1
|
Zhou H, Li L, Chen J, Hou S, Zhou T, Xiong Y. Expression and prognostic value of PRDX family in colon adenocarcinoma by integrating comprehensive analysis and in vitro and in vivo validation. Front Oncol 2023; 13:1136738. [PMID: 36969053 PMCID: PMC10035177 DOI: 10.3389/fonc.2023.1136738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundThe peroxiredoxin family, a crucial regulator of redox reactions, is strongly associated with various tumorigenesis. However, the role of peroxiredoxin4 (PRDX4) in colon adenocarcinoma (COAD) remains poorly understood.MethodsMulticenter databases, including GEPIA, HPA, UALCAN, cBioPortal, cancerSEA, STRING, CCLE, and LinkedOmics, comprehensively analyzed transcriptional expression, prognostic value, genetic alterations, signaling pathways, and associated genes of the PRDXs in COAD patients. Colony formation, transwell, flow cytometry, sphere formation, and xenograft assays were performed to validate further in vitro and in vivo.ResultsMembers of the PRDX family were differentially expressed in COAD, with each member showing varying degrees of genetic alterations. Intriguingly, only PRDX4 significantly correlated with COAD prognosis and stage. The single-cell sequencing suggested that PRDX4 is positively correlated with proliferation, apoptosis, and invasion, whereas negatively correlated with stemness. Moreover, PRDX4 involved in a series of critical biological processes, such as cell growth. Furthermore, in vivo and in vitro analyses indicated that knocking down PRDX4 inhibits the proliferation and invasion of HCT116 cells while promoting apoptosis and stemness.ConclusionsWe identified PRDX4 expression as a novel potential prognostic marker in COAD.
Collapse
Affiliation(s)
- He Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
- Laboratory of Cancer Biology Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Lifa Li
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Jia Chen
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Songlin Hou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
| | - Yongfu Xiong
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, China
- The Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Yongfu Xiong,
| |
Collapse
|
2
|
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer. Molecules 2022; 27:molecules27196513. [PMID: 36235049 PMCID: PMC9573489 DOI: 10.3390/molecules27196513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin IV (Prx4) is a 2-Cysteine peroxidase with ubiquitous expression in human tissues. Prx4 scavenges hydrogen peroxide and participates in oxidative protein folding in the endoplasmic reticulum. In addition, Prx4 is secreted outside the cell. Prx4 is upregulated in several cancers and is a potential therapeutic target. We have summarized historical and recent advances in the structure, function and biological roles of Prx4, focusing on inflammatory diseases and cancer. Oxidative stress is known to activate pro-inflammatory pathways. Chronic inflammation is a risk factor for cancer development. Hence, redox enzymes such as Prx4 are important players in the crosstalk between inflammation and cancer. Understanding molecular mechanisms of regulation of Prx4 expression and associated signaling pathways in normal physiological and disease conditions should reveal new therapeutic strategies. Thus, although Prx4 is a promising therapeutic target for inflammatory diseases and cancer, further research needs to be conducted to bridge the gap to clinical application.
Collapse
|
3
|
Jurgec S, Jezernik G, Gorenjak M, Büdefeld T, Potočnik U. Meta-Analytic Comparison of Global RNA Transcriptomes of Acute and Chronic Myeloid Leukemia Cells Reveals Novel Gene Candidates Governing Myeloid Malignancies. Cancers (Basel) 2022; 14:cancers14194681. [PMID: 36230605 PMCID: PMC9562668 DOI: 10.3390/cancers14194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite advances in the understanding of genetic risk factors and molecular mechanisms underlying acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), clinical outcomes of current therapies in terms of disease relapse and mortality rate pose a great economic and social burden. To overcome this, the identification of new molecular prognostic biomarkers and pharmacological targets is crucial. Recent studies have suggested that AML and CML may share common pathogenic mechanisms and cellular substrates. To this end, in the present study, global transcriptome profiles of AML and CML at the molecular and cellular level were directly compared using a combination of meta-analysis and modern statistics, and novel candidate genes and specific biological processes associated with the pathogenesis of AML and CML were characterized. Our study significantly improves our current understanding of myeloid leukemia and will help develop new therapeutic targets and biomarkers for disease progression, management and treatment response. Abstract Background: Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) represent a group of hematological malignancies characterized by the pathogenic clonal expansion of leukemic myeloid cells. The diagnosis and clinical outcome of AML and CML are complicated by genetic heterogeneity of disease; therefore, the identification of novel molecular biomarkers and pharmacological targets is of paramount importance. Methods: RNA-seq-based transcriptome data from a total of five studies were extracted from NCBI GEO repository and subjected to an in-depth bioinformatics analysis to identify differentially expressed genes (DEGs) between AML and CML. A systemic literature survey and functional gene ontology (GO) enrichment analysis were performed for the top 100 DEGs to identify novel candidate genes and biological processes associated with AML and CML. Results: LINC01554, PTMAP12, LOC644936, RPS27AP20 and FAM133CP were identified as novel risk genes for AML and CML. GO enrichment analysis showed that DEGs were significantly associated with pre-RNA splicing, reactive oxygen species and glycoprotein metabolism, the cellular endomembrane system, neutrophil migration and antimicrobial immune response. Conclusions: Our study revealed novel biomarkers and specific biological processes associated with AML and CML. Further studies are required to evaluate their value as molecular targets for managing and treating the myeloid malignancies.
Collapse
Affiliation(s)
- Staša Jurgec
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Büdefeld
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2345-854
| |
Collapse
|
4
|
Ding N, Jiang H, Thapa P, Hao Y, Alshahrani A, Allison D, Izumi T, Rangnekar VM, Liu X, Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J Biol Chem 2022; 298:102123. [PMID: 35697073 PMCID: PMC9257407 DOI: 10.1016/j.jbc.2022.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
High levels of redox enzymes have been commonly observed in various types of human cancer, although whether and how the enzymes contribute to cancer malignancy and therapeutic resistance have yet to be understood. Peroxiredoxin IV (Prx4) is an antioxidant with bona fide peroxidase and molecular chaperone functions. Here, we report that Prx4 is highly expressed in prostate cancer patient specimens, as well as established prostate cancer cell lines, and that its levels can be further stimulated through the activation of androgen receptor signaling. We used lentivirus-mediated shRNA knockdown and CRISPR-Cas9 based KO techniques to establish Prx4-depleted prostate cancer cells, which showed delayed cell cycle progression, reduced rate of cell proliferation, migration, and invasion compared to control cells. In addition, we used proteome profiler phosphokinase arrays to identify signaling changes in Prx4-depleted cells; we found that loss of Prx4 results in insufficient phosphorylation of both Akt and its downstream kinase GSK3α/β. Moreover, we demonstrate that Prx4-depleted cells are more sensitive to ionizing radiation as they display compromised ability to scavenge reactive oxygen species and increased accumulation of DNA damage. In mouse xenograft models, we show depletion of Prx4 leads to significant suppression of tumor growth, and tumors formed by Prx4-depleted cells respond more effectively to radiation therapy. Our findings suggest that increased levels of Prx4 contribute to the malignancy and radioresistance of prostate cancer through the activation of Akt/GSK3 signaling pathways. Therefore, strategies targeting Prx4 may be utilized to potentially inhibit tumor growth and overcome radioresistance in prostate cancer.
Collapse
Affiliation(s)
- Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Derek Allison
- Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vivek M Rangnekar
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
5
|
2D-DIGE-MS Proteomics Approaches for Identification of Gelsolin and Peroxiredoxin 4 with Lymph Node Metastasis in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14133189. [PMID: 35804959 PMCID: PMC9265116 DOI: 10.3390/cancers14133189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims: A combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry approach was used to search for potential markers for prognosis and intervention of colorectal cancer (CRC) at different stages of lymph node metastasis (LMN). This quantitative proteomic survey aimed to investigate the LNM-associated proteins and evaluate the clinicopathological characteristics of these target proteins in CRC from stage I to stage IV. Methods: Sixteen CRC cases were categorized into paired non-LNM and LNM groups, and two-dimensional difference gel electrophoresis and MS proteome analysis were performed. Differential protein expression between non-LNM and LNM CRC was further validated in a tissue microarray, including 40 paraffin-embedded samples by immunohistochemistry staining. Moreover, a Boyden chamber assay, flow cytometry, and shRNA were used to examine the epithelial–mesenchymal transition and mechanism invasiveness of the differentially expressed proteins in DLD-1 cells and in vivo xenograft mouse model. Results: Eighteen differentially expressed proteins were found between non-LNM and LNM CRC tissues. Among them, protein levels of Gelsolin (GSN) and peroxiredoxin 4 (PRDX4) were abundant in node-positive CRC. Downregulation of GSN and PRDX4 markedly suppressed migration and invasiveness and also induced cell cycle G1/S arrest in DLD-1. Mechanistically, the EGFR/RhoA/PKCα/ERK pathways are critical for transcriptional activation of histone modification of H3 lysine 4 trimethylation (H3K4me3) of GSN and PRDX4 promoters, resulting in upregulation of GSN, PRDX4, Twist-1/2, cyclinD1, proliferating cell-nuclear antigen, β-catenin, N-cadherin, and matrix metalloprotein-9. Conclusions: GSN and PRDX4 are novel regulators in CRC lymph node metastasis to potentially provide new insights into the mechanism of CRC progression and serve as a biomarker for CRC diagnosis at the metastatic stage.
Collapse
|
6
|
Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021; 153:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Overexpression of PRDX4 Modulates Tumor Microenvironment and Promotes Urethane-Induced Lung Tumorigenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8262730. [PMID: 33456675 PMCID: PMC7785354 DOI: 10.1155/2020/8262730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023]
Abstract
Peroxiredoxin 4 (PRDX4), initially reported as an antioxidant, is overexpressed in lung cancer and participates in its progression. However, its role in the urethane-induced lung tumor model is undetermined. The aim of this study was to investigate the effect of PRDX4 overexpression on carcinogen-induced lung tumor development. Human PRDX4 overexpression transgenic (Tg) mice (hPRDX4+/+) and non-Tg mice were intraperitoneally injected with urethane to induce lung tumor. After 6 months, tumor formation was compared between groups and possible mechanisms for the difference in tumor development were investigated. The serum and lung PRDX4 expressions were enhanced after urethane stimulation in Tg mice. Both the average number of tumors (≥0.5 mm) and tumor diameter per mouse in the Tg group were significantly larger than in non-Tg controls, while body weight was lower in the Tg group. Compared with non-Tg controls, tumor cell proliferation was enhanced, while tumor cell apoptosis was suppressed in Tg mice. Systemic oxidative stress and oxidative stress in lung tumors were inhibited by PRDX4 overexpression. The balance of prooxidant enzymes and antioxidant enzymes was also shifted to a decreased level in Tg tumor. In lung tumor tissue, the density of microvessel penetrated into tumor was higher in the Tg group; macrophage infiltration was enhanced in Tg tumors, while there was no difference in T lymphocyte infiltration; the expressions of cytokines, including interleukin-1 beta (IL-1β) and matrix metallopeptidase 9 (MMP9), were elevated in Tg tumors, which resulted from enhanced phosphorylation of nuclear factor-κB p65 (NF-κB p65) and c-Jun, respectively. In conclusion, PRDX4 overexpression modulated tumor microenvironment and promoted tumor development in the mouse urethane-induced lung cancer model.
Collapse
|
8
|
Olofsen PA, Fatrai S, van Strien PMH, Obenauer JC, de Looper HWJ, Hoogenboezem RM, Erpelinck-Verschueren CAJ, Vermeulen MPWM, Roovers O, Haferlach T, Jansen JH, Ghazvini M, Bindels EMJ, Schneider RK, de Pater EM, Touw IP. Malignant Transformation Involving CXXC4 Mutations Identified in a Leukemic Progression Model of Severe Congenital Neutropenia. CELL REPORTS MEDICINE 2020; 1:100074. [PMID: 33205068 PMCID: PMC7659587 DOI: 10.1016/j.xcrm.2020.100074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor (CSF3R) mutations in the neutropenic phase, followed by mutations in RUNX1 before AML becomes overt. To investigate how the combination of CSF3 therapy and CSF3R and RUNX1 mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples. CSF3 provokes a hyper-proliferative state in CSF3R/RUNX1 mutant hematopoietic progenitors but does not cause overt AML. Intriguingly, an additional acquired driver mutation in Cxxc4 causes elevated CXXC4 and reduced TET2 protein levels in murine AML samples. Expression of multiple pro-inflammatory pathways is elevated in mouse AML and human SCN-AML, suggesting that inflammation driven by downregulation of TET2 activity is a critical step in the malignant transformation of SCN. Combinatorial CSF3R and RUNX1 mutations seen in SCN-AML do not result in AML in mice An additional mutation in Cxxc4 causes AML development in CSF3R/RUNX1 mutant mice Mutant CXXC4 protein is more stable than wild-type and reduces TET2 protein levels CXXC4 mutations are also found in de novo AML patients
Collapse
Affiliation(s)
- Patricia A Olofsen
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Szabolcs Fatrai
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Paulina M H van Strien
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Julia C Obenauer
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Hans W J de Looper
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | | | - Michael P W M Vermeulen
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Onno Roovers
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | | | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, iPS Core Facility, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Emma M de Pater
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam 3015 CN, the Netherlands
| |
Collapse
|
9
|
Sharapov MG, Novoselov VI. Catalytic and Signaling Role of Peroxiredoxins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:79-100. [PMID: 31216969 DOI: 10.1134/s0006297919020019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer cells experience strong oxidative stress caused by disorders in cell metabolism and action of external factors. For survival, cancer cells have developed a highly efficient system of antioxidant defense, some of the most important elements of which are peroxiredoxins (Prxs). Prxs are an evolutionarily ancient family of selenium-independent peroxidases that reduce a wide range of organic and inorganic hydroperoxides in the cell and the extracellular space. In addition, some Prxs exhibit chaperone and phospholipase activities. Prxs play an important role in the maintenance of the cell redox homeostasis; they prevent oxidation and aggregation of regulatory proteins, thereby affecting many cell signaling pathways. Prxs are involved in the regulation of cell growth, differentiation, and apoptosis. Due to their versatility and wide representation in all tissues and organs, Prxs participate in the development/suppression of many pathological conditions, among which cancer occupies a special place. This review focuses on the role of Prxs in the development of various forms of cancer. Understanding molecular mechanisms of Prx involvement in these processes will allow to develop new approaches to the prevention and treatment of cancer.
Collapse
Affiliation(s)
- M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Guo X, Noguchi H, Ishii N, Homma T, Hamada T, Hiraki T, Zhang J, Matsuo K, Yokoyama S, Ishibashi H, Fukushige T, Kanekura T, Fujii J, Uramoto H, Tanimoto A, Yamada S. The Association of Peroxiredoxin 4 with the Initiation and Progression of Hepatocellular Carcinoma. Antioxid Redox Signal 2019; 30:1271-1284. [PMID: 29687726 DOI: 10.1089/ars.2017.7426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Peroxiredoxin 4 (PRDX4) is a member of the peroxiredoxin family of antioxidant enzymes. Previously, we reported that PRDX4 can restrain the initiation and progression of nonalcoholic steatohepatitis by reducing local and systemic reactive oxygen species (ROS) levels. Oxidative stress is recognized as a key factor in hepatocarcinogenesis, and a high ROS level has also been found in hepatocellular carcinoma (HCC). Here, our aim is to investigate roles of PRDX4 in the initiation and progression of HCC. RESULTS In this study, for hepatocarcinogenesis, wild-type (WT), PRDX4 knockout (PRDX4-/y), and human PRDX4 transgenic (hPRDX4+/+) mice were given a weekly intraperitoneal injection of diethylnitrosamine for 25 weeks. The HCC incidence was higher in PRDX4-/y mice than in WT or hPRDX4+/+ mice. Intrahepatic and circulating oxidative stress and inflammatory cell infiltration in the liver were obviously decreased in hPRDX4+/+ mice, compared with WT mice. Furthermore, in our cohort study, human HCC specimens with low expression of PRDX4 had higher ROS levels and a highly malignant phenotype, which was associated with a reduced overall survival, compared with those with high PRDX4 expression. However, in human HCC cell lines, PRDX4 knockdown led to a rapidly increased intracellular ROS level and suppressed cell proliferation, inducing cell death. Innovation and Conclusion: Our results clearly indicate that PRDX4 has an inhibitory effect in the initiation of HCC, but a dual (inhibitory or promoting) role in the progression of HCC, suggesting the potential utility of PRDX4 activators or inhibitors as therapy for different stages and phenotypes of HCC.
Collapse
Affiliation(s)
- Xin Guo
- 1 Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan.,2 Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirotsugu Noguchi
- 4 Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naoki Ishii
- 5 Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- 5 Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Taiji Hamada
- 3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsubasa Hiraki
- 3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jing Zhang
- 1 Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Kei Matsuo
- 3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiya Yokoyama
- 3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Ishibashi
- 6 Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Tomoko Fukushige
- 7 Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Kanekura
- 7 Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junichi Fujii
- 5 Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Hidetaka Uramoto
- 8 Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Akihide Tanimoto
- 3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sohsuke Yamada
- 1 Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa, Japan.,3 Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
11
|
Jia W, Chen P, Cheng Y. PRDX4 and Its Roles in Various Cancers. Technol Cancer Res Treat 2019; 18:1533033819864313. [PMID: 31311441 PMCID: PMC6636222 DOI: 10.1177/1533033819864313] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species play a vital role in cell survival by regulating physiological metabolism and signal transduction of cells. The imbalance of oxidant and antioxidant states induces oxidative stress within a cell. Redox regulation and oxidative stress are closely related to survival and proliferation of stem cells, cancer cells, and cancer stem cells. Peroxiredoxin 4, a typical endoplasmic reticulum-resident 2-Cys antioxidant of peroxiredoxins, can fine-tune hydrogen peroxide catabolism which affects cell survival by affecting redox balance, oxidative protein folding, and regulation of hydrogen peroxide signaling. Recent studies revealed the overexpression of peroxiredoxin 4 in several kinds of cancers, such as breast cancer, prostate cancer, ovarian cancer, colorectal cancer, and lung cancer. And it has been demonstrated that peroxiredoxin 4 causally contributes to tumorigenesis, therapeutic resistance, metastasis, and recurrence of tumors. In this article, the characteristics of peroxiredoxin 4 in physiological functions and the cancer-related research progress of mammalian peroxiredoxin 4 is reviewed. We believe that peroxiredoxin 4 has the potential of serving as a novel target for multiple cancers.
Collapse
Affiliation(s)
- Wenqiao Jia
- Health Management Center, Shandong University Qilu Hospital, Jinan, China
| | - Pengxiang Chen
- Radiotherapy Department, Shandong University Qilu Hospital, Jinan, China
| | - Yufeng Cheng
- Radiotherapy Department, Shandong University Qilu Hospital, Jinan, China
| |
Collapse
|
12
|
Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018; 7:antiox7110161. [PMID: 30423872 PMCID: PMC6262534 DOI: 10.3390/antiox7110161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells are abnormal cells that do not comply with tissue homeostasis but undergo uncontrolled proliferation. Such abnormality is driven mostly by somatic mutations on oncogenes and tumor suppressors. Cancerous mutations show intra-tumoral heterogeneity across cancer types and eventually converge into the self-activation of proliferative signaling. While transient production of intracellular reactive oxygen species (ROS) is essential for cell signaling, its persistent production is cytotoxic. Thus, cancer cells require increased levels of intracellular ROS for continuous proliferation, but overexpress cellular peroxidase enzymes, such as 2-Cys peroxiredoxins, to maintain ROS homeostasis. However, suppression of 2-Cys peroxiredoxins has also been reported in some metastatic cancers. Hence, the cancer-associated functions of 2-Cys peroxiredoxins must be illuminated in the cellular context. In this review, we describe the distinctive signaling roles of 2-Cys peroxiredoxins beyond their intrinsic ROS-scavenging role in relation to cancer cell death and survival.
Collapse
|
13
|
Shioya A, Guo X, Motono N, Mizuguchi S, Kurose N, Nakada S, Aikawa A, Ikeda Y, Uramoto H, Yamada S. The Combination Of Weak Expression Of PRDX4 And Very High MIB-1 Labelling Index Independently Predicts Shorter Disease-free Survival In Stage I Lung Adenocarcinoma. Int J Med Sci 2018; 15:1025-1034. [PMID: 30013444 PMCID: PMC6036164 DOI: 10.7150/ijms.25734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Oxidative stress plays pivotal roles in the progression of lung adenocarcinoma (LUAD) through cell signaling related closely to cancer growth. We previously reported that peroxiredoxin 4 (PRDX4), a secretory-type antioxidant enzyme, can protect against the development of various diseases, including potential malignancies. Since many patients with early-stage LUAD develop recurrence, even after curative complete resection, we investigated the association of the PRDX4 expression with the clinicopathological features and recurrence/prognosis using post-surgical samples of stage I-LUAD. Methods: The expression of PRDX4 and MIB-1, a widely accepted Ki67 protein, was immunohistochemically analysed in 206 paraffin-embedded tumour specimens of patients with stage I-LUAD. The PRDX4 expression was considered to be weak when less than 25% of the adenocarcinoma cells showed positive staining. Results: A weak PRDX4+ expression demonstrated a significantly close relationship with pathologically poor differentiation, highly invasive characteristics and recurrence. The decrease in PRDX4-positivity potentially induced cell growth in LUAD, which was correlated significantly with a very high MIB-1 labelling index (≥17.3%). Univariate/multivariate analyses revealed that the subjects with both weak PRDX4+ expression and a very high MIB-1 index had significantly worse disease-free survival rates than other subjects. Conclusions: The combination of weak PRDX4 expression and a very high MIB-1 index can predict high proliferating activity and recurrence with a potential poor prognosis, especially in post-operative stage I-LUAD patients.
Collapse
Affiliation(s)
- Akihiro Shioya
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa
| | - Seiya Mizuguchi
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Nozomu Kurose
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Satoko Nakada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Akane Aikawa
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Ishikawa
- Department of Pathology, Kanazawa Medical University Hospital, Ishikawa
| |
Collapse
|
14
|
Hampton MB, Vick KA, Skoko JJ, Neumann CA. Peroxiredoxin Involvement in the Initiation and Progression of Human Cancer. Antioxid Redox Signal 2018; 28:591-608. [PMID: 29237274 PMCID: PMC9836708 DOI: 10.1089/ars.2017.7422] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE It has been proposed that cancer cells are heavily dependent on their antioxidant defenses for survival and growth. Peroxiredoxins are a family of abundant thiol-dependent peroxidases that break down hydrogen peroxide, and they have a central role in the maintenance and response of cells to alterations in redox homeostasis. As such, they are potential targets for disrupting tumor growth. Recent Advances: Genetic disruption of peroxiredoxin expression in mice leads to an increased incidence of neoplastic disease, consistent with a role for peroxiredoxins in protecting genomic integrity. In contrast, many human tumors display increased levels of peroxiredoxin expression, suggesting that strengthened antioxidant defenses provide a survival advantage for tumor progression. Peroxiredoxin inhibitors are being developed and explored as therapeutic agents in different cancer models. CRITICAL ISSUES It is important to complement peroxiredoxin knockout and expression studies with an improved understanding of the biological function of the peroxiredoxins. Although current results can be interpreted within the context that peroxiredoxins scavenge hydroperoxides, some peroxiredoxin family members appear to have more complex roles in regulating the response of cells to oxidative stress through protein interactions with constituents of other signaling pathways. FUTURE DIRECTIONS Further mechanistic information is required for understanding the role of oxidative stress in cancer, the function of peroxiredoxins in normal versus cancer cells, and for the design and testing of specific peroxiredoxin inhibitors that display selectivity to malignant cells. Antioxid. Redox Signal. 28, 591-608.
Collapse
Affiliation(s)
- Mark B Hampton
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - Kate A Vick
- 1 Department of Pathology, Centre for Free Radical Research, University of Otago , Christchurch, Christchurch, New Zealand
| | - John J Skoko
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Carola A Neumann
- 2 Womens Cancer Research Center, University of Pittsburgh Cancer Center , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Mallik S, Zhao Z. Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. QUANTITATIVE BIOLOGY 2017; 5:302-327. [PMID: 30221015 DOI: 10.1007/s40484-017-0119-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Marker detection is an important task in complex disease studies. Here we provide an association rule mining (ARM) based approach for identifying integrated markers through mutual information (MI) based statistically significant feature extraction, and apply it to acute myeloid leukemia (AML) and prostate carcinoma (PC) gene expression and methylation profiles. Methods We first collect the genes having both expression and methylation values in AML as well as PC. Next, we run Jarque-Bera normality test on the expression/methylation data to divide the whole dataset into two parts: one that ollows normal distribution and the other that does not follow normal distribution. Thus, we have now four parts of the dataset: normally distributed expression data, normally distributed methylation data, non-normally distributed expression data, and non-normally distributed methylated data. A feature-extraction technique, "mRMR" is then utilized on each part. This results in a list of top-ranked genes. Next, we apply Welch t-test (parametric test) and Shrink t-test (non-parametric test) on the expression/methylation data for the top selected normally distributed genes and non-normally distributed genes, respectively. We then use a recent weighted ARM method, "RANWAR" to combine all/specific resultant genes to generate top oncogenic rules along with respective integrated markers. Finally, we perform literature search as well as KEGG pathway and Gene-Ontology (GO) analyses using Enrichr database for in silico validation of the prioritized oncogenes as the markers and labeling the markers as existing or novel. Results The novel markers of AML are {ABCB11↑∪KRT17↓} (i.e., ABCB11 as up-regulated, & KRT17 as down-regulated), and {AP1S1-∪KRT17↓∪NEIL2-∪DYDC1↓}) (i.e., AP1S1 and NEIL2 both as hypo-methylated, & KRT17 and DYDC1 both as down-regulated). The novel marker of PC is {UBIAD1¶∪APBA2‡∪C4orf31‡} (i.e., UBIAD1 as up-regulated and hypo-methylated, & APBA2 and C4orf31 both as down-regulated and hyper-methylated). Conclusion The identified novel markers might have critical roles in AML as well as PC. The approach can be applied to other complex disease.
Collapse
Affiliation(s)
- Saurav Mallik
- Computer Science & Engineering, Aliah University, Newtown, Newtown 700156, India
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Di Marcantonio D, Martinez E, Sidoli S, Vadaketh J, Nieborowska-Skorska M, Gupta A, Meadows JM, Ferraro F, Masselli E, Challen GA, Milsom MD, Scholl C, Fröhling S, Balachandran S, Skorski T, Garcia BA, Mirandola P, Gobbi G, Garzon R, Vitale M, Sykes SM. Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clin Cancer Res 2017; 24:608-618. [PMID: 29127121 DOI: 10.1158/1078-0432.ccr-17-2684] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/15/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Purpose: The intracellular redox environment of acute myeloid leukemia (AML) cells is often highly oxidized compared to healthy hematopoietic progenitors and this is purported to contribute to disease pathogenesis. However, the redox regulators that allow AML cell survival in this oxidized environment remain largely unknown.Experimental Design: Utilizing several chemical and genetically-encoded redox sensing probes across multiple human and mouse models of AML, we evaluated the role of the serine/threonine kinase PKC-epsilon (PKCε) in intracellular redox biology, cell survival and disease progression.Results: We show that RNA interference-mediated inhibition of PKCε significantly reduces patient-derived AML cell survival as well as disease onset in a genetically engineered mouse model (GEMM) of AML driven by MLL-AF9. We also show that PKCε inhibition induces multiple reactive oxygen species (ROS) and that neutralization of mitochondrial ROS with chemical antioxidants or co-expression of the mitochondrial ROS-buffering enzymes SOD2 and CAT, mitigates the anti-leukemia effects of PKCε inhibition. Moreover, direct inhibition of SOD2 increases mitochondrial ROS and significantly impedes AML progression in vivo Furthermore, we report that PKCε over-expression protects AML cells from otherwise-lethal doses of mitochondrial ROS-inducing agents. Proteomic analysis reveals that PKCε may control mitochondrial ROS by controlling the expression of regulatory proteins of redox homeostasis, electron transport chain flux, as well as outer mitochondrial membrane potential and transport.Conclusions: This study uncovers a previously unrecognized role for PKCε in supporting AML cell survival and disease progression by regulating mitochondrial ROS biology and positions mitochondrial redox regulators as potential therapeutic targets in AML. Clin Cancer Res; 24(3); 608-18. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Simone Sidoli
- Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica Vadaketh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Immersion Science Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anushk Gupta
- Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Immersion Science Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | | - Elena Masselli
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Grant A Challen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ) Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Claudia Scholl
- Department of Translational Oncology, NCT Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, NCT Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Prisco Mirandola
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Ramiro Garzon
- Division of Hematology, The Ohio State University, Columbus, Ohio
| | - Marco Vitale
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy.,CoreLab, Parma University Hospital, Parma, Italy
| | | |
Collapse
|
17
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol 2017; 6:139-153. [PMID: 28357082 PMCID: PMC5351761 DOI: 10.3892/mco.2017.1129] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22–27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial. Increasing evidence suggests the involvement of PRDXs in carcinogenesis and in the development of drug resistance. Numerous types of cancer cells, in fact, are characterized by an increase in reactive oxygen species (ROS) production, and often exhibit an altered redox environment compared with normal cells. The present review focuses on the complex association between oxidant balance and cancer, and it provides a brief account of the involvement of PRDXs in tumorigenesis and in the development of chemoresistance.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
18
|
Ow SH, Chua PJ, Bay BH. Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer. Exp Biol Med (Maywood) 2016; 242:140-147. [PMID: 27633575 DOI: 10.1177/1535370216669834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peroxiredoxin I to VI (PRX I-VI), a family of highly conserved antioxidants, has been implicated in numerous diseases. There have been reports that PRXs are expressed aberrantly in a variety of tumors, implying that they could play an important role in carcinogenesis. Epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs have been reported to modulate expression of PRXs. In addition, the use of epigenetic regulators, such as histone deacetylases, has been demonstrated to restore PRX to normal levels, indicating that the reversible nature of epigenetics can be exploited for future treatments.
Collapse
Affiliation(s)
- Suet-Hui Ow
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Pei-Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
19
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
20
|
Fujii J, Ikeda Y, Kurahashi T, Homma T. Physiological and pathological views of peroxiredoxin 4. Free Radic Biol Med 2015; 83:373-9. [PMID: 25656995 DOI: 10.1016/j.freeradbiomed.2015.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
Abstract
Peroxiredoxins (PRDXs) form an enzyme family that exhibits peroxidase activity using electrons from thioredoxin and other donor molecules. As the signaling roles of hydrogen peroxide in response to extracellular stimuli have emerged, the involvement of PRDX in the hydrogen peroxide-mediated signaling has become evident. Among six PRDX members in mammalian cells, PRDX4 uniquely possesses a hydrophobic signal peptide at the amino terminus, and, hence, it undergoes either secretion or retention by the endoplasmic reticulum (ER) lumen. The role of PRDX4 as a sulfoxidase in ER is now attracting much attention regarding the oxidative protein folding of nascent proteins. Contrary to this role in the ER, the functional significance of PRDX4 in the extracellular milieu is virtually unknown despite its implications as a biomarker under pathological conditions in some diseases. Other than its systemically expressed form, a variant form of PRDX4 is transcribed from the upstream promoter/exon 1 of the systemic promoter/exon 1 and is uniquely expressed in sexually matured testes. Circumstantial evidence, together with deduced functions from the systemic form, suggests that there are potential roles for testicular PRDX4 in the reproductive processes such as the regulation of hormonal signals and the oxidative packaging of sperm chromatin. Elucidation of these PRDX4 functions under in vivo situations is expected to show the whole picture of how PRDX4 has evolved in multicellular organisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| | - Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
21
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
22
|
Ren L, Sun Y, Wang R, Xu T. Gene structure, immune response and evolution: comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2014; 36:409-416. [PMID: 24378678 DOI: 10.1016/j.fsi.2013.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Peroxiredoxin family was a superfamily of selenium independent peroxidases. It was divided into six subtypes: Prx1-4 (typical 2-Cys), Prx5 (atypical 2-Cys) and Prx6 (1-Cys). This study reports the isolation and characterization three 2-Cys peroxiredoxin members of full cDNA and genomic clones from miiuy croaker (Miichthys miiuy). The genetic structure analysis showed that the C-terminal catalytic Cys positioned within GEVCPAXW. This sequence was different between Prx3 and Prx4, but was conservative in different species of the same gene, the X base was S in Prx3 but G in Prx4. Tissues expression analysis showed that the expressions of Prx3 in liver and brain were much higher than other tissues; the values of Prx4 in spleen, intestine and kidney were significantly higher than others; and the expression of Prx5 in muscle was higher than that of other tissues. Real-time PCR results showed that there were highest values of these three Prxs emerging with the time post challenge of Vibrio anguillarum in liver, spleen and kidney although the highest value time differed from each other and the expression of these three genes also changed with the change of infection time. These results indicated that expression analysis of these three genes play some positive function against pathogenic bacteria infection in miiuy croaker.
Collapse
Affiliation(s)
- Liping Ren
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China
| | - Rixin Wang
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Tianjun Xu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
23
|
Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013; 122:3322-30. [DOI: 10.1182/blood-2013-04-491944] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
More than 60% of primary AML blasts constitutively produce high levels of NOX-derived reactive oxygen species (ROS), which drives AML proliferation. High ROS AMLs show depleted antioxidant defenses but evade the oxidative stress response through suppression of p38MAPK signaling.
Collapse
|
24
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
25
|
Meng Y, Qian Y, Gao L, Cai LB, Cui YG, Liu JY. Downregulated expression of peroxiredoxin 4 in granulosa cells from polycystic ovary syndrome. PLoS One 2013; 8:e76460. [PMID: 24098506 PMCID: PMC3789707 DOI: 10.1371/journal.pone.0076460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
Peroxiredoxin 4 (PRDX4), a member of Peroxiredoxin (PRDX) family, is a typical 2-Cys PRDX. PRDX4 monitors the oxidative burden within cellular compartment and reduces hydrogen peroxide and alkyl hydroperoxide related to oxidative stress and apoptosis. Antioxidant, like PRDX4, may promote follicle development and participate in the pathophysiology of PCOS. In our previous study, we found that PRDX4 was expressed in mice oocyte cumulus oophorus complex, and that PRDX4 could be associated with follicle development. In this study, we explored the expression of PRDX4 in human follicles and possible role of PRDX4 in PCOS pathophysiology. Our data showed that PRDX4 was mainly expressed in granulosa cells in human ovaries. When compared to control group, both PRDX4 mRNA level and protein level decreased in PCOS group. The lowered levels of PRDX4 may relate to oxidative stress in the pathophysiologic progress of PCOS. Furthermore, expression of PRDX4 in the granulosa cells of in vivo or in vitro matured follicles was higher than that in immatured follicles, which suggested that PRDX4 may have a close relationship with follicular development. Altogether, our findings may provide new clues of the pathophysiologic mechanism of PCOS and potential therapeutic strategy using antioxidant, like PRDX4.
Collapse
Affiliation(s)
- Yan Meng
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Qian
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Gao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling-Bo Cai
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu-Gui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jia-Yin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
26
|
Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress. Br J Cancer 2013; 109:983-93. [PMID: 23880827 PMCID: PMC3749568 DOI: 10.1038/bjc.2013.396] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
Objective: We have previously identified peroxiredoxin-3 (PRDX-3) as a cell-surface protein that is androgen regulated in the LNCaP prostate cancer (PCa) cell line. PRDX-3 is a member of the peroxiredoxin family that are responsible for neutralising reactive oxygen species. Experimental design: PRDX-3 expression was examined in tissue from 32 patients using immunohistochemistry. Subcellular distribution was determined using confocal microscopy. PRDX-3 expression was determined in antiandrogen-resistant cell lines by western blotting and quantitative RT–PCR. The pathways of PRDX-3 overexpression and knockdown on apoptosis and response to oxidative stress were investigated using protein arrays. Results: PRDX-3 is upregulated in a number of endocrine-regulated tumours; in particular in PCa and prostatic intraepithelial neoplasia. Although the majority of PRDX-3 is localised to the mitochondria, we have confirmed that PRDX-3 at the cell membrane is androgen regulated. In antiandrogen-resistant LNCaP cell lines, PRDX-3 is upregulated at the protein but not RNA level. Resistant cells also possess an upregulation of the tricarboxylic acid (TCA) pathway and resistance to H2O2-induced apoptosis through a failure to activate pro-apoptotic pathways. Knockdown of PRDX-3 restored H2O2 sensitivity. Conclusion: Our results suggest that PRDX-3 has an essential role in regulating oxidation-induced apoptosis in antiandrogen-resistant cells. PRDX-3 may have potential as a therapeutic target in castrate-independent PCa.
Collapse
|
27
|
Wang D, Lv YQ, Liu YF, Du XJ, Li B. Differential protein analysis of lymphocytes between children with acute lymphoblastic leukemia and healthy children. Leuk Lymphoma 2013; 54:381-6. [PMID: 22812402 DOI: 10.3109/10428194.2012.713104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We identified differential proteins in lymphocytes between patients with childhood acute lymphoblastic leukemia (c-ALL) and healthy children. Samples of bone marrow lymphocytes from children with c-ALL and peripheral blood lymphocytes from healthy children were collected, and total proteins were extracted and separated from these samples followed by two-dimensional gel electrophoresis for comparative analysis. The differential protein spots in c-ALL cells were digested in situ, and then analyzed with matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF-MS) followed by identification using the relevant database. Fifteen differential expression proteins were obtained by comparative proteomics analysis. Of the 15 differential proteins, eight were identified. Of the eight proteins, two had high expression and six low expression in c-ALL cells. The eight differential proteins are expected to become new diagnostic markers and drug targets for c-ALL.
Collapse
Affiliation(s)
- Dao Wang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | |
Collapse
|
28
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
29
|
Liu CX, Zhou HC, Yin QQ, Wu YL, Chen GQ. Targeting peroxiredoxins against leukemia. Exp Cell Res 2013; 319:170-6. [DOI: 10.1016/j.yexcr.2012.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022]
|
30
|
Touw IP, Palande K, Beekman R. Granulocyte colony-stimulating factor receptor signaling: implications for G-CSF responses and leukemic progression in severe congenital neutropenia. Hematol Oncol Clin North Am 2012; 27:61-73, viii. [PMID: 23351988 DOI: 10.1016/j.hoc.2012.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following activation by their cognate ligands, cytokine receptors undergo intracellular routing toward lysosomes, where they are degraded. This review focuses on the signaling function of the G-CSFR in relation to the dynamics of endosomal routing of the G-CSFR. Mechanisms involving receptor lysine ubiquitination and redox-controlled phosphatase activities are discussed. Specific attention is paid to the consequences of G-CSFR mutations, acquired in patients with severe congenital neutropenias who receive G-CSF therapy, particularly in the context of leukemic transformation, a major clinical complication of the disease.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Dr Molewaterplein 50 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Zhang J, Wang W, Yang F, Zhou X, Jin H, Yang PY. Comparative proteomic analysis of drug sodium iron chlorophyllin addition to Hep 3B cell line. Analyst 2012; 137:4287-94. [DOI: 10.1039/c2an35436e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 2011; 119:2346-57. [PMID: 22207736 DOI: 10.1182/blood-2011-06-358705] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34(+) progenitor cells. Importantly, core promoter regions tended to have lower H3Ac levels in AML compared with progenitor cells, which suggested that a large number of genes are epigenetically silenced in AML. Intriguingly, we identified peroxiredoxin 2 (PRDX2) as a novel potential tumor suppressor gene in AML. H3Ac was decreased at the PRDX2 gene promoter in AML, which correlated with low mRNA and protein expression. We also observed DNA hypermethylation at the PRDX2 promoter in AML. Low protein expression of the antioxidant PRDX2 gene was clinically associated with poor prognosis in patients with AML. Functionally, PRDX2 acted as inhibitor of myeloid cell growth by reducing levels of reactive oxygen species (ROS) generated in response to cytokines. Forced PRDX2 expression inhibited c-Myc-induced leukemogenesis in vivo on BM transplantation in mice. Taken together, epigenome-wide analyses of H3Ac in AML led to the identification of PRDX2 as an epigenetically silenced growth suppressor, suggesting a possible role of ROS in the malignant phenotype in AML.
Collapse
|
33
|
Palande K, Roovers O, Gits J, Verwijmeren C, Iuchi Y, Fujii J, Neel BG, Karisch R, Tavernier J, Touw IP. Peroxiredoxin-controlled G-CSF signalling at the endoplasmic reticulum-early endosome interface. J Cell Sci 2011; 124:3695-705. [PMID: 22045733 DOI: 10.1242/jcs.089656] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) regulate growth factor receptor signalling at least in part by inhibiting oxidation-sensitive phosphatases. An emerging concept is that ROS act locally to affect signal transduction in different subcellular compartments and that ROS levels are regulated by antioxidant proteins at the same local level. Here, we show that the ER-resident antioxidant peroxiredoxin 4 (Prdx4) interacts with the cytoplasmic domain of the granulocyte colony-stimulating factor receptor (G-CSFR). This interaction occurs when the activated G-CSFR resides in early endosomes. Prdx4 inhibits G-CSF-induced signalling and proliferation in myeloid progenitors, depending on its redox-active cysteine core. Protein tyrosine phosphatase 1b (Ptp1b) appears to be a major downstream effector controlling these responses. Conversely, Ptp1b might keep Prdx4 active by reducing its phosphorylation. These findings unveil a new signal transduction regulatory circuitry involving redox-controlled processes in the ER and activated cytokine receptors in endosomes.
Collapse
Affiliation(s)
- Karishma Palande
- Department of Hematology, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|