1
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Hernández D, Kidnapillai S, Gray L, Berk M, Dean OM, Walder K. The potential of baicalin to enhance neuroprotection and mitochondrial function in a human neuronal cell model. Mol Psychiatry 2024; 29:2487-2495. [PMID: 38503930 DOI: 10.1038/s41380-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 μM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 μM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.
Collapse
Affiliation(s)
- Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia.
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Courtney Swinton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Damián Hernández
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Laura Gray
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| |
Collapse
|
3
|
Koshy AM, Mendoza-Parra MA. Retinoids: Mechanisms of Action in Neuronal Cell Fate Acquisition. Life (Basel) 2023; 13:2279. [PMID: 38137880 PMCID: PMC10744663 DOI: 10.3390/life13122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Neuronal differentiation has been shown to be directed by retinoid action during embryo development and has been exploited in various in vitro cell differentiation systems. In this review, we summarize the role of retinoids through the activation of their specific retinoic acid nuclear receptors during embryo development and also in a variety of in vitro strategies for neuronal differentiation, including recent efforts in driving cell specialization towards a range of neuronal subtypes and glial cells. Finally, we highlight the role of retinoic acid in recent protocols recapitulating nervous tissue complexity (cerebral organoids). Overall, we expect that this effort might pave the way for exploring the usage of specific synthetic retinoids for directing complex nervous tissue differentiation.
Collapse
Affiliation(s)
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d’Essonne, University Paris-Saclay, 91057 Évry, France;
| |
Collapse
|
4
|
Wæhler HA, Labba NA, Paulsen RE, Sandve GK, Eskeland R. ANDA: an open-source tool for automated image analysis of in vitro neuronal cells. BMC Neurosci 2023; 24:56. [PMID: 37875799 PMCID: PMC10594822 DOI: 10.1186/s12868-023-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images have increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. RESULTS ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high-throughput live-cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. CONCLUSIONS ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.
Collapse
Affiliation(s)
- Hallvard Austin Wæhler
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
| | - Nils-Anders Labba
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, 0316, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Blindern, 1112, 0317, Oslo, Norway.
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
5
|
Wæhler HA, Labba NA, Paulsen RE, Sandve GK, Eskeland R. ANDA: An open-source tool for automated image analysis of neuronal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538564. [PMID: 37162841 PMCID: PMC10168306 DOI: 10.1101/2023.04.27.538564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Imaging of in vitro neuronal differentiation and measurements of cell morphologies has led to novel insights into neuronal development. Live-cell imaging techniques and large datasets of images has increased the demand for automated pipelines for quantitative analysis of neuronal morphological metrics. Results We present ANDA, an analysis workflow for quantification of various aspects of neuronal morphology from high-throughput live-cell imaging screens. This tool automates the analysis of neuronal cell numbers, neurite lengths and neurite attachment points. We used rat, chicken and human in vitro models for neuronal differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool. Conclusions ANDA is an open-source tool that is easy to use and capable of automated processing from time-course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high-throughput imaging screens.
Collapse
Affiliation(s)
- Hallvard Austin Wæhler
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Nils-Anders Labba
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
6
|
Satb2 acts as a gatekeeper for major developmental transitions during early vertebrate embryogenesis. Nat Commun 2021; 12:6094. [PMID: 34667153 PMCID: PMC8526749 DOI: 10.1038/s41467-021-26234-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant. Activation of the zygotic genome is a critical transition during development, though the link to tissue-specific gene regulation remains unclear. Here the authors demonstrate distinct functions for Satb2 before and after zygotic genome activation, highlighting the temporal coordination of these roles.
Collapse
|
7
|
Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, Nettersheim D, Looijenga LHJ, Henrique R, Jerónimo C. The component of the m 6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:268. [PMID: 34446080 PMCID: PMC8390281 DOI: 10.1186/s13046-021-02072-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Background Germ cell tumors (GCTs) are developmental cancers, tightly linked to embryogenesis and germ cell development. The recent and expanding field of RNA modifications is being increasingly implicated in such molecular events, as well as in tumor progression and resistance to therapy, but still rarely explored in GCTs. In this work, and as a follow-up of our recent study on this topic in TGCT tissue samples, we aim to investigate the role of N6-methyladenosine (m6A), the most abundant of such modifications in mRNA, in in vitro and in vivo models representative of such tumors. Methods Four cell lines representative of GCTs (three testicular and one mediastinal), including an isogenic cisplatin resistant subline, were used. CRISPR/Cas9-mediated knockdown of VIRMA was established and the chorioallantoic membrane assay was used to study its phenotypic effect in vivo. Results We demonstrated the differential expression of the various m6A writers, readers and erasers in GCT cell lines representative of the major classes of these tumors, seminomas and non-seminomas, and we evidenced changes occurring upon differentiation with all-trans retinoic acid treatment. We showed differential expression also among cells sensitive and resistant to cisplatin treatment, implicating these players in acquisition of cisplatin resistant phenotype. Knockdown of VIRMA led to disruption of the remaining methyltransferase complex and decrease in m6A abundance, as well as overall reduced tumor aggressiveness (with decreased cell viability, tumor cell proliferation, migration, and invasion) and increased sensitivity to cisplatin treatment, both in vitro and confirmed in vivo. Enhanced response to cisplatin after VIRMA knockdown was related to significant increase in DNA damage (with higher γH2AX and GADD45B levels) and downregulation of XLF and MRE11. Conclusions VIRMA has an oncogenic role in GCTs confirming our previous tissue-based study and is further involved in response to cisplatin by interfering with DNA repair. These data contribute to our better understanding of the emergence of cisplatin resistance in GCTs and support recent attempts to therapeutically target elements of the m6A writer complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02072-9.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Friedemann Honecker
- Tumour and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9006, St. Gallen, Switzerland
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584, CS, Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, ICBAS - School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.
| |
Collapse
|
8
|
Vernolactone Promotes Apoptosis and Autophagy in Human Teratocarcinomal (NTERA-2) Cancer Stem-Like Cells. Stem Cells Int 2020; 2019:6907893. [PMID: 31949439 PMCID: PMC6942914 DOI: 10.1155/2019/6907893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Vernonia zeylanica, is a shrub endemic to Sri Lanka. V. zeylanica has been used in Sri Lankan traditional medicine for the treatment of various diseases and conditions. The present study was designed to determine antiproliferative, apoptotic, autophagic, and antioxidant effects of vernolactone, isolated from V. zeylanica, in human embryonal carcinoma cells (NTERA-2, a cancer stem cell model). Antiproliferative effects of vernolactone in NTERA-2 cells and human peripheral blood mononuclear cells (control cells) were evaluated using the Sulforhodamine B (SRB) assay and WST-1 antiproliferative assays, respectively. The antiproliferative effect of vernolactone was further investigated using the colony formation assay. Effects of vernolactone on apoptosis were investigated by phase contrast light microscopic and fluorescence microscopic analysis, caspase 3/7 expression, and real-time PCR of apoptosis-associated genes p53 and Survivin. The effect of vernolactone on NTERA-2 cell migration was monitored using the wound healing assay. Effects of vernolactone on the expression of autophagy-related genes (LC3, Beclin 1, PI3K, Akt, and mTOR) were evaluated using real-time PCR. 2,2-Diphenyl-1-2,2-diphenyl-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays were also carried out to evaluate the antioxidant activity of vernolactone. Overall results confirm that vernolactone can exert antiproliferative effects, induce apoptosis and autophagy, and decrease NTERA-2 cell migration in a dose- and time-dependent manner with a very small antioxidant property.
Collapse
|
9
|
Stanisavljevic D, Popovic J, Petrovic I, Davidovic S, Atkinson MJ, Anastasov N, Stevanovic M. Radiation effects on early phase of NT2/D1 neural differentiation in vitro. Int J Radiat Biol 2019; 95:1627-1639. [PMID: 31509479 DOI: 10.1080/09553002.2019.1665207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Purpose: Widespread medical use of radiation in diagnosis, imaging and treatment of different central nervous system malignancies lead to various consequences. Aim of this study was to further elucidate mechanism of cell response to radiation and possible consequence on neural differentiation.Materials and methods: NT2/D1 cells that resemble neural progenitors were used as a model system. Undifferentiated NT2/D1 cells and NT2/D1 cells in the early phase of neural differentiation were irradiated with low (0.2 Gy) and moderate (2 Gy) doses of γ radiation. The effect was analyzed on apoptosis, cell cycle, senescence, spheroid formation and the expression of genes and miRNAs involved in the regulation of pluripotency or neural differentiation.Results: Two grays of irradiation induced apoptosis, senescence and cell cycle arrest of NT2/D1 cells, accompanied with altered expression of several genes (SOX2, OCT4, SOX3, PAX6) and miRNAs (miR-219, miR-21, miR124-a). Presented results show that 2 Gy of radiation significantly affected early phase of neural differentiation in vitro.Conclusions: These results suggest that 2 Gy of radiation significantly affected early phase of neural differentiation and affect the population of neural progenitors. These findings might help in better understanding of side effects of radiotherapy in treatments of central nervous system malignancies.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Popovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Isidora Petrovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Slobodan Davidovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Milena Stevanovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia.,University of Belgrade, Faculty of Biology, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
10
|
Eskandarian Boroujeni M, Aliaghaei A, Maghsoudi N, Gardaneh M. Complementation of dopaminergic signaling by Pitx3-GDNF synergy induces dopamine secretion by multipotent Ntera2 cells. J Cell Biochem 2019; 121:200-212. [PMID: 31310388 DOI: 10.1002/jcb.29109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Human teratocarcinoma cell line Ntera2 (NT2) expresses dopamine signals and has shown its safe profile for clinical applications. Attempts to restore complete dopaminergic (DAergic) phenotype enabling these cells to secrete dopamine have not been fully successful so far. We applied a blend of gene transfer techniques and a defined medium to convert NT2 cells to fully DAergic. The cells were primarily engineered to overexpress the Pitx3 gene product and then cultured in a growth medium supplemented with knockout serum and retinoic acid to form embroid bodies (EBs). Trypsinization of EB colonies produced single cells ready for differentiation. Neuronal/DAergic induction was promoted by applying conditioned medium taken from engineered human astrocytomas over-secreting glial cell-derived neurotrophic factor (GDNF). Immunocytochemistry, reverse-transcription and real-time polymerase chain reaction analyses confirmed significantly induced expression of molecules involved in dopamine signaling and metabolism including tyrosine hydroxylase, Nurr1, dopamine transporter, and aromatic acid decarboxylase. High-performance liquid chromatography analysis indicated release of dopamine only from a class of fully differentiated cells expressing Pitx3 and exposed to GDNF. In addition, Pitx3 and GDNF additively promoted in vitro neuroprotection against Parkinsonian toxin. One month after transplantation to the striatum of 6-OHDA-leasioned rats, differentiated NT2 cells survived and induced significant increase in striatal volume. Besides, cell implantation improved motor coordination in Parkinson's disease (PD) rat models. Our findings highlight the importance of Pitx3-GDNF interplay in dopamine signaling and indicate that our strategy might be useful for the restoration of DAergic fate of NT2 cells to make them clinically applicable toward cell replacement therapy of PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Cell Biology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Verschuuren M, Verstraelen P, García-Díaz Barriga G, Cilissen I, Coninx E, Verslegers M, Larsen PH, Nuydens R, De Vos WH. High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathol Commun 2019; 7:93. [PMID: 31164177 PMCID: PMC6549294 DOI: 10.1186/s40478-019-0741-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic developments for neurodegenerative disorders are redirecting their focus to the mechanisms that contribute to neuronal connectivity and the loss thereof. Using a high-throughput microscopy pipeline that integrates morphological and functional measurements, we found that inhibition of dual leucine zipper kinase (DLK) increased neuronal connectivity in primary cortical cultures. This neuroprotective effect was not only observed in basal conditions but also in cultures depleted from antioxidants and in cultures in which microtubule stability was genetically perturbed. Based on the morphofunctional connectivity signature, we further showed that the effects were limited to a specific dose and time range. Thus, our results illustrate that profiling microscopy images with deep coverage enables sensitive interrogation of neuronal connectivity and allows exposing a pharmacological window for targeted treatments. In doing so, we revealed a broad-spectrum neuroprotective effect of DLK inhibition, which may have relevance to pathological conditions that ar.e associated with compromised neuronal connectivity.
Collapse
|
12
|
Popović J, Klajn A, Paunesku T, Ma Q, Chen S, Lai B, Stevanović M, Woloschak GE. Neuroprotective Role of Selected Antioxidant Agents in Preventing Cisplatin-Induced Damage of Human Neurons In Vitro. Cell Mol Neurobiol 2019; 39:619-636. [PMID: 30874981 PMCID: PMC6535150 DOI: 10.1007/s10571-019-00667-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
Collapse
Affiliation(s)
- Jelena Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Qing Ma
- DND CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
- Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
13
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- *Correspondence: Bridget E. Bax,
| |
Collapse
|
14
|
Girardi CS, Rostirolla DC, Lini FJM, Brum PO, Delgado J, Ribeiro CT, Teixeira AA, Peixoto DO, Heimfarth L, Kunzler A, Moreira JCF, Gelain DP. Nuclear RXRα and RXRβ receptors exert distinct and opposite effects on RA-mediated neuroblastoma differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:317-328. [PMID: 30529222 DOI: 10.1016/j.bbamcr.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) promotes differentiation in multiple neurogenic cell types by promoting gene reprogramming through retinoid receptors and also by inducing cytosolic signaling events. The nuclear RXR receptors are one of the main mediators of RA cellular effects, classically by joining the direct receptors of RA, the nuclear RAR receptors, in RAR/RXR dimers which act as transcription factors. Distinct RXR genes lead to RXRα, RXRβ and RXRγ subtypes, but their specific roles in neuronal differentiation remain unclear. We firstly investigated both RXRs and RARs expression profiles during RA-mediated neuronal differentiation of human neuroblastoma cell line SH-SY5Y, and found varying levels of retinoid receptors transcript and protein contents along the process. In order to understand the roles of the expression of distinct RXR subtypes to RA signal transduction, we performed siRNA-mediated silencing of RXRα and RXRβ during the first stages of SH-SY5Y differentiation. Our results showed that RXRα is required for RA-induced neuronal differentiation of SH-SY5Y cells, since its silencing compromised cell cycle arrest and prevented the upregulation of neuronal markers and the adoption of neuronal morphology. Besides, silencing of RXRα affected the phosphorylation of ERK1/2. By contrast, silencing of RXRβ improved neurite extension and led to increased expression of tau and synaptophysin, suggesting that RXRβ may negatively regulate neuronal parameters related to neurite outgrowth and function. Our results indicate distinct functions for RXR subtypes during RA-dependent neuronal differentiation and reveal new perspectives for studying such receptors as clinical targets in therapies aiming at restoring neuronal function.
Collapse
Affiliation(s)
- Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil.
| | - Diana Carolina Rostirolla
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Fernanda Janini Mota Lini
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Pedro Ozorio Brum
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Jeferson Delgado
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Alexsander Alves Teixeira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Daniel Oppermann Peixoto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Luana Heimfarth
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS CEP 90035-003, Brazil
| |
Collapse
|
15
|
Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks. Sci Rep 2016; 6:33285. [PMID: 27619889 PMCID: PMC5020407 DOI: 10.1038/srep33285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/19/2016] [Indexed: 01/27/2023] Open
Abstract
The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells.
Collapse
|
16
|
Chun HJE, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL, Bilenky M, Carles A, Tse K, Shlafman I, Zhu K, Qian JQ, Palmquist DL, He A, Long W, Goya R, Ng M, LeBlanc VG, Pleasance E, Thiessen N, Wong T, Chuah E, Zhao YJ, Schein JE, Gerhard DS, Taylor MD, Mungall AJ, Moore RA, Ma Y, Jones SJM, Perlman EJ, Hirst M, Marra MA. Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. Cancer Cell 2016; 29:394-406. [PMID: 26977886 PMCID: PMC5094835 DOI: 10.1016/j.ccell.2016.02.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare lethal tumors of childhood that most commonly occur in the kidney and brain. MRTs are driven by SMARCB1 loss, but the molecular consequences of SMARCB1 loss in extra-cranial tumors have not been comprehensively described and genomic resources for analyses of extra-cranial MRT are limited. To provide such data, we used whole-genome sequencing, whole-genome bisulfite sequencing, whole transcriptome (RNA-seq) and microRNA sequencing (miRNA-seq), and histone modification profiling to characterize extra-cranial MRTs. Our analyses revealed gene expression and methylation subgroups and focused on dysregulated pathways, including those involved in neural crest development.
Collapse
Affiliation(s)
- Hye-Jung E Chun
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Saeed Saberi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mikhail Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kane Tse
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Inna Shlafman
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Kelsey Zhu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jenny Q Qian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Diana L Palmquist
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - An He
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - William Long
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Rodrigo Goya
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yong-Jun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jacquie E Schein
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Elizabeth J Perlman
- Department of Pathology and Laboratory Medicine, Lurie Children's Hospital, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, IL 60611, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
17
|
González-Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, García del Caño G, López de Jesús M, Sallés J. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine β-D-arabinofuranoside. Stem Cell Res 2016; 16:541-51. [PMID: 26985738 DOI: 10.1016/j.scr.2016.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
The human NTERA2/D1 (NT2) cells generate postmitotic neurons (NT2N cells) upon retinoic acid (RA) treatment and are functionally integrated in the host tissue following grafting into the rodent and human brain, thus representing a promising source for neuronal replacement therapy. Yet the major limitations of this model are the lengthy differentiation procedure and its low efficiency, although recent studies suggest that the differentiation process can be shortened to less than 1 week using nucleoside analogues. To explore whether short-term exposure of NT2 cells to the nucleoside analogue cytosine β-d-arabinofuranoside (AraC) could be a suitable method to efficiently generate mature neurons, we conducted a neurochemical and morphometric characterization of AraC-differentiated NT2N (AraC/NT2N) neurons and improved the differentiation efficiency by modifying the cell culture schedule. Moreover, we analyzed the neurotransmitter phenotypes of AraC/NT2N neurons. Cultures obtained by treatment with AraC were highly enriched in postmitotic neurons and essentially composed of dual glutamatergic/cholinergic neurons, which contrasts with the preferential GABAergic phenotype that we found after RA differentiation. Taken together, our results further reinforce the notion NT2 cells are a versatile source of neuronal phenotypes and provide a new encouraging platform for studying mechanisms of neuronal differentiation and for exploring neuronal replacement strategies.
Collapse
Affiliation(s)
- Imanol González-Burguera
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Ana Ricobaraza
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Gontzal García del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain.
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Araba), Spain; CIBERSAM, Spain.
| |
Collapse
|
18
|
Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J Vis Exp 2016:53193. [PMID: 26967710 DOI: 10.3791/53193] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Colleen A Mangold
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University;
| |
Collapse
|
19
|
Evaluation of bias associated with high-multiplex, target-specific pre-amplification. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 6:13-21. [PMID: 27077043 PMCID: PMC4822213 DOI: 10.1016/j.bdq.2015.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 01/05/2023]
Abstract
We developed a novel PCR-based pre-amplification (PreAmp) technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step). Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments.
Collapse
|
20
|
Klajn A, Drakulic D, Tosic M, Pavkovic Z, Schwirtlich M, Stevanovic M. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells. BIOCHEMISTRY (MOSCOW) 2015; 79:1172-82. [PMID: 25540002 DOI: 10.1134/s0006297914110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.
Collapse
Affiliation(s)
- A Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | | | | | |
Collapse
|
21
|
Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72:1559-76. [PMID: 25558812 PMCID: PMC11113123 DOI: 10.1007/s00018-014-1815-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023]
Abstract
The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this "opposing signal" model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation-differentiation switches throughout development.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Stephanie Cherie Wu
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, 92697-2300 USA
- Department of Pharmaceutical Sciences, University of California, Irvine, USA
| |
Collapse
|
22
|
Woehrling EK, Parri HR, Tse EHY, Hill EJ, Maidment ID, Fox GC, Coleman MD. A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems. PLoS One 2015; 10:e0118786. [PMID: 25738989 PMCID: PMC4349811 DOI: 10.1371/journal.pone.0118786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Collapse
Affiliation(s)
- Elizabeth K. Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - H. Rheinallt Parri
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Erin H. Y. Tse
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Eric J. Hill
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Ian D. Maidment
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - G. Christopher Fox
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Michael D. Coleman
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Shahryari A, Rafiee MR, Fouani Y, Oliae NA, Samaei NM, Shafiee M, Semnani S, Vasei M, Mowla SJ. Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells 2014; 32:126-34. [PMID: 24105929 DOI: 10.1002/stem.1542] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/12/2013] [Indexed: 01/18/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as new regulators of stem cell pluripotency and tumorigenesis. The SOX2 gene, a master regulator of pluripotency, is embedded within the third intron of a lncRNA known as SOX2 overlapping transcript (SOX2OT). SOX2OT has been suspected to participate in regulation of SOX2 expression and/or other related processes; nevertheless, its potential involvement in tumor initiation and/or progression is unclear. Here, we have evaluated a possible correlation between expression patterns of SOX2OT and those of master regulators of pluripotency, SOX2 and OCT4, in esophageal squamous cell carcinoma (ESCC) tissue samples. We have also examined its potential function in the human embryonic carcinoma stem cell line, NTERA2 (NT2), which highly expresses SOX2OT, SOX2, and OCT4. Our data revealed a significant coupregulation of SOX2OT along with SOX2 and OCT4 in tumor samples, compared to the non-tumor tissues obtained from the margin of same tumors. We also identified two novel splice variants of SOX2OT (SOX2OT-S1 and SOX2OT-S2) which coupregulated with SOX2 and OCT4 in ESCCs. Suppressing SOX2OT variants caused a profound alteration in cell cycle distribution, including a 5.9 and 6.9 time increase in sub-G1 phase of cell cycle for SOX2OT-S1 and SOX2OT-S2, respectively. The expression of all variants was significantly diminished, upon the induction of neural differentiation in NT2 cells, suggesting their potential functional links to the undifferentiated state of the cells. Our data suggest a part for SOX2OT spliced variants in tumor initiation and/or progression as well as regulating pluripotent state of stem cells.
Collapse
Affiliation(s)
- Alireza Shahryari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Haile Y, Fu W, Shi B, Westaway D, Baker G, Jhamandas J, Giuliani F. Characterization of the NT2-derived neuronal and astrocytic cell lines as alternative in vitro models for primary human neurons and astrocytes. J Neurosci Res 2014; 92:1187-98. [PMID: 24801011 DOI: 10.1002/jnr.23399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/01/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Primary human fetal neurons and astrocytes (HFNs and HFAs, respectively) provide relevant cell types with which to study in vitro the mechanisms involved in various human neurological diseases, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. However, the limited availability of human fetal cells poses a significant problem for the study of these diseases when a human cell model system is required. Thus, generating a readily available alternative cell source with the essential features of human neurons and astrocytes is necessary. The human teratoma-derived NTera2/D1 (NT2) cell line is a promising tool from which both neuronal and glial cells can be generated. Nevertheless, a direct comparison of NT2 neurons and primary HFNs in terms of their morphology physiological and chemical properties is still missing. This study directly compares NT2-derived neurons and primary HFNs using immunocytochemistry, confocal calcium imaging, high-performance liquid chromatography, and high-content analysis techniques. We investigated the morphological similarities and differences, levels of relevant amino acids, and internal calcium fluctuations in response to certain neurotransmitters/stimuli. We also compared NT2-derived astrocytes and HFAs. In most of the parameters tested, both neuronal and astrocytic cell types exhibited similarities to primary human fetal neurons and astrocytes. NT2-derived neurons and astrocytes are reliable in vitro tools and a renewable cell source that can serve as a valid alternative to HFNs/HFAs for mechanistic studies of neurological diseases.
Collapse
Affiliation(s)
- Yohannes Haile
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Verdi J, Sharif S, Banafshe HR, Shoae-Hassani A. Sertraline increases the survival of retinoic acid induced neuronal cells but not glial cells from human mesenchymal stem cells. Cell Biol Int 2014; 38:901-9. [PMID: 24715678 DOI: 10.1002/cbin.10283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/07/2014] [Indexed: 01/20/2023]
Abstract
An increase in the number of viable in vitro differentiated neuronal cells is important for their use in clinics. A proportion of differentiated cells lose their viability before being used, and therefore we decided to use a pharmacological agent, sertraline, to increase neural cell differentiation and their survival. Purified endometrial stem cells (EnSCs) were examined for neuronal and glial cell specific markers after retinoic acid (RA) and sertraline treatment via RT-PCR, immunocytochemistry and Western blot analysis. The survival of differentiated cells was measured by MTT assay and the frequency of apoptosis, demonstrated by caspase-3-like activity. EnSCs were differentiated into neuronal cells after RA induction. Sertraline increased neuronal cell differentiation by 1.2-fold and their survival by 1.4-fold, and decreased from glial cell differentiation significantly. The findings indicate that sertraline could be used to improve the in vitro differentiation process of stem cells into neuronal cells, and may be involved in regenerative pharmacology in future.
Collapse
Affiliation(s)
- Javad Verdi
- Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Stem cell and Tissue Engineering Department, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Antibodies directed to the gram-negative bacterium Neisseria gonorrhoeae cross-react with the 60 kDa heat shock protein and lead to impaired neurite outgrowth in NTera2/D1 cells. J Mol Neurosci 2014; 54:125-36. [PMID: 24577885 DOI: 10.1007/s12031-014-0258-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
Abstract
Children of mothers with prenatal gonococcal infections are of increased risk to develop schizophrenic psychosis in later life. The present study hypothesizes an autoimmune mechanism for this, investigating interactions of a commercial rabbit antiserum directed to Neisseria gonorrhoeae (α-NG) with human NTera2/D1 cells, an established in vitro model for human neuronal differentiation. Immunocytochemistry demonstrated α-NG to label antigens on an intracellular organelle, which by Western blot analysis showed a molecular weight shortly below 72 kDa. An antiserum directed to Neisseria meningitidis (α-NM) reacts with an antigen shortly below 95 kDa, confirming antibody specificity of these interactions. Two-dimensional gel electrophoresis and partial Western transfer, allowed to localize an α-NG reactive protein spot which was identified by LC-Q-TOF MS/MS analysis as mitochondrial heat shock protein Hsp60. This was confirmed by Western blot analysis of α-NG immunoreactivity with a commercial Hsp60 protein sample, with which α-NM failed to interact. Finally, analysis of neurite outgrowth in retinoic acid-stimulated differentiating NTera2-D1 cells, demonstrates that α-NG but not α-NM treatment reduces neurite length. These results demonstrate that α-NG can interact with Hsp60 in vitro, whereas pathogenetic relevance of this interaction for psychotic symptomatology remains to be clarified.
Collapse
|
27
|
The redox function of APE1 is involved in the differentiation process of stem cells toward a neuronal cell fate. PLoS One 2014; 9:e89232. [PMID: 24586617 PMCID: PMC3929656 DOI: 10.1371/journal.pone.0089232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Low-to-moderate levels of reactive oxygen species (ROS) govern different steps of neurogenesis via molecular pathways that have been decrypted only partially. Although it has been postulated that redox-sensitive molecules are involved in neuronal differentiation, the molecular bases for this process have not been elucidated yet. The aim of this work was therefore to study the role played by the redox-sensitive, multifunctional protein APE1/Ref-1 (APE1) in the differentiation process of human adipose tissue-derived multipotent adult stem cells (hAT-MASC) and embryonic carcinoma stem cells (EC) towards a neuronal phenotype. METHODS AND RESULTS Applying a definite protocol, hAT-MASC can adopt a neural fate. During this maturation process, differentiating cells significantly increase their intracellular Reactive Oxygen Species (ROS) levels and increase the APE1 nuclear fraction bound to chromatin. This latter event is paralleled by the increase of nuclear NF-κB, a transcription factor regulated by APE1 in a redox-dependent fashion. Importantly, the addition of the antioxidant N-acetyl cysteine (NAC) to the differentiation medium partially prevents the nuclear accumulation of APE1, increasing the neuronal differentiation of hAT-MASC. To investigate the involvement of APE1 in the differentiation process, we employed E3330, a specific inhibitor of the APE1 redox function. The addition of E3330, either to the neurogenic embryonic carcinoma cell line NT2-D1or to hAT-MASC, increases the differentiation of stem cells towards a neural phenotype, biasing the differentiation towards specific subtypes, such as dopaminergic cells. In conclusion, during the differentiation process of stem cells towards a neuroectodermic phenotype, APE1 is recruited, in a ROS-dependent manner, to the chromatin. This event is associated with an inhibitory effect of APE1 on neurogenesis that may be reversed by E3330. Therefore, E3330 may be employed both to boost neural differentiation and to bias the differentiation potential of stem cells towards specific neuronal subtypes. These findings provide a molecular basis for the redox-mediated hypothesis of neuronal differentiation program.
Collapse
|
28
|
Yiang GT, Tsai HF, Chen JR, Chou PL, Wu TK, Liu HC, Chang WJ, Liu LC, Tseng HH, Yu YL. RC-6 ribonuclease induces caspase activation, cellular senescence and neuron-like morphology in NT2 embryonal carcinoma cells. Oncol Rep 2014; 31:1738-44. [PMID: 24535104 DOI: 10.3892/or.2014.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
Frog ribonucleases have been demonstrated to have anticancer activities. However, whether RC-6 ribonuclease exerts anticancer activity on human embryonal carcinoma cells remains unclear. In the present study, RC-6 induced cytotoxicity in NT2 cells (a human embryonal carcinoma cell line) and our studies showed that RC-6 can exert anticancer effects and induce caspase-9 and -3 activities. Moreover, to date, there is no evidence that frog ribonuclease-induced cytotoxicity effects are related to cellular senescence. Therefore, our studies showed that RC-6 can increase p16 and p21 protein levels and induce cellular senescence in NT2 cells. Notably, similar to retinoic acid-differentiated NT2 cells, neuron-like morphology was found on some remaining live cells after RC-6 treatment. In conclusion, our study is the first to demonstrate that RC-6 can induce cytotoxic effects, caspase-9/-3 activities, cellular senescence and neuron-like morphology in NT2 cells.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Hsiu-Feng Tsai
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jer-Rong Chen
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
29
|
Genomic and phenotypic alterations of the neuronal-like cells derived from human embryonal carcinoma stem cells (NT2) caused by exposure to organophosphorus compounds paraoxon and mipafox. Int J Mol Sci 2014; 15:905-26. [PMID: 24413757 PMCID: PMC3907846 DOI: 10.3390/ijms15010905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/08/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Historically, only few chemicals have been identified as neurodevelopmental toxicants, however, concern remains, and has recently increased, based upon the association between chemical exposures and increased developmental disorders. Diminution in motor speed and latency has been reported in preschool children from agricultural communities. Organophosphorus compounds (OPs) are pesticides due to their acute insecticidal effects mediated by the inhibition of acetylcholinesterase, although other esterases as neuropathy target esterase (NTE) can also be inhibited. Other neurological and neurodevelopmental toxic effects with unknown targets have been reported after chronic exposure to OPs in vivo. We studied the initial stages of retinoic acid acid-triggered differentiation of pluripotent cells towards neural progenitors derived from human embryonal carcinoma stem cells to determine if neuropathic OP, mipafox, and non-neuropathic OP, paraoxon, are able to alter differentiation of neural precursor cells in vitro. Exposure to 1 μM paraoxon (non-cytotoxic concentrations) altered the expression of different genes involved in signaling pathways related to chromatin assembly and nucleosome integrity. Conversely, exposure to 5 μM mipafox, a known inhibitor of NTE activity, showed no significant changes on gene expression. We conclude that 1 μM paraoxon could affect the initial stage of in vitro neurodifferentiation possibly due to a teratogenic effect, while the absence of transcriptional alterations by mipafox exposure did not allow us to conclude a possible effect on neurodifferentiation pathways at the tested concentration.
Collapse
|
30
|
Functional astrocyte-neuron lactate shuttle in a human stem cell-derived neuronal network. J Cereb Blood Flow Metab 2013; 33:1386-93. [PMID: 23715062 PMCID: PMC3764384 DOI: 10.1038/jcbfm.2013.81] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/28/2013] [Accepted: 04/27/2013] [Indexed: 12/23/2022]
Abstract
The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture.
Collapse
|
31
|
Ledda M, Megiorni F, Pozzi D, Giuliani L, D’Emilia E, Piccirillo S, Mattei C, Grimaldi S, Lisi A. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS One 2013; 8:e61535. [PMID: 23585910 PMCID: PMC3621667 DOI: 10.1371/journal.pone.0061535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Deleana Pozzi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Livio Giuliani
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Enrico D’Emilia
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Sara Piccirillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Cristiana Mattei
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- * E-mail:
| |
Collapse
|
32
|
Öz S, Maercker C, Breiling A. Embryonic carcinoma cells show specific dielectric resistance profiles during induced differentiation. PLoS One 2013; 8:e59895. [PMID: 23533658 PMCID: PMC3606267 DOI: 10.1371/journal.pone.0059895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Induction of differentiation in cancer stem cells by drug treatment represents an important approach for cancer therapy. The understanding of the mechanisms that regulate such a forced exit from malignant pluripotency is fundamental to enhance our knowledge of tumour stability. Certain nucleoside analogues, such as 2′-deoxy-5-azacytidine and 1β-arabinofuranosylcytosine, can induce the differentiation of the embryonic cancer stem cell line NTERA 2 D1 (NT2). Such induced differentiation is associated with drug-dependent DNA-damage, cellular stress and the proteolytic depletion of stem cell factors. In order to further elucidate the mode of action of these nucleoside drugs, we monitored differentiation-specific changes of the dielectric properties of growing NT2 cultures using electric cell-substrate impedance sensing (ECIS). We measured resistance values of untreated and retinoic acid treated NT2 cells in real-time and compared their impedance profiles to those of cell populations triggered to differentiate with several established substances, including nucleoside drugs. Here we show that treatment with retinoic acid and differentiation-inducing drugs can trigger specific, concentration-dependent changes in dielectric resistance of NT2 cultures, which can be observed as early as 24 hours after treatment. Further, low concentrations of nucleoside drugs induce differentiation-dependent impedance values comparable to those obtained after retinoic acid treatment, whereas higher concentrations induce proliferation defects. Finally, we show that impedance profiles of substance-induced NT2 cells and those triggered to differentiate by depletion of the stem cell factor OCT4 are very similar, suggesting that reduction of OCT4 levels has a dominant function for differentiation induced by nucleoside drugs and retinoic acid. The data presented show that NT2 cells have specific dielectric properties, which allow the early identification of differentiating cultures and real-time label-free monitoring of differentiation processes. This work might provide a basis for further analyses of drug candidates for differentiation therapy of cancers.
Collapse
Affiliation(s)
- Simin Öz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Christian Maercker
- Mannheim University of Applied Sciences, Mannheim, Germany
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (AB); (CM)
| | - Achim Breiling
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- * E-mail: (AB); (CM)
| |
Collapse
|
33
|
Xie ST, Lu F, Zhang XJ, Shen Q, He Z, Gao WQ, Hu DH, Yang H. Retinoic acid and human olfactory ensheathing cells cooperate to promote neural induction from human bone marrow stromal stem cells. Neuromolecular Med 2013; 15:252-64. [PMID: 23288654 DOI: 10.1007/s12017-012-8215-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Abstract
The generation of induced neuronal cells from human bone marrow stromal stem cells (hBMSCs) provides new avenues for basic research and potential transplantation therapies for nerve injury and neurological disorders. However, clinical application must seriously consider the risk of tumor formation by hBMSCs, neural differentiation efficiency and biofunctions resembling neurons. Here, we co-cultured hBMSCs exposed to retinoic acid (RA) with human olfactory ensheathing cells (hOECs) to stimulate its differentiation into neural cells, and found that hBMSCs following 1 and 2 weeks of stimulation promptly lost their immunophenotypical profiles, and gradually acquired neural cell characteristics, as shown by a remarkable up-regulation of expression of neural-specific markers (Tuj-1, GFAP and Galc) and down-regulation of typical hBMSCs markers (CD44 and CD90), as well as a rapid morphological change. Concomitantly, in addition to a drastic decrease in the number of BrdU incorporated cells, there was a more elevated synapse formation (a hallmark for functional neurons) in the differentiated hBMSCs. Compared with OECs alone, this specific combination of RA and hOECs was significantly potentiated neuronal differentiation of hBMSCs. The results suggest that RA can enhance and orchestrate hOECs to neural differentiation of hBMSCs. Therefore, these findings may provide an alternative strategy for the repair of traumatic nerve injury and neurological diseases with application of the optimal combination of RA and OECs for neuronal differentiation of hBMSCs.
Collapse
Affiliation(s)
- Song-Tao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Moser MJ, DiFrancesco RA, Gowda K, Klingele AJ, Sugar DR, Stocki S, Mead DA, Schoenfeld TW. Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS One 2012; 7:e38371. [PMID: 22675552 PMCID: PMC3366922 DOI: 10.1371/journal.pone.0038371] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/04/2012] [Indexed: 02/03/2023] Open
Abstract
Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 3′-5′ exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics.
Collapse
|
35
|
Hill EJ, Jiménez-González C, Tarczyluk M, Nagel DA, Coleman MD, Parri HR. NT2 derived neuronal and astrocytic network signalling. PLoS One 2012; 7:e36098. [PMID: 22567128 PMCID: PMC3342170 DOI: 10.1371/journal.pone.0036098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/30/2012] [Indexed: 12/16/2022] Open
Abstract
A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.
Collapse
Affiliation(s)
- Eric J. Hill
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, West Midlands, United Kingdom
| | | | - Marta Tarczyluk
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, West Midlands, United Kingdom
| | - David A. Nagel
- School of Life and Health Sciences, Aston University, Birmingham, West Midlands, United Kingdom
| | - Michael D. Coleman
- School of Life and Health Sciences, Aston University, Birmingham, West Midlands, United Kingdom
| | - H. Rheinallt Parri
- School of Life and Health Sciences, Aston University, Birmingham, West Midlands, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
37
|
DeRosa BA, Van Baaren JM, Dubey GK, Lee JM, Cuccaro ML, Vance JM, Pericak-Vance MA, Dykxhoorn DM. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neurosci Lett 2012; 516:9-14. [PMID: 22405972 DOI: 10.1016/j.neulet.2012.02.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/27/2012] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold tremendous potential both as a biological tool to uncover the pathophysiology of disease by creating relevant cell models and as a source of stem cells for cell-based therapeutic applications. Typically, iPSCs have been derived by the transgenic overexpression of transcription factors associated with progenitor cell or stem cell function in fibroblasts derived from skin biopsies. However, the need for skin punch biopsies to derive fibroblasts for reprogramming can present a barrier to study participation among certain populations of individuals, including children with autism spectrum disorders (ASDs). In addition, the acquisition of skin punch biopsies in non-clinic settings presents a challenge. One potential mechanism to avoid these limitations would be the use of peripheral blood mononuclear cells (PBMCs) as the source of the cells for reprogramming. In this article we describe, for the first time, the derivation of iPSC lines from PBMCs isolated from the whole blood of autistic children, and their subsequent differentiation in GABAergic neurons.
Collapse
Affiliation(s)
- Brooke A DeRosa
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 509, Miami, FL 33146, USA
| | | | | | | | | | | | | | | |
Collapse
|