1
|
Sha T, Li Z, Xu S, Su T, Shopan J, Jin X, Deng Y, Lyu X, Hu Z, Zhang M, Yang J. eIF2Bβ confers resistance to Turnip mosaic virus by recruiting ALKBH9B to modify viral RNA methylation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3205-3217. [PMID: 39229972 DOI: 10.1111/pbi.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 09/05/2024]
Abstract
Eukaryotic translation initiation factors (eIFs) are the primary targets for overcoming RNA virus resistance in plants. In a previous study, we mapped a BjeIF2Bβ from Brassica juncea representing a new class of plant virus resistance genes associated with resistance to Turnip mosaic virus (TuMV). However, the mechanism underlying eIF2Bβ-mediated virus resistance remains unclear. In this study, we discovered that the natural variation of BjeIF2Bβ in the allopolyploid B. juncea was inherited from one of its ancestors, B. rapa. By editing of eIF2Bβ, we were able to confer resistance to TuMV in B. juncea and in its sister species of B. napus. Additionally, we identified an N6-methyladenosine (m6A) demethylation factor, BjALKBH9B, for interaction with BjeIF2Bβ, where BjALKBH9B co-localized with both BjeIF2Bβ and TuMV. Furthermore, BjeIF2Bβ recruits BjALKBH9B to modify the m6A status of TuMV viral coat protein RNA, which lacks the ALKB homologue in its genomic RNA, thereby affecting viral infection. Our findings have applications for improving virus resistance in the Brassicaceae family through natural variation or genome editing of the eIF2Bβ. Moreover, we uncovered a non-canonical translational control of viral mRNA in the host plant.
Collapse
Affiliation(s)
- Tongyun Sha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Shirui Xu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Tongbing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jannat Shopan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xingming Jin
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yueying Deng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
2
|
Carrasco JL, Ambrós S, Gutiérrez PA, Elena SF. Adaptation of turnip mosaic virus to Arabidopsis thaliana involves rewiring of VPg-host proteome interactions. Virus Evol 2024; 10:veae055. [PMID: 39091990 PMCID: PMC11291303 DOI: 10.1093/ve/veae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The outcome of a viral infection depends on a complex interplay between the host physiology and the virus, mediated through numerous protein-protein interactions. In a previous study, we used high-throughput yeast two-hybrid (HT-Y2H) to identify proteins in Arabidopsis thaliana that bind to the proteins encoded by the turnip mosaic virus (TuMV) genome. Furthermore, after experimental evolution of TuMV lineages in plants with mutations in defense-related or proviral genes, most mutations observed in the evolved viruses affected the VPg cistron. Among these mutations, D113G was a convergent mutation selected in many lineages across different plant genotypes, including cpr5-2 with constitutive expression of systemic acquired resistance. In contrast, mutation R118H specifically emerged in the jin1 mutant with affected jasmonate signaling. Using the HT-Y2H system, we analyzed the impact of these two mutations on VPg's interaction with plant proteins. Interestingly, both mutations severely compromised the interaction of VPg with the translation initiation factor eIF(iso)4E, a crucial interactor for potyvirus infection. Moreover, mutation D113G, but not R118H, adversely affected the interaction with RHD1, a zinc-finger homeodomain transcription factor involved in regulating DNA demethylation. Our results suggest that RHD1 enhances plant tolerance to TuMV infection. We also discuss our findings in a broad virus evolution context.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
| | - Pablo A Gutiérrez
- Laboratorio de Microbiología Industrial, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65 Nro. 59A - 110, Medellín, Antioquia 050034, Colombia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC—Universitat de València), Catedratico Agustin Escardino 9, Paterna, València 46182, Spain
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States
| |
Collapse
|
3
|
Lebedeva M, Nikonova E, Babakov A, Kolesnikova V, Razhina O, Zlobin N, Taranov V, Nikonov O. Interaction of Solanum tuberosum L. translation initiation factors eIF4E with potato virus Y VPg: Apprehend and avoid. Biochimie 2024; 219:1-11. [PMID: 37562705 DOI: 10.1016/j.biochi.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Potato virus Y (PVY) is one of the most dangerous agricultural pathogens that causes substantial harm to vegetative propagated crops, such as potatoes (Solanum tuberosum L.). A necessary condition for PVY infection is an interaction between the plant cap-binding translation initiation factors eIF4E and a viral protein VPg, which mimics the cap-structure. In this study, we identified the point mutations in potato eIF4E1 and eIF4E2 that disrupt VPg binding while preserving the functional activity. For the structural interpretation of the obtained results, molecular models of all the studied forms of eIF4E1 and eIF4E2 were constructed and analyzed via molecular dynamics. The results of molecular dynamics simulations corresponds to the biochemical results and suggests that the β1β2 loop plays a key role in the stabilization of both eIF4E-cap and eIF4E-VPg complexes.
Collapse
Affiliation(s)
- Marina Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia.
| | - Ekaterina Nikonova
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Alexey Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Victoria Kolesnikova
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia; Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Oksana Razhina
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Nikolay Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Vasiliy Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Oleg Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
4
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
5
|
Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious cap-binding protein. FEBS J 2023; 290:266-285. [PMID: 34758096 DOI: 10.1111/febs.16275] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
The cap-binding protein 4EHP/eIF4E2 has been a recent object of interest in the field of post-transcriptional gene regulation and translational control. From ribosome-associated quality control, to RNA decay and microRNA-mediated gene silencing, this member of the eIF4E protein family regulates gene expression through numerous pathways. Low in abundance but ubiquitously expressed, 4EHP interacts with different binding partners to form multiple protein complexes that regulate translation in a variety of biological contexts. Documented functions of 4EHP primarily relate to its role as a translational repressor, but recent findings indicate that it might also participate in the activation of translation in specific settings. In this review, we discuss the known functions, properties and mechanisms that involve 4EHP in the control of gene expression. We also discuss our current understanding of how 4EHP processes are regulated in eukaryotic cells, and the diseases implicated with dysregulation of 4EHP-mediated translational control.
Collapse
Affiliation(s)
- Mary Christie
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Cátia Igreja
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
6
|
Lucioli A, Tavazza R, Baima S, Fatyol K, Burgyan J, Tavazza M. CRISPR-Cas9 Targeting of the eIF4E1 Gene Extends the Potato Virus Y Resistance Spectrum of the Solanum tuberosum L. cv. Desirée. Front Microbiol 2022; 13:873930. [PMID: 35722301 PMCID: PMC9198583 DOI: 10.3389/fmicb.2022.873930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Translation initiation factors and, in particular, the eIF4E family are the primary source of recessive resistance to potyviruses in many plant species. However, no eIF4E-mediated resistance to this virus genus has been identified in potato (Solanum tuberosum L.) germplasm. As in tomato, the potato eIF4E gene family consists of eIF4E1, its paralog eIF4E2, eIF(iso)4E, and nCBP. In tomato, eIF4E1 knockout (KO) confers resistance to a subset of potyviruses, while the eIF4E1/2 double KO, although conferring a broader spectrum of resistance, leads to plant developmental defects. Here, the tetraploid potato cv. Desirée owning the dominant Ny gene conferring resistance to potato virus Y (PVY) strain O but not NTN was used to evaluate the possibility to expand its PVY resistance spectrum by CRISPR-Cas9-mediated KO of the eIF4E1 susceptibility gene. After a double process of plant protoplast transfection-regeneration, eIF4E1 KO potatoes were obtained. The knockout was specific for the eIF4E1, and no mutations were identified in its eIF4E2 paralog. Expression analysis of the eIF4E family shows that the disruption of the eIF4E1 does not alter the RNA steady-state level of the other family members. The eIF4E1 KO lines challenged with a PVYNTN isolate showed a reduced viral accumulation and amelioration of virus-induced symptoms suggesting that the eIF4E1 gene was required but not essential for its multiplication. Our data show that eIF4E1 editing can be usefully exploited to broaden the PVY resistance spectrum of elite potato cultivars, such as Desirée, by pyramiding eIF4E-mediated recessive resistance.
Collapse
Affiliation(s)
- Alessandra Lucioli
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| | - Raffaela Tavazza
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| | - Simona Baima
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Karoly Fatyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Godollo, Hungary
| | - Jozsef Burgyan
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Godollo, Hungary
| | - Mario Tavazza
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| |
Collapse
|
7
|
Parihar AK, Kumar J, Gupta DS, Lamichaney A, Naik SJ S, Singh AK, Dixit GP, Gupta S, Toklu F. Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:861191. [PMID: 35665148 PMCID: PMC9158573 DOI: 10.3389/fpls.2022.861191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.
Collapse
Affiliation(s)
- Ashok Kumar Parihar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Debjyoti Sen Gupta
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Amrit Lamichaney
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Satheesh Naik SJ
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Anil K. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Girish P. Dixit
- All India Coordinated Research Project on Chickpea, ICAR-IIPR, Kanpur, India
| | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Faruk Toklu
- Department of Field Crops, Faculty of Agricultural, Cukurova University, Adana, Turkey
| |
Collapse
|
8
|
Kuroiwa K, Thenault C, Nogué F, Perrot L, Mazier M, Gallois JL. CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111160. [PMID: 35151441 DOI: 10.1016/j.plantsci.2021.111160] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 05/15/2023]
Abstract
The host susceptibility factors are important targets to develop genetic resistances in crops. Genome editing tools offer exciting prospects to develop resistances based on these susceptibility factors, directly in the cultivar of choice. Translation initiation factors 4E have long been known to be a susceptibility factor to the main genus of Potyviridae, potyviruses, but the inactivation of the eIF4E2 gene has only recently been shown to provide resistance to some isolates of pepper veinal mottle virus (PVMV) in big-fruit tomato plants. Here, using CRISPR-Cas9-NG, we show how eIF4E2 can be targeted and inactivated in cherry tomato plants. Three independent knockout alleles caused by indel in the first exon of eIF4E2, resulted in the complete absence of the eIF4E2 protein. All three lines displayed a narrow resistance spectrum to potyvirus, similar to the one described earlier for an eIF4E2 EMS mutant of M82, a big-fruit tomato cultivar; the plants were fully resistant to PVMV-Ca31, partially to PVMV-IC and were fully susceptible to two isolates of PVY assayed: N605 and LYE84. These results show how easily a resistance based on eIF4E2 can be transferred across tomato cultivar, but also confirm that gene redundancy can narrow the resistances based on eIF4E knockout.
Collapse
Affiliation(s)
| | | | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Laura Perrot
- Toulouse Biotechnology Institute, Université de Toulouse, 135 avenue de Rangueil, 31077 Toulouse CEDEX 04, France
| | | | | |
Collapse
|
9
|
Swisher Grimm KD, Porter LD. KASP Markers Reveal Established and Novel Sources of Resistance to Pea Seedborne Mosaic Virus in Pea Genetic Resources. PLANT DISEASE 2021; 105:2503-2508. [PMID: 33487018 DOI: 10.1094/pdis-09-20-1917-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pea seed-borne mosaic virus (PSbMV) is both seedborne and aphid-transmitted and can cause economic losses for pea (Pisum sativum L.) production by reducing yield through decreased seed weight and number. The P1 pathotype is especially virulent, affecting this important vegetable crop across the United States and internationally in regions of West Asia, North Africa, Europe, and Australia. Previously, two kompetitive allele-specific PCR (KASP) genotyping markers (eIF4E resistant 1 and 2) were developed and validated on P. sativum accessions identifying two PSbMV pathotype P1 resistance alleles in the eukaryotic translation initiation factor gene, eIF4E. The current study utilized these novel markers to rapidly evaluate 318 genetic resource accessions maintained as part of the United States Department of Agriculture National Plant Germplasm System's Pea Single Plant Collection (PSPC). The evaluations also included 58 commercial and other plant introduction (PI) lines that were assessed for the two eIF4E resistance alleles. All genotyping results were validated in greenhouse assays by confirmation of observable disease symptoms after inoculations and by enzyme-linked immunosorbent assays. The eIF4E resistant 1 and 2 alleles were found in 18 accessions from the PSPC, five commercial lines, and 14 other PI accessions. A single PSPC accession showed resistance to PSbMV pathotype P1 that is believed to be a novel source of resistance based on sequencing analysis of eIF4E. Sources of resistance were identified in the PSPC and in commercial cultivars that can be introgressed into breeding lines using traditional techniques to reduce the time and cost required to generate germplasm with superior disease-resistant traits.
Collapse
Affiliation(s)
- Kylie D Swisher Grimm
- Agricultural Research Service of the United States Department of Agriculture, Temperate Tree Fruit and Vegetable Research Unit, Prosser, WA 99350
| | - Lyndon D Porter
- Agricultural Research Service of the United States Department of Agriculture, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350
| |
Collapse
|
10
|
Ala-Poikela M, Rajamäki ML, Valkonen JP. A Novel Interaction Network Used by Potyviruses in Virus-Host Interactions at the Protein Level. Viruses 2019; 11:E1158. [PMID: 31847316 PMCID: PMC6950583 DOI: 10.3390/v11121158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Host proteins that are central to infection of potyviruses (genus Potyvirus; family Potyviridae) include the eukaryotic translation initiation factors eIF4E and eIF(iso)4E. The potyviral genome-linked protein (VPg) and the helper component proteinase (HCpro) interact with each other and with eIF4E and eIF(iso)4E and proteins are involved in the same functions during viral infection. VPg interacts with eIF4E/eIF(iso)4E via the 7-methylguanosine cap-binding region, whereas HCpro interacts with eIF4E/eIF(iso)4E via the 4E-binding motif YXXXXLΦ, similar to the motif in eIF4G. In this study, HCpro and VPg were found to interact in the nucleus, nucleolus, and cytoplasm in cells infected with the potyvirus potato virus A (PVA). In the cytoplasm, interactions between HCpro and VPg occurred in punctate bodies not associated with viral replication vesicles. In addition to HCpro, the 4E-binding motif was recognized in VPg of PVA. Mutations in the 4E-binding motif of VPg from PVA weakened interactions with eIF4E and heavily reduced PVA virulence. Furthermore, mutations in the 4G-binding domain of eIF4E reduced interactions with VPg and abolished interactions with HCpro. Thus, HCpro and VPg can both interact with eIF4E using the 4E-binding motif. Our results suggest a novel interaction network used by potyviruses to interact with host plants via translation initiation factors.
Collapse
Affiliation(s)
| | - Minna-Liisa Rajamäki
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| | - Jari P.T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| |
Collapse
|
11
|
Knock-out mutation of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to pepper veinal mottle virus in tomato. Virology 2019; 539:11-17. [PMID: 31622792 DOI: 10.1016/j.virol.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 11/23/2022]
Abstract
Translation initiation factors 4E (eIF4E) are the main source of resistance to potyvirus. We systematically assessed tomato single and double knock-out (KO) mutants of members of the eIF4E-coding gene family for resistance to Pepper veinal mottle virus (PVMV), a major constraint to tomato production. We show that the KO mutant of eIF4E2 has partial resistance to PVMV isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level. The causal effect of eIF4E2 loss-of-function on resistance was confirmed on a progeny segregating for the KO mutation. The eIF4E2 KO mutant was resistant to six of the eight PVMV isolates tested and no resistance to other potyviruses was observed. This is the first evidence that mutation of eIF4E2 is in itself conferring resistance to a potyvirus and 3D protein modelling suggests that the eIF4E2 gene could be converted into a functional resistance allele.
Collapse
|
12
|
Bastet A, Zafirov D, Giovinazzo N, Guyon‐Debast A, Nogué F, Robaglia C, Gallois J. Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1736-1750. [PMID: 30784179 PMCID: PMC6686125 DOI: 10.1111/pbi.13096] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 05/08/2023]
Abstract
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | - Delyan Zafirov
- GAFLINRAMontfavetFrance
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | | | - Anouchka Guyon‐Debast
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Fabien Nogué
- Institut Jean‐Pierre BourginINRAAgroParisTechCNRSUniversité Paris‐SaclayVersaillesFrance
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des PlantesCEACNRSBIAMAix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
13
|
Walter J, Barra A, Doublet B, Céré N, Charon J, Michon T. Hydrodynamic Behavior of the Intrinsically Disordered Potyvirus Protein VPg, of the Translation Initiation Factor eIF4E and of their Binary Complex. Int J Mol Sci 2019; 20:E1794. [PMID: 30978975 PMCID: PMC6479716 DOI: 10.3390/ijms20071794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023] Open
Abstract
Protein intrinsic disorder is involved in many biological processes and good experimental models are valuable to investigate its functions. The potyvirus genome-linked protein, VPg, displays many features of an intrinsically disordered protein. The virus cycle requires the formation of a complex between VPg and eIF4E, one of the host translation initiation factors. An in-depth characterization of the hydrodynamic properties of VPg, eIF4E, and of their binary complex VPg-eIF4E was carried out. Two complementary experimental approaches, size-exclusion chromatography and fluorescence anisotropy, which is more resolving and revealed especially suitable when protein concentration is the limiting factor, allowed to estimate monomers compaction upon complex formation. VPg possesses a high degree of hydration which is in agreement with its classification as a partially folded protein in between a molten and pre-molten globule. The natively disordered first 46 amino acids of eIF4E contribute to modulate the protein hydrodynamic properties. The addition of an N-ter His tag decreased the conformational entropy of this intrinsically disordered region. A comparative study between the two tagged and untagged proteins revealed the His tag contribution to proteins hydrodynamic behavior.
Collapse
Affiliation(s)
- Jocelyne Walter
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Amandine Barra
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Bénédicte Doublet
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Nicolas Céré
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Justine Charon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS 20032, 33140 Villenave d'Ornon, France.
| |
Collapse
|
14
|
Walter J, Charon J, Hu Y, Lachat J, Leger T, Lafforgue G, Barra A, Michon T. Comparative analysis of mutational robustness of the intrinsically disordered viral protein VPg and of its interactor eIF4E. PLoS One 2019; 14:e0211725. [PMID: 30763345 PMCID: PMC6375565 DOI: 10.1371/journal.pone.0211725] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/20/2019] [Indexed: 01/02/2023] Open
Abstract
Conformational intrinsic disorder is a feature present in many virus proteins. Intrinsically disordered regions (IDRs) have weaker structural requirement than ordered regions and mutations in IDRs could have a lower impact on the virus fitness. This could favor its exploration of adaptive solutions. The potyviral protein VPg contains IDRs with determinants for adaptation to its host plant. To experimentally assess whether IDRs are more resistant to mutations than ordered regions, the biologically relevant interaction between mutant libraries of both VPg and the eukaryotic translation initiation factor 4E (eIF4E) and their respective wild type partner was examined using yeast two hybrid assay. Our data shows that VPg is significantly more robust to mutations than eIF4E and as such belongs to a particular class of intrinsically disordered proteins. This result is discussed from the standpoint of IDRs involvement in the virus adaptive processes.
Collapse
Affiliation(s)
- Jocelyne Walter
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- * E-mail: (JW); (TM)
| | - Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yihua Hu
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Joy Lachat
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Thomas Leger
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Guillaume Lafforgue
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Amandine Barra
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- * E-mail: (JW); (TM)
| |
Collapse
|
15
|
Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, Bart RS. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:421-434. [PMID: 30019807 PMCID: PMC6335076 DOI: 10.1111/pbi.12987] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/27/2018] [Indexed: 05/02/2023]
Abstract
Cassava brown streak disease (CBSD) is a major constraint on cassava yields in East and Central Africa and threatens production in West Africa. CBSD is caused by two species of positive-sense RNA viruses belonging to the family Potyviridae, genus Ipomovirus: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Diseases caused by the family Potyviridae require the interaction of viral genome-linked protein (VPg) and host eukaryotic translation initiation factor 4E (eIF4E) isoforms. Cassava encodes five eIF4E proteins: eIF4E, eIF(iso)4E-1, eIF(iso)4E-2, novel cap-binding protein-1 (nCBP-1), and nCBP-2. Protein-protein interaction experiments consistently found that VPg proteins associate with cassava nCBPs. CRISPR/Cas9-mediated genome editing was employed to generate ncbp-1, ncbp-2, and ncbp-1/ncbp-2 mutants in cassava cultivar 60444. Challenge with CBSV showed that ncbp-1/ncbp-2 mutants displayed delayed and attenuated CBSD aerial symptoms, as well as reduced severity and incidence of storage root necrosis. Suppressed disease symptoms were correlated with reduced virus titre in storage roots relative to wild-type controls. Our results demonstrate the ability to modify multiple genes simultaneously in cassava to achieve tolerance to CBSD. Future studies will investigate the contribution of remaining eIF4E isoforms on CBSD and translate this knowledge into an optimized strategy for protecting cassava from disease.
Collapse
Affiliation(s)
- Michael A. Gomez
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke Hayden
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | - Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Brian J. Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
16
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
17
|
Amuge T, Berger DK, Katari MS, Myburg AA, Goldman SL, Ferguson ME. A time series transcriptome analysis of cassava (Manihot esculenta Crantz) varieties challenged with Ugandan cassava brown streak virus. Sci Rep 2017; 7:9747. [PMID: 28852026 PMCID: PMC5575035 DOI: 10.1038/s41598-017-09617-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
A time-course transcriptome analysis of two cassava varieties that are either resistant or susceptible to cassava brown streak disease (CBSD) was conducted using RNASeq, after graft inoculation with Ugandan cassava brown streak virus (UCBSV). From approximately 1.92 billion short reads, the largest number of differentially expressed genes (DEGs) was obtained in the resistant (Namikonga) variety at 2 days after grafting (dag) (3887 DEGs) and 5 dag (4911 DEGs). At the same time points, several defense response genes (encoding LRR-containing, NBARC-containing, pathogenesis-related, late embryogenesis abundant, selected transcription factors, chaperones, and heat shock proteins) were highly expressed in Namikonga. Also, defense-related GO terms of 'translational elongation', 'translation factor activity', 'ribosomal subunit' and 'phosphorelay signal transduction', were overrepresented in Namikonga at these time points. More reads corresponding to UCBSV sequences were recovered from the susceptible variety (Albert) (733 and 1660 read counts per million (cpm)) at 45 dag and 54 dag compared to Namikonga (10 and 117 cpm respectively). These findings suggest that Namikonga's resistance involves restriction of multiplication of UCBSV within the host. These findings can be used with other sources of evidence to identify candidate genes and biomarkers that would contribute substantially to knowledge-based resistance breeding.
Collapse
Affiliation(s)
- T Amuge
- National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - D K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M S Katari
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - A A Myburg
- Genetics Department, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S L Goldman
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - M E Ferguson
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya.
| |
Collapse
|
18
|
Miras M, Truniger V, Silva C, Verdaguer N, Aranda MA, Querol-Audí J. Structure of eIF4E in Complex with an eIF4G Peptide Supports a Universal Bipartite Binding Mode for Protein Translation. PLANT PHYSIOLOGY 2017; 174:1476-1491. [PMID: 28522457 PMCID: PMC5490897 DOI: 10.1104/pp.17.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/15/2017] [Indexed: 05/20/2023]
Abstract
The association-dissociation of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) with eIF4G is a key control step in eukaryotic translation. The paradigm on the eIF4E-eIF4G interaction states that eIF4G binds to the dorsal surface of eIF4E through a single canonical alpha-helical motif, while metazoan eIF4E-binding proteins (m4E-BPs) advantageously compete against eIF4G via bimodal interactions involving this canonical motif and a second noncanonical motif of the eIF4E surface. Metazoan eIF4Gs share this extended binding interface with m4E-BPs, with significant implications on the understanding of translation regulation and the design of therapeutic molecules. Here we show the high-resolution structure of melon (Cucumis melo) eIF4E in complex with a melon eIF4G peptide and propose the first eIF4E-eIF4G structural model for plants. Our structural data together with functional analyses demonstrate that plant eIF4G binds to eIF4E through both the canonical and noncanonical motifs, similarly to metazoan eIF4E-eIF4G complexes. As in the case of metazoan eIF4E-eIF4G, this may have very important practical implications, as plant eIF4E-eIF4G is also involved in a significant number of plant diseases. In light of our results, a universal eukaryotic bipartite mode of binding to eIF4E is proposed.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Cristina Silva
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Núria Verdaguer
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Jordi Querol-Audí
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Miras M, Truniger V, Querol‐Audi J, Aranda MA. Analysis of the interacting partners eIF4F and 3'-CITE required for Melon necrotic spot virus cap-independent translation. MOLECULAR PLANT PATHOLOGY 2017; 18:635-648. [PMID: 27145354 PMCID: PMC6638222 DOI: 10.1111/mpp.12422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 05/17/2023]
Abstract
We have shown previously that the translation of Melon necrotic spot virus (MNSV, family Tombusviridae, genus Carmovirus) RNAs is controlled by a 3'-cap-independent translation enhancer (CITE), which is genetically and functionally dependent on the eukaryotic translation initiation factor (eIF) 4E. Here, we describe structural and functional analyses of the MNSV-Mα5 3'-CITE and its translation initiation factor partner. We first mapped the minimal 3'-CITE (Ma5TE) to a 45-nucleotide sequence, which consists of a stem-loop structure with two internal loops, similar to other I-shaped 3'-CITEs. UV crosslinking, followed by gel retardation assays, indicated that Ma5TE interacts in vitro with the complex formed by eIF4E + eIF4G980-1159 (eIF4Fp20 ), but not with each subunit alone or with eIF4E + eIF4G1003-1092 , suggesting binding either through interaction with eIF4E following a conformational change induced by its binding to eIF4G980-1159 , or through a double interaction with eIF4E and eIF4G980-1159 . Critical residues for this interaction reside in an internal bulge of Ma5TE, so that their mutation abolished binding to eIF4E + eIF4G1003-1092 and cap-independent translation. We also developed an in vivo system to test the effect of mutations in eIF4E in Ma5TE-driven cap-independent translation, showing that conserved amino acids in a positively charged RNA-binding motif around amino acid position 228, implicated in eIF4E-eIF4G binding or belonging to the cap-recognition pocket, are essential for cap-independent translation controlled by Ma5TE, and thus for the multiplication of MNSV.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| | - Jordi Querol‐Audi
- Molecular Biology Institute of Barcelona (IBMB‐CSIC)Parc Científic de Barcelona, Baldiri i Reixac 10Barcelona08028Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS) ‐ CSICApdo. correos 164, 30100 EspinardoMurciaSpain
| |
Collapse
|
20
|
Bastet A, Robaglia C, Gallois JL. eIF4E Resistance: Natural Variation Should Guide Gene Editing. TRENDS IN PLANT SCIENCE 2017; 22:411-419. [PMID: 28258958 DOI: 10.1016/j.tplants.2017.01.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 05/19/2023]
Abstract
eIF4E translation initiation factors have emerged as major susceptibility factors for RNA viruses. Natural eIF4E-based resistance alleles are found in many species and are mostly variants that maintain the translation function of the protein. eIF4E genes represent major targets for engineering viral resistance, and gene-editing technologies can be used to make up for the lack of natural resistance alleles in some crops, often by knocking out eIF4E susceptibility factors. However, we report here how redundancy among eIF4E genes can restrict the efficient use of knockout alleles in breeding. We therefore discuss how gene-editing technologies can be used to design de novo functional alleles, using knowledge about the natural evolution of eIF4E genes in different species, to drive resistance to viruses without affecting plant physiology.
Collapse
Affiliation(s)
- Anna Bastet
- GAFL, INRA, 84140, Montfavet, France; Aix Marseille University, Biologie Végétale et Microbiologie Environnementales UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Marseille F-13009, France; CEA, Bioscience and Biotechnology Institute of Aix-Marseille, Marseille F-13009, France
| | - Christophe Robaglia
- Aix Marseille University, Biologie Végétale et Microbiologie Environnementales UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, Marseille F-13009, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Marseille F-13009, France; CEA, Bioscience and Biotechnology Institute of Aix-Marseille, Marseille F-13009, France
| | | |
Collapse
|
21
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
22
|
Zuberek J, Kuchta K, Hernández G, Sonenberg N, Ginalski K. Diverse cap-binding properties of Drosophila eIF4E isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1292-303. [PMID: 27374989 DOI: 10.1016/j.bbapap.2016.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
The majority of eukaryotic mRNAs are translated in a cap-dependent manner, which requires recognition of the mRNA 5' cap by eIF4E protein. Multiple eIF4E family members have been identified in most eukaryotic organisms. Drosophila melanogaster (Dm) has eight eIF4E related proteins; seven of them belong to Class I and one to Class II. Their biological roles with the exception of Dm eIF4E-1, Dm eIF4E-3 and Dm 4EHP, remain unknown. Here, we compare the molecular basis of Dm eIF4E's interactions with cap and eIF4G peptide by using homology modelling and fluorescence binding assays with various cap analogues. We found that despite the presence of conserved key residues responsible for cap recognition, the differences in binding different cap analogues among Class I Dm eIF4E isoforms are up to 14-fold. The highest affinity for cap analogues was observed for Dm eIF4E-3. We suggest that Dm eIF4E-3 and Dm eIF4E-5 bind the second nucleoside of the cap in an unusual manner via stacking interactions with a histidine or a phenylalanine residue, respectively. Moreover, the analysis of ternary complexes of eIF4G peptide-eIF4E-cap analogue showed cooperativity between eIF4G and cap binding only for Dm eIF4E-4, which exhibits the lowest affinity for cap analogues among all Dm eIF4Es.
Collapse
Affiliation(s)
- Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | - Krzysztof Kuchta
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw 02-089, Poland.
| | - Greco Hernández
- Division of Basic Research, National Institute of Cancer (INCan), Tlalpan, Mexico City 14080, Mexico.
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.
| |
Collapse
|
23
|
Gauffier C, Lebaron C, Moretti A, Constant C, Moquet F, Bonnet G, Caranta C, Gallois JL. A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:717-29. [PMID: 26850324 DOI: 10.1111/tpj.13136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 05/23/2023]
Abstract
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING-induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh-eIF4E1(PI24)-pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re-establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss-of-function alleles to generate resistance may be counter-productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.
Collapse
Affiliation(s)
- Camille Gauffier
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Caroline Lebaron
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - André Moretti
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Carole Constant
- Sakata Vegetables Europe, Domaine de Sablas Rue du Moulin, F-30620, Uchaud, France
| | - Frédéric Moquet
- Gautier Semences, Route d'Avignon, F-13630, Eyragues, France
| | - Grégori Bonnet
- Syngenta, 346 Route des Pasquiers, F-84260, Sarrians, France
| | - Carole Caranta
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| | - Jean-Luc Gallois
- INRA-UR 1052, GAFL Domaine St Maurice, CS 60094, F-84143, Montfavet, France
| |
Collapse
|
24
|
Lama D, Brown CJ, Lane DP, Verma CS. Gating by Tryptophan 73 Exposes a Cryptic Pocket at the Protein-Binding Interface of the Oncogenic eIF4E Protein. Biochemistry 2015; 54:6535-44. [DOI: 10.1021/acs.biochem.5b00812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dilraj Lama
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
| | - Christopher J. Brown
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - David P. Lane
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S. Verma
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
- School
of Biological Sciences, Nanyang Technological University, 50 Nanyang
Drive, Singapore 637551
| |
Collapse
|
25
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
26
|
Zhu M, Chen Y, Ding XS, Webb SL, Zhou T, Nelson RS, Fan Z. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. THE NEW PHYTOLOGIST 2014; 203:1291-1304. [PMID: 24954157 PMCID: PMC4143955 DOI: 10.1111/nph.12890] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/08/2014] [Indexed: 05/18/2023]
Abstract
The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Yuting Chen
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Xin Shun Ding
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Stephen L Webb
- Department of Computing Services, The Samuel Roberts Noble Foundation Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tao Zhou
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| | - Richard S Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc.2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Zaifeng Fan
- State Key Laboratory of Agro-biotechnology and Key Laboratory for Plant Pathology – Ministry of Agriculture, China Agricultural UniversityBeijing, 100193, China
| |
Collapse
|
27
|
Kim J, Kang WH, Hwang J, Yang HB, Dosun K, Oh CS, Kang BC. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance. MOLECULAR PLANT PATHOLOGY 2014; 15:615-26. [PMID: 24417952 PMCID: PMC6638765 DOI: 10.1111/mpp.12120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Patrick RM, Mayberry LK, Choy G, Woodard LE, Liu JS, White A, Mullen RA, Tanavin TM, Latz CA, Browning KS. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. PLANT PHYSIOLOGY 2014; 164:1820-30. [PMID: 24501003 PMCID: PMC3982745 DOI: 10.1104/pp.113.227785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in vitro at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.
Collapse
|
29
|
Estevan J, Maréna A, Callot C, Lacombe S, Moretti A, Caranta C, Gallois JL. Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus. BMC PLANT BIOLOGY 2014; 14:67. [PMID: 24645730 PMCID: PMC3999954 DOI: 10.1186/1471-2229-14-67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND In plants, eIF4E translation initiation factors and their eIFiso4E isoforms are essential susceptibility factors for many RNA viruses, including potyviruses. Mutations altering these factors are a major source of resistance to the viruses. The eIF4E allelic series is associated with specific resistance spectra in crops such as Capsicum annum. Genetic evidence shows that potyviruses have a specific requirement for a given 4E isoform that depends on the host plant. For example, Tobacco etch virus (TEV) uses eIF4E1 to infect Capsicum annuum but uses eIFiso4E to infect Arabidopsis thaliana. Here, we investigated how TEV exploits different translation initiation factor isoforms to infect these two plant species. RESULTS A complementation system was set up in Arabidopsis to test the restoration of systemic infection by TEV. Using this system, Arabidopsis susceptibility to TEV was complemented with a susceptible pepper eIF4E1 allele but not with a resistant allele. Therefore, in Arabidopsis, TEV can use the pepper eIF4E1 instead of the endogenous eIFiso4E isoform so is able to switch between translation initiation factor 4E isoform to infect the same host. Moreover, we show that overexpressing the pepper eIF4E1 alleles is sufficient to make Arabidopsis susceptible to an otherwise incompatible TEV strain. Lastly, we show that the resistant eIF4E1 allele is similarly overcome by a resistance-breaking TEV strain as in pepper, confirming that this Arabidopsis TEV-susceptibility complementation system is allele-specific. CONCLUSION We report here a complementation system in Arabidopsis that makes it possible to assess the role of pepper pvr2-eIF4E alleles in susceptibility to TEV. Heterologous complementation experiments showed that the idiosyncratic properties of the 4E and iso4E proteins create a major checkpoint for viral infection of different hosts. This system could be used to screen natural or induced eIF4E alleles to find and study alleles of interest for plant breeding.
Collapse
Affiliation(s)
- Joan Estevan
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Aramata Maréna
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Caroline Callot
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Séverine Lacombe
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - André Moretti
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Carole Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Jean-Luc Gallois
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| |
Collapse
|
30
|
Konečná E, Šafářová D, Navrátil M, Hanáček P, Coyne C, Flavell A, Vishnyakova M, Ambrose M, Redden R, Smýkal P. Geographical gradient of the eIF4E alleles conferring resistance to potyviruses in pea (Pisum) germplasm. PLoS One 2014; 9:e90394. [PMID: 24609094 PMCID: PMC3946452 DOI: 10.1371/journal.pone.0090394] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The eukaryotic translation initiation factor 4E was shown to be involved in resistance against several potyviruses in plants, including pea. We combined our knowledge of pea germplasm diversity with that of the eIF4E gene to identify novel genetic diversity. METHODOLOGY/PRINCIPAL FINDINGS Germplasm of 2803 pea accessions was screened for eIF4E intron 3 length polymorphism, resulting in the detection of four eIF4E(A-B-C-S) variants, whose distribution was geographically structured. The eIF4E(A) variant conferring resistance to the P1 PSbMV pathotype was found in 53 accessions (1.9%), of which 15 were landraces from India, Afghanistan, Nepal, and 7 were from Ethiopia. A newly discovered variant, eIF4E(B), was present in 328 accessions (11.7%) from Ethiopia (29%), Afghanistan (23%), India (20%), Israel (25%) and China (39%). The eIF4E(C) variant was detected in 91 accessions (3.2% of total) from India (20%), Afghanistan (33%), the Iberian Peninsula (22%) and the Balkans (9.3%). The eIF4E(S) variant for susceptibility predominated as the wild type. Sequencing of 73 samples, identified 34 alleles at the whole gene, 26 at cDNA and 19 protein variants, respectively. Fifteen alleles were virologically tested and 9 alleles (eIF4E(A-1-2-3-4-5-6-7), eIF4E(B-1), eIF4E(C-2)) conferred resistance to the P1 PSbMV pathotype. CONCLUSIONS/SIGNIFICANCE This work identified novel eIF4E alleles within geographically structured pea germplasm and indicated their independent evolution from the susceptible eIF4E(S1) allele. Despite high variation present in wild Pisum accessions, none of them possessed resistance alleles, supporting a hypothesis of distinct mode of evolution of resistance in wild as opposed to crop species. The Highlands of Central Asia, the northern regions of the Indian subcontinent, Eastern Africa and China were identified as important centers of pea diversity that correspond with the diversity of the pathogen. The series of alleles identified in this study provides the basis to study the co-evolution of potyviruses and the pea host.
Collapse
Affiliation(s)
- Eva Konečná
- Department of Plant Biology, Mendel University in Brno, Brno, Czech Republic
- CEITEC MENDELU, Mendel University in Brno, Brno, Czech Republic
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Pavel Hanáček
- Department of Plant Biology, Mendel University in Brno, Brno, Czech Republic
- CEITEC MENDELU, Mendel University in Brno, Brno, Czech Republic
| | - Clarice Coyne
- Western Regional Plant Introduction Station - USDA, Pullman, Washington, United States of America
| | - Andrew Flavell
- Division of Plant Sciences, University of Dundee at James Hutton Institute, Invergowrie, United Kingdom
| | | | | | - Robert Redden
- Australian Grains Genebank, Horsham, Victoria, Australia
| | - Petr Smýkal
- Department of Botany, Palacky University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
31
|
Nellist CF, Qian W, Jenner CE, Moore JD, Zhang S, Wang X, Briggs WH, Barker GC, Sun R, Walsh JA. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:261-8. [PMID: 24274163 DOI: 10.1111/tpj.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/13/2013] [Indexed: 05/12/2023]
Abstract
Recessive strain-specific resistance to a number of plant viruses in the Potyvirus genus has been found to be based on mutations in the eukaryotic translation initiation factor 4E (eIF4E) and its isoform, eIF(iso)4E. We identified three copies of eIF(iso)4E in a number of Brassica rapa lines. Here we report broad-spectrum resistance to the potyvirus Turnip mosaic virus (TuMV) due to a natural mechanism based on the mis-splicing of the eIF(iso)4E allele in some TuMV-resistant B. rapa var. pekinensis lines. Of the splice variants, the most common results in a stop codon in intron 1 and a much truncated, non-functional protein. The existence of multiple copies has enabled redundancy in the host plant's translational machinery, resulting in diversification and emergence of the resistance. Deployment of the resistance is complicated by the presence of multiple copies of the gene. Our data suggest that in the B. rapa subspecies trilocularis, TuMV appears to be able to use copies of eIF(iso)4E at two loci. Transformation of different copies of eIF(iso)4E from a resistant B. rapa line into an eIF(iso)4E knockout line of Arabidopsis thaliana proved misleading because it showed that, when expressed ectopically, TuMV could use multiple copies which was not the case in the resistant B. rapa line. The inability of TuMV to access multiple copies of eIF(iso)4E in B. rapa and the broad spectrum of the resistance suggest it may be durable.
Collapse
Affiliation(s)
- Charlotte F Nellist
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Moury B, Charron C, Janzac B, Simon V, Gallois JL, Palloix A, Caranta C. Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability. INFECTION GENETICS AND EVOLUTION 2013; 27:472-80. [PMID: 24309680 DOI: 10.1016/j.meegid.2013.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Polymorphism in the plant eukaryotic translation initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg) determine, in many cases, the outcome of the confrontation between these two organisms: compatibility (i.e. infection of the plant by the virus) or incompatibility (i.e. resistance of the plant to the virus). The two interacting proteins eIF4E and VPg show strikingly similar evolution patterns. Most codon positions in their coding sequences are highly constrained for nonsynonymous substitutions but a small number shows evidence for positive selection. Several of these latter positions were shown to be functionally important, conferring resistance to the host or pathogenicity to the virus. Determining the mutational pathways involved in pepper eIF4E diversification revealed a link between an increase of the pepper resistance spectrum towards a panel of potyvirus species and an increase of durability of the resistance towards Potato virus Y. This relationship questions the interest of using more generally the spectrum of action of a plant resistance gene as a predictor of its durability potential.
Collapse
Affiliation(s)
- B Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France.
| | - C Charron
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - B Janzac
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France; INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - V Simon
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - J L Gallois
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - A Palloix
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| | - C Caranta
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France
| |
Collapse
|
33
|
Hwang J, Oh CS, Kang BC. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 2013; 439:105-14. [PMID: 23490052 DOI: 10.1016/j.virol.2013.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022]
Abstract
Identifying host factors provides an important clue to understand virus infection. We selected 10 host factor candidate genes and each gene was silenced in Nicotiana benthamiana (N. benthamiana) to investigate their roles in virus infection. The resulting plants were infected with Tobacco mosaic virus (TMV). The accumulation of viral coat protein and the spread of virus were greatly reduced in the plants that eukaryotic translation elongation factor 1A (eEF1A) or 1B (eEF1B) was silenced. These results suggest both eEF1A and eEF1B are required for TMV infection. We also tested for interactions between the eEFs and viral proteins of TMV. Both eEF1A and eEF1B proteins interacted directly with the methyltransferase (MT) domain of the TMV RNA-dependent RNA polymerase (RdRp). eEF1A and eEF1B also interacted with each other in vivo. Our data suggest that eEF1B may be a component of the TMV replication complex which interacts with MT domain of TMV RdRp and eEF1A.
Collapse
Affiliation(s)
- JeeNa Hwang
- Department of Plant Science, Plant Genomics & Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
34
|
Contreras-Paredes CA, Silva-Rosales L, Daròs JA, Alejandri-Ramírez ND, Dinkova TD. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:461-70. [PMID: 23252462 DOI: 10.1094/mpmi-09-12-0225-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Translation initiation factor eIF4E exerts an important role during infection of viral species in the family Potyviridae. Particularly, a eIF(iso)4E family member is required for Arabidopsis thaliana susceptibility to Turnip mosaic virus, Lettuce mosaic virus, and Tobacco etch virus (TEV). In addition, a resistance mechanism named restriction of TEV movement (RTM) in A. thaliana controls the systemic spread of TEV in Col-0 ecotype. Here, we describe that TEV-TAMPS, a Mexican isolate, overcomes the RTM resistance mechanism reported for TEV-7DA infection of the Col-0 ecotype but depends on eIF(iso)4E for its systemic spread. To understand at which level eIF(iso)4E participates in A. thaliana TEV-TAMPS infection, the viral RNA replication and translation were measured. The absence or overexpression of eIF(iso)4E did not affect viral translation, and replication was still observed in the absence of eIF(iso)4E. However, the TEV-TAMPS systemic spread was completely abolished in the null mutant. The viral protein genome-linked (VPg) precursor NIa was found in coimmunoprecipitated complexes with both, eIF(iso)4E and eIF4E. However, the viral coat protein (CP) was only present in the eIF(iso)4E complexes. Since both the VPg and the CP proteins are needed for systemic spread, we propose a role of A. thaliana eIF(iso)4E in the movement of TEV-TAMPS within this host.
Collapse
|
35
|
Wang A, Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. MOLECULAR PLANT PATHOLOGY 2012; 13:795-803. [PMID: 22379950 PMCID: PMC6638641 DOI: 10.1111/j.1364-3703.2012.00791.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The use of genetic resistance is considered to be the most effective and sustainable approach to the control of plant pathogens. Although most of the known natural resistance genes are monogenic dominant R genes that are predominant against fungi and bacteria, more and more recessive resistance genes against viruses have been cloned in the last decade. Interestingly, of the 14 natural recessive resistance genes against plant viruses that have been cloned from diverse plant species thus far, 12 encode the eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. This review is intended to summarize the current state of knowledge about eIF4E and the possible mechanisms underlying its essential role in virus infection, and to discuss recent progress and the potential of eIF4E as a target gene in the development of genetic resistance to viruses for crop improvement.
Collapse
Affiliation(s)
- Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada, N5V 4T3.
| | | |
Collapse
|
36
|
Kinkelin K, Veith K, Grünwald M, Bono F. Crystal structure of a minimal eIF4E-Cup complex reveals a general mechanism of eIF4E regulation in translational repression. RNA (NEW YORK, N.Y.) 2012; 18:1624-34. [PMID: 22832024 PMCID: PMC3425778 DOI: 10.1261/rna.033639.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E-Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E-eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.
Collapse
Affiliation(s)
- Kerstin Kinkelin
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Katharina Veith
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Marlene Grünwald
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Fulvia Bono
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
- Corresponding authorE-mail
| |
Collapse
|
37
|
Duan H, Richael C, Rommens CM. Overexpression of the wild potato eIF4E-1 variant Eva1 elicits Potato virus Y resistance in plants silenced for native eIF4E-1. Transgenic Res 2011; 21:929-38. [PMID: 22146867 DOI: 10.1007/s11248-011-9576-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/25/2011] [Indexed: 11/24/2022]
Abstract
Potato virus Y (PVY) is the most important viral pathogen of cultivated potato (Solanum tuberosum) from a commercial perspective, causing severe losses in both tuber quality and yield worldwide. Specific accessions of wild potato species exhibit resistance against PVY but efforts to transfer the trait to cultivated material have not yielded widely adopted varieties. Because amino acid substitutions at specific domains of host factor eIF4E-1 often confer resistance to various crops, we sequenced the associated genes expressed in wild potato plants. A novel eIF4E-1 variant, designated here as Eva1, was identified in S. chacoense, S. demissum, and S. etuberosum. The protein contains amino acid substitutions at ten different positions when compared to its cultivated potato (S. tuberosum) homolog. In the yeast two-hybrid system, Eva1 failed to bind VPg, a viral protein required for infectivity. Overexpression of the associated cDNA conferred PVY resistance to transgenic potato plants silenced for the native eIF4E-1 gene. Because the gene sources of Eva1 are sexually compatible with potato, the molecular strategies described can be employed to develop 'intragenic' potato cultivars.
Collapse
Affiliation(s)
- Hui Duan
- Simplot Plant Sciences, JR Simplot Company, Boise, ID 83706, USA
| | | | | |
Collapse
|
38
|
Jiang J, Laliberté JF. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr Opin Virol 2011; 1:347-54. [PMID: 22440836 DOI: 10.1016/j.coviro.2011.09.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022]
Abstract
For some plant positive-sense RNA viruses, a protein known as VPg (short for virus protein, genome linked) is covalently linked to the 5' end of the viral RNA. The VPg is an intrinsically disordered protein, and this property would confer an ability to bind several proteins. Accordingly, the potyvirus VPg interacts with many proteins, notably host factors involved in protein synthesis within viral replication factories or within the nucleus. The number of protein partners, the clustering of the various interactions centering around it, the biological importance for some of these interactions (e.g. VPg-eIF4E) and the intrinsically disordered state of the protein are all elements that support the notion that VPg is a hub protein that controls many processes leading to virus production and spread.
Collapse
Affiliation(s)
- Jun Jiang
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | | |
Collapse
|