1
|
Barrio T, Filali H, Otero A, Sheleby-Elías J, Marín B, Vidal E, Béringue V, Torres JM, Groschup M, Andréoletti O, Badiola JJ, Bolea R. Mixtures of prion substrains in natural scrapie cases revealed by ovinised murine models. Sci Rep 2020; 10:5042. [PMID: 32193445 PMCID: PMC7081250 DOI: 10.1038/s41598-020-61977-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability in prion diseases, such as scrapie, is associated to the existence of prion strains, which are different pathogenic prion protein (PrPSc) conformations with distinct pathobiological properties. To faithfully study scrapie strain variability in natural sheep isolates, transgenic mice expressing sheep cellular prion protein (PrPC) are used. In this study, we used two of such models to bioassay 20 scrapie isolates from the Spain-France-Andorra transboundary territory. Animals were intracerebrally inoculated and survival periods, proteinase K-resistant PrP (PrPres) banding patterns, lesion profiles and PrPSc distribution were studied. Inocula showed a remarkable homogeneity on banding patterns, all of them but one showing 19-kDa PrPres. However, a number of isolates caused accumulation of 21-kDa PrPres in TgShp XI. A different subgroup of isolates caused long survival periods and presence of 21-kDa PrPres in Tg338 mice. It seemed that one major 19-kDa prion isoform and two distinct 21-kDa variants coexisted in source inocula, and that they could be separated by bioassay in each transgenic model. The reason why each model favours a specific component of the mixture is unknown, although PrPC expression level may play a role. Our results indicate that coinfection with more than one substrain is more frequent than infection with a single component.
Collapse
Affiliation(s)
- Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Jessica Sheleby-Elías
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Enric Vidal
- Priocat Laboratory, Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Vincent Béringue
- UMR Virologie Immunologie Moléculaires (VIM-UR892), INRA, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, 28130, Valdeolmos, Madrid, Spain
| | - Martin Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Olivier Andréoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), 50013, Zaragoza, Spain.
| |
Collapse
|
2
|
Nonno R, Marin-Moreno A, Carlos Espinosa J, Fast C, Van Keulen L, Spiropoulos J, Lantier I, Andreoletti O, Pirisinu L, Di Bari MA, Aguilar-Calvo P, Sklaviadis T, Papasavva-Stylianou P, Acutis PL, Acin C, Bossers A, Jacobs JG, Vaccari G, D'Agostino C, Chiappini B, Lantier F, Groschup MH, Agrimi U, Maria Torres J, Langeveld JPM. Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Sci Rep 2020; 10:19. [PMID: 31913327 PMCID: PMC6949283 DOI: 10.1038/s41598-019-57005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022] Open
Abstract
Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.
Collapse
Affiliation(s)
- Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy.
| | | | | | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | | | - John Spiropoulos
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey, United Kingdom
| | - Isabelle Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225- IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele A Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Cristina Acin
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Alex Bossers
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Jorge G Jacobs
- Wageningen BioVeterinary Research, Lelystad, the Netherlands
| | - Gabriele Vaccari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D'Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Barbara Chiappini
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Frederic Lantier
- INRA-Centre Val de Loire, Infectiologie et Santé Publique, Nouzilly, France
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | | | | |
Collapse
|
3
|
Miyazawa K, Masujin K, Matsuura Y, Iwamaru Y, Yokoyama T, Okada H. Interspecies transmission to bovinized transgenic mice uncovers new features of a CH1641-like scrapie isolate. Vet Res 2018; 49:116. [PMID: 30486902 PMCID: PMC6262972 DOI: 10.1186/s13567-018-0611-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
In animal prion diseases, including bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease in cervids, and scrapie in sheep and goats, a disease-associated isoform of prion protein (PrPd) accumulates in the brains of affected animals. Although the CH1641 scrapie isolate was experimentally established in the UK, a few natural CH1641-like scrapie cases have been reported in France and the UK. The molecular mass of the unglycosylated protease-resistant core of PrPd (PrPres) is known to be similar between CH1641-like scrapie and experimental BSE in sheep. We previously established an experimental CH1641-like scrapie isolate (Sh294) from a natural classical scrapie case. Here, we demonstrated that the Sh294 isolate was independent of both classical and atypical BSEs by cross-species transmission to bovine PrP overexpressing (TgBoPrP) mice and wild-type mice. Interestingly, we found that the Sh294 isolate altered its host range by the transmission to TgBoPrP mice, and we succeeded in the first stable reproduction of CH1641-like scrapie specific PrPres banding patterns with the ~12-kDa small C-terminal fragment in wild-type mice. This study provides new insight into the relationship between CH1641-like scrapie isolates and BSEs. In addition, interspecies transmission models such as we have demonstrated here could be a great help to investigate the origin and host range of animal prions.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- Exotic Disease Research Unit, Division of Transboundary Animal Diseases, NIAH, NARO, Kodaira, Tokyo, Japan
| | - Yuichi Matsuura
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yoshifumi Iwamaru
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, NIAH, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Unit, Division of Transboundary Animal Disease, National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Miyazawa K, Masujin K, Okada H, Ushiki-Kaku Y, Matsuura Y, Yokoyama T. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells. PLoS One 2017. [PMID: 28636656 PMCID: PMC5479544 DOI: 10.1371/journal.pone.0179317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Kentaro Masujin
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Yuichi Matsuura
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Emergence of a novel bovine spongiform encephalopathy (BSE) prion from an atypical H-type BSE. Sci Rep 2016; 6:22753. [PMID: 26948374 PMCID: PMC4780101 DOI: 10.1038/srep22753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
The H-type of atypical bovine spongiform encephalopathy (H-BSE) was serially passaged in bovinized transgenic (TgBoPrP) mice. At the fourth passage, most challenged mice showed a typical H-BSE phenotype with incubation periods of 223 ± 7.8 days. However, a different phenotype of BSE prion with shorter incubation periods of 109 ± 4 days emerged in a minor subset of the inoculated mice. The latter showed distinct clinical signs, brain pathology, and abnormal prion protein profiles as compared to H-BSE and other known BSE strains in mice. This novel prion was transmitted intracerebrally to cattle, with incubation periods of 14.8 ± 1.5 months, with phenotypes that differed from those of other bovine prion strains. These data suggest that intraspecies transmission of H-BSE in cattle allows the emergence of a novel BSE strain. Therefore, the continuation of feed ban programs may be necessary to exclude the recycling of H-BSE prions, which appear to arise spontaneously, in livestock. Such measures should help to reduce the risks from both novel and known strains of BSE.
Collapse
|
6
|
Langeveld JPM, Jacobs JG, Erkens JHF, Baron T, Andréoletti O, Yokoyama T, van Keulen LJM, van Zijderveld FG, Davidse A, Hope J, Tang Y, Bossers A. Sheep prions with molecular properties intermediate between classical scrapie, BSE and CH1641-scrapie. Prion 2015; 8:296-305. [PMID: 25522672 PMCID: PMC4601226 DOI: 10.4161/19336896.2014.983396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641–a rare scrapie variant–could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑associated form of prion protein (PrPres) represents a powerful tool for quick discrimination purposes. In this study we examined 7 deviant ovine field cases of scrapie for some typical molecular aspects of PrPres found in CH1641‑scrapie, classical scrapie and BSE. One case was most close to scrapie with respect to molecular mass of its non-glycosylated fraction and N-terminally located 12B2‑epitope content. Two cases were unlike classical scrapie but too weak to differentiate between BSE or CH1641. The other 4 cases appeared intermediate between scrapie and CH1641 with a reduced molecular mass and 12B2‑epitope content, together with the characteristic presence of a second PrPres population. The existence of these 2 PrPres populations was further confirmed through deglycosylation by PNGaseF. The findings indicate that discriminatory diagnosis between classical scrapie, CH1641 and BSE can remain inconclusive with current biochemical methods. Whether such intermediate cases represent mixtures of TSE strains should be further investigated e.g. in bioassays with rodent lines that are varying in their susceptibility or other techniques suitable for strain typing.
Collapse
Key Words
- AVG, average
- BSE, bovine spongiform encephalopathy
- CH1641
- IHC, immunohistochemistry
- PK, proteinase K
- PrPC ,prion protein in cellular form
- PrPSc, prion protein in TSE associated form
- PrPres, proteinase K resistant fragment of PrPSc
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TE, tissue equivalents
- TSE, transmissible spongiform encephalopathy
- VC, variation coefficient.
- Western blot
- ic., intracerebrally
- ip., intraperitoneally
- prion
- sheep
- triplex-WB, triplex Western blotting method
- typing
Collapse
Affiliation(s)
- Jan P M Langeveld
- a Department of Infection Biology ; Central Veterinary Institute part of Wageningen UR ; Lelystad , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Corda E, Thorne L, Beck KE, Lockey R, Green RB, Vickery CM, Holder TM, Terry LA, Simmons MM, Spiropoulos J. Ability of wild type mouse bioassay to detect bovine spongiform encephalopathy (BSE) in the presence of excess scrapie. Acta Neuropathol Commun 2015; 3:21. [PMID: 25853789 PMCID: PMC4382846 DOI: 10.1186/s40478-015-0194-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/05/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSEs) which naturally affect small and large ruminants respectively. However, small ruminants, which are susceptible to BSE under experimental conditions, have been exposed to the same or similar contaminated food additives as cattle. To date two natural cases of BSE in small ruminants have been reported. As a result surveillance projects, combined with appropriate control measures, have been established throughout the European Union (EU) to minimize the overall incidence of small ruminant TSEs. Although BSE can be differentiated from classical scrapie (subsequently referred to as scrapie) if appropriate discriminatory tests are applied, the value of these tests in BSE/scrapie co-infection scenarios has not been evaluated fully. Mouse bioassay is regarded as the gold standard regarding differentiation of distinct TSE strains and has been used as to resolve TSE cases were laboratory tests produced equivocal results. However, the ability of this method to discriminate TSE strains when they co-exist has not been examined systematically. To address this issue we prepared in vitro mixtures of ovine BSE and scrapie and used them to challenge RIII, C57BL/6 and VM mice. Results Disease phenotype analysis in all three mouse lines indicated that most phenotypic parameters (attack rates, incubation periods, lesion profiles and Western blots) were compatible with scrapie phenotypes as were immunohistochemistry (IHC) data from RIII and C57BL/6 mice. However, in VM mice that were challenged with BSE/scrapie mixtures a single BSE-associated IHC feature was identified, indicating the existence of BSE in animals where the scrapie phenotype was dominant. Conclusions We conclude that wild type mouse bioassay is of limited value in detecting BSE in the presence of scrapie particularly if the latter is in relative excess. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0194-2) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Simmons MM, Moore SJ, Lockey R, Chaplin MJ, Konold T, Vickery C, Spiropoulos J. Phenotype shift from atypical scrapie to CH1641 following experimental transmission in sheep. PLoS One 2015; 10:e0117063. [PMID: 25710519 PMCID: PMC4339189 DOI: 10.1371/journal.pone.0117063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
The interactions of host and infecting strain in ovine transmissible spongiform encephalopathies are known to be complex, and have a profound effect on the resulting phenotype of disease. In contrast to classical scrapie, the pathology in naturally-occurring cases of atypical scrapie appears more consistent, regardless of genotype, and is preserved on transmission within sheep homologous for the prion protein (PRNP) gene. However, the stability of transmissible spongiform encephalopathy phenotypes on passage across and within species is not absolute, and there are reports in the literature where experimental transmissions of particular isolates have resulted in a phenotype consistent with a different strain. In this study, intracerebral inoculation of atypical scrapie between two genotypes both associated with susceptibility to atypical forms of disease resulted in one sheep displaying an altered phenotype with clinical, pathological, biochemical and murine bioassay characteristics all consistent with the classical scrapie strain CH1641, and distinct from the atypical scrapie donor, while the second sheep did not succumb to challenge. One of two sheep orally challenged with the same inoculum developed atypical scrapie indistinguishable from the donor. This study adds to the range of transmissible spongiform encephalopathy phenotype changes that have been reported following various different experimental donor-recipient combinations. While these circumstances may not arise through natural exposure to disease in the field, there is the potential for iatrogenic exposure should current disease surveillance and feed controls be relaxed. Future sheep to sheep transmission of atypical scrapie might lead to instances of disease with an alternative phenotype and onward transmission potential which may have adverse implications for both public health and animal disease control policies.
Collapse
Affiliation(s)
- Marion M. Simmons
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
- * E-mail:
| | - S. Jo Moore
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Richard Lockey
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Melanie J Chaplin
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Timm Konold
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Christopher Vickery
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - John Spiropoulos
- Animal and Plant Health Agency—Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
9
|
Kittelberger R, McIntyre L, Watts J, MacDiarmid S, Hannah MJ, Jenner J, Bueno R, Swainsbury R, Langeveld JPM, van Keulen LJM, van Zijderveld FG, Wemheuer WM, Richt JA, Sorensen SJ, Pigott CJ, O'Keefe JS. Evaluation of two commercial, rapid, ELISA kits testing for scrapie in retro-pharyngeal lymph nodes in sheep. N Z Vet J 2014; 62:343-50. [PMID: 24961961 DOI: 10.1080/00480169.2014.933729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIMS To estimate the number of cases of scrapie that would occur in sheep of different prion protein (PrP) genotypes if scrapie was to become established in New Zealand, and to compare the performance of two commercially available, rapid ELISA kits using ovine retro-pharyngeal lymph nodes (RLN) from non-infected and infected sheep of different PrP genotypes. METHODS Using published data on the distribution of PrP genotypes within the New Zealand sheep flock and the prevalence of cases of scrapie in these genotypes in the United Kingdom, the annual expected number of cases of scrapie per genotype was estimated, should scrapie become established in New Zealand, assuming a total population of 28 million sheep. A non-infected panel of RLN was collected from 737 sheep from New Zealand that had been culled, found in extremis or died. Brain stem samples were also collected from 131 of these sheep. A second panel of infected samples comprised 218 and 117 RLN from confirmed scrapie cases that had originated in Europe and the United States of America, respectively. All samples were screened using two commercial, rapid, transmissible spongiform encephalopathy ELISA kits: Bio-Rad TeSeE ELISA (ELISA-BR), and IDEXX HerdChek BSE-Scrapie AG Test (ELISA-ID). RESULTS If scrapie became established in New Zealand, an estimated 596 cases would occur per year; of these 234 (39%) and 271 (46%) would be in sheep carrying ARQ/ARQ and ARQ/VRQ PrP genotypes, respectively. For the non-infected samples from New Zealand the diagnostic specificity of both ELISA kits was 100%. When considering all infected samples, the diagnostic sensitivity was 70.4 (95% CI=65.3-75.3)% for ELISA-BR and 91.6 (95% CI=88.2-94.4)% for ELISA-ID. For the ARQ/ARQ genotype (n=195), sensitivity was 66.2% for ELISA-BR and 90.8% for ELISA-ID, and for the ARQ/VRQ genotype (n=107), sensitivity was 81.3% for ELISA-BR and 98.1% for ELISA-ID. CONCLUSIONS In this study, the ELISA-ID kit demonstrated a higher diagnostic sensitivity for detecting scrapie in samples of RLN from sheep carrying scrapie-susceptible PrP genotypes than the ELISA-BR kit at comparable diagnostic specificity. CLINICAL RELEVANCE The diagnostic performance of the ELISA-ID kit using ovine RLN merits the consideration of including this assay in the national scrapie surveillance programme in New Zealand.
Collapse
Affiliation(s)
- R Kittelberger
- a Investigation and Diagnostic Centres and Response , Ministry for Primary Industries , Wellington , New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arsac JN, Baron T. Distinct transmissibility features of TSE sources derived from ruminant prion diseases by the oral route in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein. PLoS One 2014; 9:e96215. [PMID: 24797075 PMCID: PMC4010433 DOI: 10.1371/journal.pone.0096215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP). Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE), transmissible mink encephalopathy (TME), kuru and variant Creutzfeldt-Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein (A136R154Q171) under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres) following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Jean-Noël Arsac
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), Unité Maladies Neuro-dégénératives, Lyon, France
| | - Thierry Baron
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses), Unité Maladies Neuro-dégénératives, Lyon, France
- * E-mail:
| |
Collapse
|
11
|
Introduction: Invited Speakers. Prion 2013; 7:1-9. [PMID: 29095078 PMCID: PMC4031666 DOI: 10.4161/pri.26105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alberta Prion Research Institute, part of Alberta Innovates Bio Solutions, is proud to host the world's largest international prion research congress, PRION 2013: Conquering Frontiers, in Banff, Alberta, Canada from May 26-29, 2013. PRION 2013 will be only the second time this international meeting has been held outside of Europe since it began in 2004. The PRION 2013 International Scientific Advisory Committee includes leading international scholars and policy advisors in both human and animal protein misfolding research from 12 countries: Australia, Brazil, Canada, China, England, France, Germany, Japan, The Netherlands, Scotland, Spain and the United States. Prion and protein misfolding science can inform policy, risk management and mitigation, diagnoses and potential treatments in a range of areas from wildlife management to human dementias and neurodegenerative diseases. Compelling evidence is emerging that prion-like mechanisms may underlie a number of the human neurodegenerative diseases and dementias, providing the opportunity to seek out new treatments and for the cross-fertilization of ideas between the two related fields. This approach will be highlighted at PRION 2013. The theme of PRION 2013 is "Conquering Frontiers." It will be a continuation of the science covered in previous meetings with an emphasis on looking toward investigations in the new frontiers created by the relationships between prion diseases and human neurodegenerative diseases and dementias. The four-day session features scientific talks, workshops and posters on the following themes: Prion and Prion-like Diseases in Humans; Prion Diseases in Animals; Protein Structure and Biology; and Socioeconomic Impacts. The knowledge exchange that will take place at PRION 2013 will help to shape the future of prion and protein misfolding research and its application around the world.
Collapse
|
12
|
Masujin K, Kaku-Ushiki Y, Miwa R, Okada H, Shimizu Y, Kasai K, Matsuura Y, Yokoyama T. The N-terminal sequence of prion protein consists an epitope specific to the abnormal isoform of prion protein (PrP(Sc)). PLoS One 2013; 8:e58013. [PMID: 23469131 PMCID: PMC3585212 DOI: 10.1371/journal.pone.0058013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The conformation of abnormal prion protein (PrPSc) differs from that of cellular prion protein (PrPC), but the precise characteristics of PrPSc remain to be elucidated. To clarify the properties of native PrPSc, we attempted to generate novel PrPSc-specific monoclonal antibodies (mAbs) by immunizing PrP-deficient mice with intact PrPSc purified from bovine spongiform encephalopathy (BSE)-affected mice. The generated mAbs 6A12 and 8D5 selectivity precipitated PrPSc from the brains of prion-affected mice, sheep, and cattle, but did not precipitate PrPC from the brains of healthy animals. In histopathological analysis, mAbs 6A12 and 8D5 strongly reacted with prion-affected mouse brains but not with unaffected mouse brains without antigen retrieval. Epitope analysis revealed that mAbs 8D5 and 6A12 recognized the PrP subregions between amino acids 31–39 and 41–47, respectively. This indicates that a PrPSc-specific epitope exists in the N-terminal region of PrPSc, and mAbs 6A12 and 8D5 are powerful tools with which to detect native and intact PrPSc. We found that the ratio of proteinase K (PK)-sensitive PrPSc to PK-resistant PrPSc was constant throughout the disease time course.
Collapse
Affiliation(s)
- Kentaro Masujin
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Ritsuko Miwa
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Shimizu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Kazuo Kasai
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
13
|
Heterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain. Pathogens 2013; 2:92-104. [PMID: 25436883 PMCID: PMC4235706 DOI: 10.3390/pathogens2010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 01/16/2023] Open
Abstract
The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPSc aggregates of the Chandler scrapie strain have greater resistance to PK digestion and aggregation-denaturation than large PrPSc aggregates of this strain. We conclude that this strain consists of heterogeneous PrPSc.
Collapse
|
14
|
Murayama Y, Imamura M, Masujin K, Shimozaki N, Yoshioka M, Mohri S, Yokoyama T. Ultrasensitive detection of scrapie prion protein derived from ARQ and AHQ homozygote sheep by interspecies in vitro amplification. Microbiol Immunol 2012; 56:541-7. [PMID: 22548476 DOI: 10.1111/j.1348-0421.2012.00472.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prions, infectious agents causing TSEs, are composed primarily of the pathogenic form (PrP(Sc)) of the PrP(C). The susceptibility of sheep to scrapie is determined by polymorphisms in the coding region of the PRNP, mainly at codons 136, 154, and 171. The efficiency of in vitro amplification of sheep PrP(Sc) seems to be linked also to the PrP genotype. PrP(Sc) derived from sheep with V(136)R(154)Q(171)-associated genotypes can be amplified efficiently by PMCA in the presence of additional polyanion such as poly A, but there are no reports that cite ultrasensitive detection of PrP(Sc) derived from sheep of other PrP genotypes. We report here that sheep PrP(Sc) derived from ARQ and AHQ homozygotes was amplified efficiently by serial PMCA using mouse brain homogenate as PrP(C) substrate. ARQ/ARQ PrP(Sc) was detected in infected brain homogenates diluted up to 10(-10) after five rounds of amplification, and AHQ/AHQ PrP(Sc) was detected in samples diluted up to 10(-8) after four rounds of amplification. On the other hand, amplification of PrP(Sc) from VRQ/ARQ sheep seemed to be less efficient under the experimental conditions used. The interspecies PMCA developed in this study may be useful in the detailed analysis of PrP(Sc) distribution in classical scrapie-infected ARQ and AHQ homozygote sheep.
Collapse
Affiliation(s)
- Yuichi Murayama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
All major prion types recognised by a multiplex immunofluorometric assay for disease screening and confirmation in sheep. J Immunol Methods 2012; 380:30-9. [PMID: 22498749 DOI: 10.1016/j.jim.2012.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 01/11/2023]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) in small ruminants are presented in many forms: classical scrapie, Nor98/atypical scrapie, CH1641 scrapie and bovine spongiform encephalopathy (BSE). We previously described a multiplex immunofluorometric assay (mIFMA), based on a bead array flow cytometry technology, which provided, in a single assay, discrimination between BSE (in cattle and sheep) and classical scrapie (Tang et al., 2010). In this study, we extended the mlFMA to differentiate classical scrapie, atypical scrapie, BSE (experimentally infected sheep and naturally infected cattle) and CH1641 (both experimental and natural CH1641-like infections in sheep). Three capture antibodies were used, two distinct PrP N-terminus specific antibodies 12B2 and 9A2, and a PrP core specific antibody 94B4. All three antibodies were shown to bind classical scrapie PrP(res) strongly, whereas in Nor98/atypical scrapie PrP(res) only 12B2 and 9A2 binding was observed. PrP(res) binding of 12B2 was low for both BSE and CH1641, as expected. Furthermore, analysis of serially diluted samples indicated that the assay provided a similar level of sensitivity for atypical scrapie as that found using a well established commercial test. Unexpectedly, 9A2 binding to CH1641 PrP(res) was reduced by 2.1 fold both for experimental CH1641 and CH1641-like scrapie when compared with BSE, suggesting that major cleavage of the N-terminus occurs further towards the C-terminus in CH1641 than in BSE. The ratios of 12B2/94B4 and 9A2/94B4 were similar between experimental CH1641 and CH1641-like cases, although two CH1641-like subjects displayed slightly elevated ratios of both 12B2/94B4 and 9A2/94B4. To verify this finding for PrP(res), mass spectrometry based quantification was used to determine the absolute abundance of the peptides associated with all three antibody binding regions. There was a 2.2 fold reduction of peptides containing the 9A2 epitope for experimental CH1641 PrP(res) in comparison to BSE PrP(res). Observation of reduced PrP(res) may serve as a new marker for CH1641. This mIFMA may thus provide the basis for simplified TSE diagnosis with capability for simultaneous screening and differential diagnosis.
Collapse
|
16
|
Imran M, Mahmood S. An overview of animal prion diseases. Virol J 2011; 8:493. [PMID: 22044871 PMCID: PMC3228711 DOI: 10.1186/1743-422x-8-493] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/01/2011] [Indexed: 11/10/2022] Open
Abstract
Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases.
Collapse
Affiliation(s)
- Muhammad Imran
- 1Centre for Research in Endocrinology and Reproductive Sciences (CRERS), Department of Physiology and Cell Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | |
Collapse
|
17
|
Dominguez-Bello MG, Blaser MJ. The Human Microbiota as a Marker for Migrations of Individuals and Populations. ANNUAL REVIEW OF ANTHROPOLOGY 2011. [DOI: 10.1146/annurev-anthro-081309-145711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, New York University Langone Medical Center, New York, NY 10016;
| |
Collapse
|
18
|
Beck KE, Sallis RE, Lockey R, Vickery CM, Béringue V, Laude H, Holder TM, Thorne L, Terry LA, Tout AC, Jayasena D, Griffiths PC, Cawthraw S, Ellis R, Balkema-Buschmann A, Groschup MH, Simmons MM, Spiropoulos J. Use of murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a bovine spongiform encephalopathy molecular profile. Brain Pathol 2011; 22:265-79. [PMID: 21919992 PMCID: PMC3505794 DOI: 10.1111/j.1750-3639.2011.00526.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two cases of unusual transmissible spongiform encephalopathy (TSE) were diagnosed on the same farm in ARQ/ARQ PrP sheep showing attributes of both bovine spongiform encephalopathy (BSE) and scrapie. These cases, UK-1 and UK-2, were investigated further by transmissions to wild-type and ovine transgenic mice. Lesion profiles (LP) on primary isolation and subpassage, incubation period (IP) of disease, PrP(Sc) immunohistochemical (IHC) deposition pattern and Western blot profiles were used to characterize the prions causing disease in these sheep. Results showed that both cases were compatible with scrapie. The presence of BSE was contraindicated by the following: LP on primary isolation in RIII and/or MR (modified RIII) mice; IP and LP after serial passage in wild-type mice; PrP(Sc) deposition pattern in wild-type mice; and IP and Western blot data in transgenic mice. Furthermore, immunohistochemistry (IHC) revealed that each case generated two distinct PrP(Sc) deposition patterns in both wild-type and transgenic mice, suggesting that two scrapie strains coexisted in the ovine hosts. Critically, these data confirmed the original differential IHC categorization that these UK-1 and UK-2 cases were not compatible with BSE.
Collapse
Affiliation(s)
- Katy E Beck
- Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoshioka M, Imamura M, Okada H, Shimozaki N, Murayama Y, Yokoyama T, Mohri S. Sc237 hamster PrPSc and Sc237-derived mouse PrPSc generated by interspecies in vitro amplification exhibit distinct pathological and biochemical properties in tga20 transgenic mice. Microbiol Immunol 2011; 55:331-40. [PMID: 21362027 DOI: 10.1111/j.1348-0421.2011.00328.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.
Collapse
Affiliation(s)
- Miyako Yoshioka
- Safety Research Team, Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Distinct proteinase K-resistant prion protein fragment in goats with no signs of disease in a classical scrapie outbreak. J Clin Microbiol 2011; 49:2109-15. [PMID: 21450953 DOI: 10.1128/jcm.02033-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.
Collapse
|
21
|
Thackray AM, Hopkins L, Lockey R, Spiropoulos J, Bujdoso R. Emergence of multiple prion strains from single isolates of ovine scrapie. J Gen Virol 2011; 92:1482-1491. [PMID: 21270287 DOI: 10.1099/vir.0.028886-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The infectious agent associated with prion diseases such as ovine scrapie shows strain diversity. Ovine prion strains have typically been identified by their transmission properties in wild-type mice. However, strain typing of ovine scrapie isolates in wild-type mice may not reveal properties of the infectious prion agent as they exist in the original host. This could be circumvented if ovine scrapie isolates are passaged in ovine prion protein (PrP)-transgenic mice. This study used incubation time, lesion profile, immunohistochemistry of the disease-associated PrP (PrP(Sc)) and molecular profile to compare the range of ovine prion strains that emerged from sheep scrapie isolates following serial passage in wild-type and ovine PrP transgenic mice. It was found that a diverse range of ovine prion strains emerged from homozygous ARQ and VRQ scrapie isolates passaged in wild-type and ovine PrP transgenic mice. However, strain-specific PrP(Sc) deposition and PrP27-30 molecular profile patterns were identified in ovine PrP transgenic mice that were not detected in wild-type mice. Significantly, it was established that the individual mouse brain selected for transmission during prion strain typing had a significant influence on strain definition. Serial passage of short- and long-incubation-time animals from the same group of scrapie-inoculated mice revealed different prion strain phenotypes. These observations are consistent with the possibility that some scrapie isolates contain more than one prion strain.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| | - Lee Hopkins
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| | - Richard Lockey
- Veterinary Laboratories Agency, Department of Pathology and Host Susceptibility, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - John Spiropoulos
- Veterinary Laboratories Agency, Department of Pathology and Host Susceptibility, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|