient for C2C12 myoblast differentiation. We demonstrate that the endoplasmic reticulum (ER) stress-specific caspase cascade is exacerbated during Nup210 depletion and that blocking ER stress-mediated apoptosis rescues differentiation of Nup210-deficient cells. Our results suggest that the role of gp210/Nup210 in cell differentiation is mediated by its large luminal domain, which can act independently of NPC association and appears to play a pivotal role in the maintenance of nuclear envelope/ER homeostasis.
Collapse
Affiliation(s)
- J Sebastian Gomez-Cavazos
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
17
|
Shibata ACE, Maebashi HK, Nakahata Y, Nabekura J, Murakoshi H. Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern. PLoS One 2015; 10:e0121109. [PMID: 25799407 PMCID: PMC4370617 DOI: 10.1371/journal.pone.0121109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/10/2015] [Indexed: 11/25/2022] Open
Abstract
Genetically encoded fluorescence resonance energy transfer (FRET) biosensors have been successfully used to visualize protein activity in living cells. The sensitivity and accuracy of FRET measurements directly depend on biosensor folding efficiency, expression pattern, sensitivity, and dynamic range. Here, to improve the folding efficiency of the Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) FRET biosensor, we amplified the association domain of the CaMKIIα gene using error-prone polymerase chain reaction (PCR) and fused it to the N-terminus of mCherry in a bacterial expression vector. We also created an Escherichia coli expression library based on a previously reported fluorescent protein folding reporter method, and found a bright red fluorescent colony that contained the association domain with four mutations (F394L, I419V, A430T, and I434T). In vitro assays using the purified mutant protein confirmed improved folding kinetics of the downstream fluorescent protein, but not of the association domain itself. Furthermore, we introduced these mutations into the previously reported CaMKIIα FRET sensor and monitored its Ca2+/calmodulin-dependent activation in HeLa cells using 2-photon fluorescence lifetime imaging microscopy (2pFLIM), and found that the expression pattern and signal reproducibility of the mutant sensor were greatly improved without affecting the autophosphorylation function and incorporation into oligomeric CaMKIIα. We believe that our improved CaMKIIα FRET sensor would be useful in various types of cells and tissues, providing data with high accuracy and reproducibility. In addition, the method described here may also be applicable for improving the performance of all currently available FRET sensors.
Collapse
Affiliation(s)
- Akihiro C. E. Shibata
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Aichi, Japan
| | - Hiroshi K. Maebashi
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
| | - Yoshihisa Nakahata
- Division of Homeostatic Development, National Institute for Physiological Science, Okazaki, Aichi, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
18
|
Barlag B, Hensel M. The giant adhesin SiiE of Salmonella enterica. Molecules 2015; 20:1134-50. [PMID: 25587788 PMCID: PMC6272769 DOI: 10.3390/molecules20011134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/04/2015] [Indexed: 01/12/2023] Open
Abstract
Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2–3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE.
Collapse
Affiliation(s)
- Britta Barlag
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, Osnabrück 49076, Germany.
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, Osnabrück 49076, Germany.
| |
Collapse
|
19
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
20
|
Mei S, Zhang J, Zhang X, Tu X. Solution structure of a bacterial immunoglobulin-like domain of the outer membrane protein (LigB) from Leptospira. Proteins 2014; 83:195-200. [PMID: 25393078 DOI: 10.1002/prot.24723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/06/2022]
Abstract
Leptospiral immunoglobulin-like (Lig) proteins are surface proteins expressed in pathogenic strains of Leptospira. LigB, an outer membrane protein containing tandem repeats of bacterial Ig-like (Big) domains and a no-repeat tail, has been identified as a virulence factor involved in adhesion of pathogenic Leptospira interrogans to host cells. A Big domain of LigB, LigBCen2R, was reported previously to bind the GBD domain of fibronectin, suggesting its important role in leptospiral infections. In this study, we determined the solution structure of LigBCen2R by nuclear magnetic resonance (NMR) spectroscopy. LigBCen2R adopts a canonical immunoglobulin-like fold which is comprised of a beta-sandwich of ten strands in three sheets. We indicated that LigBCen2R is able to bind to Ca(2+) with a high affinity by isothermal titration calorimetry assay. NMR perturbation experiment identified a number of residues responsible for Ca(2+) binding. Structural comparison of it with other Big domains demonstrates that they share a similar fold pattern, but vary in some structural characters. Since Lig proteins play a vital role in the infection to host cells, our study will contribute a structural basis to understand the interactions between Leptospira and host cells.
Collapse
Affiliation(s)
- Song Mei
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Dziewanowska K, Settles M, Hunter S, Linquist I, Schilkey F, Hartzell PL. Phase variation in Myxococcus xanthus yields cells specialized for iron sequestration. PLoS One 2014; 9:e95189. [PMID: 24733297 PMCID: PMC3986340 DOI: 10.1371/journal.pone.0095189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/25/2014] [Indexed: 01/30/2023] Open
Abstract
Myxococcus xanthus undergoes phase variation during growth to produce predominantly two colony phenotypes. The majority are yellow colonies containing swarm-proficient cells and a minority are tan colonies containing swarm-deficient cells. Comparison of the transcriptomes of a yellow variant, a tan variant, and three tan mutants led to the identification of differentially-regulated genes that define key segments of the phase variation pathway. For example, expression of genes for the yellow pigment DKxanthene and the antibiotic myxovirescin was increased significantly in yellow variants. In contrast, expression of the siderophore myxochelin, hemin binding proteins, and iron transport proteins was increased specifically in tan strains. Thus, a consequence of phase variation is that yellow cells shift from producing antibiotic and pigment to producing components involved in acquisition of iron, which may increase fitness during periods of iron limitation. Multiple protein kinases and HTH-Xre DNA-binding proteins identified in this study may be involved in the regulatory hierarchy that governs phase variation.
Collapse
Affiliation(s)
- Katarzyna Dziewanowska
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Matthew Settles
- The Institute for Bioinformatics and Evolutionary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel Hunter
- Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Ingrid Linquist
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Patricia L. Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
22
|
Srivastava SS, Mishra A, Krishnan B, Sharma Y. Ca2+-binding motif of βγ-crystallins. J Biol Chem 2014; 289:10958-10966. [PMID: 24567326 DOI: 10.1074/jbc.o113.539569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca(2+) binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca(2+)-binding sites. βγ-Crystallins make a separate class of Ca(2+)-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca(2+) binding to βγ-crystallins in mediating biological processes are yet to be elucidated.
Collapse
Affiliation(s)
- Shanti Swaroop Srivastava
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Amita Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Bal Krishnan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India.
| |
Collapse
|
23
|
Chirathaworn C, Kongpan S. Immune responses to Leptospira infection: roles as biomarkers for disease severity. Braz J Infect Dis 2013; 18:77-81. [PMID: 24275371 PMCID: PMC9425245 DOI: 10.1016/j.bjid.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/18/2013] [Accepted: 08/27/2013] [Indexed: 12/12/2022] Open
Abstract
Various leptospiral components have been identified and shown to be involved in tissue destruction. In addition, immune responses to leptospires have been implicated in target organ damages in severe leptospirosis cases. Several inflammatory mediators were shown to be higher in susceptible animals than in resistant hosts. Moreover, cytokines/chemokines and serum proteins induced following Leptospira infection were suggested to be biomarkers for disease severity in human leptospirosis. This review focuses on the role of immune responses in the severity of leptospirosis. Studies in both animal models and humans are discussed.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Sutthikarn Kongpan
- Master of Science Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Guo S, Garnham CP, Karunan Partha S, Campbell RL, Allingham JS, Davies PL. Role of Ca2+in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesin. FEBS J 2013; 280:5919-32. [DOI: 10.1111/febs.12518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Shuaiqi Guo
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - Christopher P. Garnham
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - Sarathy Karunan Partha
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - Robert L. Campbell
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - John S. Allingham
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - Peter L. Davies
- The Protein Function Discovery Group; Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| |
Collapse
|
25
|
Raman R, Ptak CP, Hsieh CL, Oswald RE, Chang YF, Sharma Y. The perturbation of tryptophan fluorescence by phenylalanine to alanine mutations identifies the hydrophobic core in a subset of bacterial Ig-like domains. Biochemistry 2013; 52:4589-91. [PMID: 23800025 DOI: 10.1021/bi400128r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many host-parasite interactions are mediated via surface-exposed proteins containing bacterial immunoglobulin-like (Big) domains. Here, we utilize the spectral properties of a conserved Trp to provide evidence that, along with a Phe, these residues are positioned within the hydrophobic core of a subset of Big_2 domains. The mutation of the Phe to Ala decreases Big_2 domain stability and impairs the ability of LigBCen2 to bind to the host protein, fibronectin.
Collapse
Affiliation(s)
- Rajeev Raman
- Centre for Cellular and Molecular Biology (CCMB), CSIR , Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
26
|
Raja V, Natarajaseenivasan K. Pathogenic, diagnostic and vaccine potential of leptospiral outer membrane proteins (OMPs). Crit Rev Microbiol 2013; 41:1-17. [PMID: 23688248 DOI: 10.3109/1040841x.2013.787387] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathogenic Leptospira species are important human and animal pathogen that causes leptospirosis, with more than half a million cases reported annually but little is known regarding the true incidence of leptospirosis due to the limitations in diagnosis. Proteins embedded in the outer membrane are found to be prime drug targets due to its key role as receptors for cellular communication and gatekeepers for iron and substrate transport across cell membranes. The major key issues to be addressed to overcome the disease burden of leptospirosis are: need to identify the genes that turn on in vivo; development of rapid diagnostic methods to facilitate the early diagnosis and to develop a universal vaccine. Recent whole genome sequencing of Leptospira species and development of in silico analysis tools have led to the identification of a large number of leptospiral virulence genes, metabolic pathways and surface protein secretion systems that represent potential new targets for the development of anti-leptospiral drug, vaccine and diagnostic strategies. This review surveys the different types of outer membrane proteins (OMPs) of Leptospira and combines all the novel features of OMPs reported till date and put forth some views for future research.
Collapse
Affiliation(s)
- Veerapandian Raja
- Medical Microbiology Laboratory, Department of Microbiology, Bharathidasan University , Tiruchirappalli , India
| | | |
Collapse
|
27
|
Kim HS, Kim J, Im HN, Yoon JY, An DR, Yoon HJ, Kim JY, Min HK, Kim SJ, Lee JY, Han BW, Suh SW. Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:420-31. [PMID: 23519417 PMCID: PMC3605043 DOI: 10.1107/s0907444912048998] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/17/2023]
Abstract
Difficulty in the treatment of tuberculosis and growing drug resistance in Mycobacterium tuberculosis (Mtb) are a global health issue. Carbapenems inactivate L,D-transpeptidases; meropenem, when administered with clavulanate, showed in vivo activity against extensively drug-resistant Mtb strains. LdtMt2 (Rv2518c), one of two functional L,D-transpeptidases in Mtb, is predominantly expressed over LdtMt1 (Rv0116c). Here, the crystal structure of N-terminally truncated LdtMt2 (residues Leu131-Ala408) is reported in both ligand-free and meropenem-bound forms. The structure of meropenem-inhibited LdtMt2 provides a detailed structural view of the interactions between a carbapenem drug and Mtb L,D-transpeptidase. The structures revealed that the catalytic L,D-transpeptidase domain of LdtMt2 is preceded by a bacterial immunogloblin-like Big_5 domain and is followed by an extended C-terminal tail that interacts with both domains. Furthermore, it is shown using mass analyses that meropenem acts as a suicide inhibitor of LdtMt2. Upon acylation of the catalytic Cys354 by meropenem, the `active-site lid' undergoes a large conformational change to partially cover the active site so that the bound meropenem is accessible to the bulk solvent via three narrow paths. This work will facilitate structure-guided discovery of L,D-transpeptidase inhibitors as novel antituberculosis drugs against drug-resistant Mtb.
Collapse
Affiliation(s)
- Hyoun Sook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jieun Kim
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ha Na Im
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Doo Ri An
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-eup Yeongudangiro 162, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Hye Kyeoung Min
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-eup Yeongudangiro 162, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam 534-729, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University Seoul, Seoul 100-712, Republic of Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
28
|
Wang T, Zhang J, Zhang X, Xu C, Tu X. Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca2+-binding module. Sci Rep 2013; 3:1079. [PMID: 23326635 PMCID: PMC3546320 DOI: 10.1038/srep01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/03/2012] [Indexed: 01/22/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca(2+) binding domain. The structure of the Big domain is different from those of the well known Ca(2+) binding domains, therefore revealing a novel Ca(2+)-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca(2+). We are the first to report the interactions between the Big domain and Ca(2+) in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis.
Collapse
Affiliation(s)
- Tao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | | | | | |
Collapse
|
29
|
Prehna G, Li Y, Stoynov N, Okon M, Vuckovic M, McIntosh LP, Foster LJ, Finlay BB, Strynadka NCJ. The zinc regulated antivirulence pathway of Salmonella is a multiprotein immunoglobulin adhesion system. J Biol Chem 2012; 287:32324-37. [PMID: 22810234 DOI: 10.1074/jbc.m112.357210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The co-evolutionary relationship between pathogen and host has led to a regulatory cycle between virulence factors needed for survival and antivirulence factors required for host transmission. This is exemplified in Salmonella spp. by the zirTS antivirulence genes: a secretion pathway comprised of the outer membrane transporter ZirT, and its secreted partner, ZirS. ZirTS act within the gastrointestinal tract to function as a virulence modulator and during Salmonella shedding in anticipation of a new host. Together, ZirT and ZirS decrease virulence by lowering bacterial colonization at systemic sites through an unknown mechanism. To understand this mechanism, we have probed the zirTS pathway both structurally and biochemically. The NMR derived structural ensemble of the C-terminal domain of ZirS reveals an immunoglobin superfamily fold (IgSF). Stable isotope labeling by amino acids in cell culture experiments show that the ZirS IgSF domain interacts with its transporter ZirT, and reveal a new protein interaction partner of the pathway, a protein encoded adjacent to zirTS that we have designated as ZirU. ZirU is secreted by ZirT and is also a predicted IgSF. Biochemical analysis delineates ZirT into an N-terminal porin-like β domain and C-terminal extracellular soluble IgSF domain, whereas biophysical characterization suggests that the transporter undergoes self-association in a concentration-dependent manner. We observe that ZirS and ZirU directly interact with each other and with the extracellular domains of ZirT. Here we show that the zir antivirulence pathway is a multiprotein immunoglobulin adhesion system consisting of a complex interplay between ZirS, ZirT, and ZirU.
Collapse
Affiliation(s)
- Gerd Prehna
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z3 BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Raman R, Sharma Y, Chang YF. Ca-binding and spectral properties of the common region of surface-exposed Lig proteins of leptospira. Commun Integr Biol 2011; 4:331-3. [PMID: 21980572 DOI: 10.4161/cib.4.3.15017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 01/29/2011] [Indexed: 01/06/2023] Open
Abstract
Pathogenic Leptospira protein LigA and LigB are conserved at the N-terminal sequence. In our earlier report, we have presented the spectral properties of individual Big domain of Lig proteins, and showed that an individual domain binds Ca(2+). Here we demonstrate that apart from Ca(2+)-binding properties, the spectral properties (such as doublet Trp fluorescence) shown by an individual domain are almost retained in the protein with many such domains (which could easily be called a multimer of an individual tandem repeat). Presence of Asp and Asn in a stretch of sequence in all tandem repeats points towards the possibility of their involvement in Ca(2+)-binding.
Collapse
Affiliation(s)
- Rajeev Raman
- Centre for Cellular and Molecular Biology (CCMB); CSIR; Hyderabad, Andhra, Pradesh, India
| | | | | |
Collapse
|
31
|
Monte LG, Conceição FR, Coutinho ML, Seixas FK, da Silva EF, Vasconcellos FA, deCastro LAS, Hartleben CP, Dellagostin OA, Aleixo JAG. Monoclonal antibodies against the leptospiral immunoglobulin-like proteins A and B conserved regions. Comp Immunol Microbiol Infect Dis 2011; 34:441-6. [PMID: 21903270 DOI: 10.1016/j.cimid.2011.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 12/22/2022]
Abstract
Leptospirosis is an infectious disease caused by pathogenic spirochetes of the genus Leptospira that affects humans and a wide variety of animals. Recently the genomes of Leptospira interrogans, Leptospira borgpetersenii and Leptospira biflexa species were sequenced allowing the identification of new virulence factors involved in survival and pathogenesis of bacteria. LigA and LigB are surface-exposed bacterial adhesins whose expression is correlated with the virulence of Leptospira strains. In this study, we produced and characterized five monoclonal antibodies (MAbs) against a recombinant fragment of LigB (rLigBrep) with approximately 54kDa that comprise the portions of LigA and LigB (domains 2-7). The 5 MAbs obtained were of the IgG1 (2) and IgG2b (3) isotypes and their affinity constants for rLigBrep ranged from 7×10(7) M(-1) to 4×10(8) M(-1). The MAbs were able to react with the native antigen on the L. interrogans, L. borgpetersenii and Leptospira noguchii surfaces by indirect immunofluorescence, immunoblotting and immunoelectron microscopy. These results demonstrate that the MAbs anti-rLigBrep can be useful to complement genetic studies and to aid studies aiming understanding the role of Lig proteins in Leptospira pathogenesis and the development of Lig-based vaccines and improved diagnostic tests for leptospirosis.
Collapse
Affiliation(s)
- Leonardo G Monte
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cao Y, Faisal SM, Yan W, Chang YC, McDonough SP, Zhang N, Akey BL, Chang YF. Evaluation of novel fusion proteins derived from extracellular matrix binding domains of LigB as vaccine candidates against leptospirosis in a hamster model. Vaccine 2011; 29:7379-86. [PMID: 21803087 DOI: 10.1016/j.vaccine.2011.07.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
Abstract
Leptospira binds to host extracellular matrix (ECM) through surface exposed outer membrane proteins called adhesin in order to initiate infection. Of various adhesins present on the surface of the spirochete, Leptospira-immunoglobulin like proteins (Lig proteins) and LipL32 are most abundant, widely distributed among pathogenic serovars and well characterized. Various fragments of Lig proteins (Ligcon4, Ligcon4-7.5, LigBcen2) and C-terminus fragment of LipL32 all of that bind to host ECM were fused, expressed and purified in soluble form as fusion proteins. Four week hamsters were immunized subcutaneously with various fusion proteins emulsified in EMULSIGEN-D adjuvant and subsequently boosted at 3 weeks. The protective efficacy of these novel fusion proteins was evaluated against subsequent challenge with highly virulent L. interrogans serovar Pomona (MLD50-100). Our results indicate that fusion protein based vaccine induced significant protection against acute infection with respect to PBS-adjuvant vaccinated controls as revealed by enhanced survival and reduced pulmonary hemorrhage. Moreover, the protection mediated by these novel proteins was higher than that of conserved region of Lig protein (Ligcon, established protective antigen) and correlated to the level of antibodies. LipL32 failed to impart significant protection, however fusing its immunogenic C-terminus domain to Lig fragments slightly delayed the morbidity of the infected animals. Our results demonstrate that this novel strategy could be promising in developing effective subunit vaccine to combat this zoonotic infection.
Collapse
Affiliation(s)
- Yongguo Cao
- Department of Population medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | | | | | | | | | |
Collapse
|