1
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
2
|
Liu J, Hill BJ, Darko S, Song K, Quigley MF, Asher TE, Morita Y, Greenaway HY, Venturi V, Douek DC, Davenport MP, Price DA, Roederer M. The peripheral differentiation of human natural killer T cells. Immunol Cell Biol 2019; 97:586-596. [PMID: 30875134 PMCID: PMC6767057 DOI: 10.1111/imcb.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/07/2017] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
The peripheral maturation of human CD1d‐restricted natural killer T (NKT) cells has not been well described. In this study, we identified four major subsets of NKT cells in adults, distinguished by the expression of CD4, CD8 and CCR5. Phenotypic analysis suggested a hierarchical pattern of differentiation, whereby immature CD4+CD8−CCR5− cells progressed to an intermediate CD4+CD8−CCR5+ stage, which remained less differentiated than the CD4−CD8− and CD4−CD8+ subsets, both of which expressed CCR5. This interpretation was supported by functional data, including clonogenic potential and cytokine secretion profiles, as well as T‐cell receptor (TCR) excision circle analysis. Moreover, conventional and high‐throughput sequencing of the corresponding TCR repertoires demonstrated significant clonotypic overlap within individuals, especially between the more differentiated CD4−CD8− and CD4−CD8+ subsets. Collectively, these results mapped a linear differentiation pathway across the post‐thymic landscape of human CD1d‐restricted NKT cells.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Infectious Diseases and Vaccines, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.,ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brenna J Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Máire F Quigley
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Tedi E Asher
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yohei Morita
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Hui Y Greenaway
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2017; 45:1122-1134. [PMID: 27851913 DOI: 10.1016/j.immuni.2016.10.032] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells reside in lymphoid organs and barrier tissues where they control different types of inflammatory responses. Treg cells are also found in human cancers, and studies in animal models suggest that they contribute to cancer progression. However, properties of human intratumoral Treg cells and those present in corresponding normal tissue remain largely unknown. Here, we analyzed features of Treg cells in untreated human breast carcinomas, normal mammary gland, and peripheral blood. Tumor-resident Treg cells were potently suppressive and their gene-expression pattern resembled that of normal breast tissue, but not of activated peripheral blood Treg cells. Nevertheless, a number of cytokine and chemokine receptor genes, most notably CCR8, were upregulated in tumor-resident Treg cells in comparison to normal tissue-resident ones. Our studies suggest that targeting CCR8 for the depletion of tumor-resident Treg cells might represent a promising immunotherapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- George Plitas
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Konopacki
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenmin Wu
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paula D Bos
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina V Putintseva
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation Barcelona 08003, Spain; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Central European Institute of Technology, Brno 60177, Czech Republic; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Lin SJ, Huang YC, Cheng PJ, Lee PT, Hsiao HS, Kuo ML. Interleukin-15 enhances the expansion and function of natural killer T cells from adult peripheral and umbilical cord blood. Cytokine 2016; 76:348-355. [PMID: 26481260 DOI: 10.1016/j.cyto.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/17/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) are innate-like non-conventional T cells restricted by the CD1d molecule that are unique in their ability to play a pivotal role in immune regulation. Deficient iNKT function has been reported in patients receiving umbilical cord blood (UCB) transplantation. We sought to determine the effect of interleukin (IL)-15 on α-galactosylceramide (α-GalCer)-expanded iNKT cell function from UCB and adult peripheral blood (APB) mononuclear cells (MNCs). Fresh APB and UCB MNCs were cultured with IL-15 (50 ng/ml) in the presence or absence of α-GalCer (100 ng/ml) for 10 days. Cells were harvested for examination of cell yield, apoptosis, cytokine production and cytotoxic function of Vα24(+)/Vβ11(+) iNKT cells. We observed that α-GalCer-expanded APB and UCB iNKT cells and such expansion was further enhanced with IL-15. The percentage of CD3(+)CD56(+) NKT-like cells in both APB and UCB MNCs was increased with IL-15 but not with α-GalCer. Apoptosis of UCB iNKT cells was ameliorated by IL-15. Although APB and UCB iNKT cells secreted lower IFN-γ, it could be enhanced with IL-15. The expression of perforin in APB iNKT cells can also be enhanced with IL-15. UCB Vα24(+)Vβ11(+) iNKT cells further augmented K562 cytotoxicity mediated by IL-15. Taken together, these results demonstrated the relative functional deficiencies of α-GalCer induced UCB iNKT cells, which can be ameliorated by IL-15. Our findings suggest a therapeutic benefit of IL-15 immunotherapy during the post-UCB transplant period when iNKT function remains poor.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ying-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics/Gynecology, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Pei-Tzu Lee
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Hsiu-Shan Hsiao
- Health Research Division, Chang Gung Children's Hospital, 5 Fu-Hsing Street, Kwei-Shan, Tao-Yuan, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
5
|
From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells. Arch Immunol Ther Exp (Warsz) 2015; 64:291-8. [PMID: 26703211 DOI: 10.1007/s00005-015-0381-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2015] [Indexed: 01/18/2023]
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined.
Collapse
|
6
|
Nouatin O, Gbédandé K, Ibitokou S, Vianou B, Houngbegnon P, Ezinmegnon S, Borgella S, Akplogan C, Cottrell G, Varani S, Massougbodji A, Moutairou K, Troye-Blomberg M, Deloron P, Luty AJF, Fievet N. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum. PLoS One 2015; 10:e0139606. [PMID: 26580401 PMCID: PMC4651557 DOI: 10.1371/journal.pone.0139606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.
Collapse
MESH Headings
- Adult
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Benin
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Female
- Fetal Blood/immunology
- Fetal Blood/parasitology
- Humans
- Immunophenotyping
- Infant
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymphocyte Count
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/pathology
- Placenta/immunology
- Placenta/parasitology
- Placenta/pathology
- Plasmodium falciparum/immunology
- Pregnancy
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/pathology
- Retrospective Studies
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Komi Gbédandé
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Samad Ibitokou
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Bertin Vianou
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Parfait Houngbegnon
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Sem Ezinmegnon
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Sophie Borgella
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
| | - Carine Akplogan
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Gilles Cottrell
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Stefania Varani
- Unit of Microbiology, Department of Diagnostic, Experimental and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Kabirou Moutairou
- Département de Biochimie et de Biologie Cellulaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Bénin
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Philippe Deloron
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Adrian J. F. Luty
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nadine Fievet
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Institut de Recherche pour le Développement, MERIT UMR D216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Faculté de Pharmacie, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
8
|
Singh AK, Gaur P, Das SN. Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol 2013; 75:250-60. [PMID: 24373798 DOI: 10.1016/j.humimm.2013.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/28/2013] [Accepted: 12/15/2013] [Indexed: 01/05/2023]
Abstract
Natural killer T (NKT) cells are a unique subset of glycolipid-reactive T lymphocytes that share properties with natural killer (NK) cells. These lymphocytes can produce array of cytokines and chemokines that modulate the immune response, and play a pivotal role in cancer, autoimmunity, infection and inflammation. Owing to these properties, NKT cells have gained attentions for its potential use in antitumor immunotherapies. To date several NKT cell-based clinical trials have been performed in patients with cancer using its potent ligand α-galactosylceramide (α-GalCer). However, inconsistent therapeutic benefit, and inevitable health risks associated with drug dose and NKT cell activation have been observed. α-GalCer-activated NKT cells become anergic and produce both Th1 and Th2 cytokines that may function antagonistically, limiting the desired effector functions. Besides, various co-stimulatory and signaling molecules such as programmed death-1 (PD-1; CD279), casitas B-cell lymphoma-b (Cbl-b) and CARMA1 have been shown to be implicated in the induction of NKT cell anergy. In this review, we discuss the role of such key regulators and their functional mechanisms that may facilitate the development of improved approaches to overcome NKT cell anergy. In addition, we describe the evidences indicating that tailored-ligands can optimally activate NKT cells to obtain desired immune responses.
Collapse
Affiliation(s)
- Avadhesh Kumar Singh
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Poonam Gaur
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| | - Satya N Das
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.
| |
Collapse
|
9
|
Van Besien K, Liu H, Jain N, Stock W, Artz A. Umbilical cord blood transplantation supported by third-party donor cells: rationale, results, and applications. Biol Blood Marrow Transplant 2013; 19:682-91. [PMID: 23142329 PMCID: PMC3618995 DOI: 10.1016/j.bbmt.2012.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
Low incidence of graft-versus-host disease provides the major rational for pursuing umbilical cord blood (UCB) stem cell transplantation (SCT). Considerable evidence also suggests a lower rate of recurrence after UCB SCT than after transplantation from adult donors. Recent advances in understanding of the human fetal immune development provide a rational underpinning for these clinical outcomes. The fetal immune system is geared toward maintaining tolerance to foreign antigens, particularly to the maternal antigens to which it is exposed throughout gestation. To this purpose it is dominated by a unique population of peripheral T regulatory cells that actively maintain tolerance. This and other features of the UCB lymphoid system explains the low incidence of graft-versus-host disease and superior outcomes of UCB SCT with noninherited maternal antigen-matched grafts. At the same time, highly sensitized maternal microchimeric cells are frequently detected in UCB and likely contribute to superior graft-versus-leukemia effects and low rates of disease recurrence in inherited paternal antigen-matched UCB recipients. However, historically erratic and slow hematopoietic recovery after UCB SCT leads to increased early morbidity and mortality, excessive hospitalization, and increased costs. This has held up the widespread utilization of UCB SCT in adults. Here we summarize recent data on UCB SCT with an emphasis on studies of co-infusion of adult CD34 selected hematopoietic stem cells with UCB SCT. This procedure, through transient engraftment of adult hematopoietic stem cells, largely overcomes the problem of delayed engraftment. It also results in predictable engraftment of a UCB with the desired characteristics. We also briefly discuss unresolved issues and possible future applications of this technology.
Collapse
|
10
|
Monteiro M, Almeida CF, Agua-Doce A, Graca L. Induced IL-17-producing invariant NKT cells require activation in presence of TGF-β and IL-1β. THE JOURNAL OF IMMUNOLOGY 2013; 190:805-11. [PMID: 23293359 DOI: 10.4049/jimmunol.1201010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IL-17 production by innate-like lymphocytes, including γδ and invariant NKT (iNKT) cells, have been ascribed to specific lineages that are endowed with this functional specialization during thymic differentiation. IL-17-producing iNKT cells have been described as a CD4(-)NK1.1(-) lineage in mice and CD161(+) in humans. We found that, in mice, noncommitted iNKT cells can be induced to produce IL-17 when activated in presence of TGF-β and IL-1β. This peripheral induction of IL-17 expression could be observed in any subset irrespectively of CD4 and NK1.1 expression, the process leading to loss of NK1.1 expression and partial CD4 downmodulation. Furthermore, induced IL-17-producing iNKT cells were sufficient to drive neutrophilic airways inflammation upon intratracheal adoptive cell transfer into congenic mice. Taken together, our data show that similarly to regulatory T cells, which have a natural and peripherally induced subset, IL-17 production by iNKT cells can also be imprinted in natural iNKT17 cells or peripherally induced.
Collapse
Affiliation(s)
- Marta Monteiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-025 Lisbon, Portugal
| | | | | | | |
Collapse
|
11
|
Abstract
Human mucosal associated invariant T (MAIT) CD8(+) and Tc17 cells are important tissue-homing cell populations, characterized by high expression of CD161 ((++)) and type-17 differentiation, but their origins and relationships remain poorly defined. By transcriptional and functional analyses, we demonstrate that a pool of polyclonal, precommitted type-17 CD161(++)CD8αβ(+) T cells exist in cord blood, from which a prominent MAIT cell (TCR Vα7.2(+)) population emerges post-natally. During this expansion, CD8αα T cells appear exclusively within a CD161(++)CD8(+)/MAIT subset, sharing cytokine production, chemokine-receptor expression, TCR-usage, and transcriptional profiles with their CD161(++)CD8αβ(+) counterparts. Our data demonstrate the origin and differentiation pathway of MAIT-cells from a naive type-17 precommitted CD161(++)CD8(+) T-cell pool and the distinct phenotype and function of CD8αα cells in man.
Collapse
|