1
|
Hjort K, Jurén P, Toro JC, Hoffner S, Andersson DI, Sandegren L. Dynamics of Extensive Drug Resistance Evolution of Mycobacterium tuberculosis in a Single Patient During 9 Years of Disease and Treatment. J Infect Dis 2020; 225:1011-1020. [PMID: 33045067 PMCID: PMC8921999 DOI: 10.1093/infdis/jiaa625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/08/2020] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mycobacterium tuberculosis is one of the hardest to treat bacterial pathogens with a high capacity to develop antibiotic resistance by mutations. Here we have performed whole-genome sequencing of consecutive M. tuberculosis isolates obtained during 9 years from a patient with pulmonary tuberculosis. The infecting strain was isoniazid resistant and during treatment it stepwise accumulated resistance mutations to 8 additional antibiotics. Heteroresistance was common and subpopulations with up to 3 different resistance mutations to the same drug coexisted. Sweeps of different resistant clones dominated the population at different time points, always coupled to resistance mutations coinciding with changes in the treatment regimens. Resistance mutations were predominant and no hitch-hiking, compensatory, or virulence-increasing mutations were detected, showing that the dominant selection pressure was antibiotic treatment. The results highlight the dynamic nature of M. tuberculosis infection, population structure, and resistance evolution and the importance of rapid antibiotic susceptibility tests to battle this pathogen.
Collapse
Affiliation(s)
- Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Ferreira LM, Sáfadi T, Ferreira JL. Wavelet-domain elastic net for clustering on genomes strains. Genet Mol Biol 2018; 41:884-892. [PMID: 30508009 PMCID: PMC6415607 DOI: 10.1590/1678-4685-gmb-2018-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022] Open
Abstract
We propose to evaluate genome similarity by combining discrete non-decimated
wavelet transform (NDWT) and elastic net. The wavelets represent a signal with
levels of detail, that is, hidden components are detected by means of the
decomposition of this signal, where each level provides a different
characteristic. The main feature of the elastic net is the grouping of
correlated variables where the number of predictors is greater than the number
of observations. The combination of these two methodologies applied in the
clustering analysis of the Mycobacterium tuberculosis genome
strains proved very effective, being able to identify clusters at each level of
decomposition.
Collapse
Affiliation(s)
- Leila Maria Ferreira
- Programa de Pós-Graduação em Estatística e Experimentação Agropecuária, Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Thelma Sáfadi
- Departamento de Estatística, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Juliano Lino Ferreira
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Pecuária Sul. Bagé, RS, Brazil
| |
Collapse
|
3
|
Maksum IP, Suhaili S, Amalia R, Kamara DS, Rachman SD, Rachman RW. PCR Multipleks untuk Identifikasi Mycobacterium tuberculosis Resisten terhadap Isoniazid dan Rifampisin pada Galur Lokal Balai Laboratorium Kesehatan Provinsi Jawa Barat. JURNAL KIMIA VALENSI 2018. [DOI: 10.15408/jkv.v4i2.7226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of multidrug-resistant tuberculosis (MDR-TB) cases has become the biggest source of the problem in the effort to eradicate tuberculosis (TB) disease in Indonesia. MDR-TB is a resistant TB bacteria to the two, at least, first-line TB drugs, e.g., rifampin and isoniazid. Unfortunately, the current diagnostics methods to identify the MDR-TB are still slow, unspecific, and inaccurate. The purpose of this study is to identify the isoniazid- and rifampin-resistant M. tuberculosis (local strain Balai Laboratorium Kesehatan Provinsi Jawa Barat) by using multiplex PCR method. The TB bacteria colonies were cultivated in Middlebrook 7h9 broth media, which followed by the isolation of chromosomal DNA. The best PCR condition was achieved by optimizing the annealing temperature, the concentration of magnesium chloride, and a number of the cycle. Multiplex PCR was conducted with inhA1-inhA2, rpoB1- rpoB2, katG1- katG2, and B1-B2 pair primers. Furthermore, the PCR product was characterized on 2% gel agarose electrophoresis which stained by using ethidium bromide. The result showed that isoniazid- and rifampin-resistant M. tuberculosis sample could be identified using multiplex PCR, producing DNA fragments with a size of 71 bp, 124 bp 186 bp, and 200 bp. A non-MDR-TB only produced one DNA fragments with a size of 200 bp. Therefore, it can be concluded that MDR-TB and non-MDR-TB can be distinguished using multiplex PCR with a combination of four pair primers.
Collapse
|
4
|
Panwalkar N, Chauhan DS, Desikan P. Spoligotype defined lineages of Mycobacterium tuberculosis and drug resistance: Merely a casual correlation? Indian J Med Microbiol 2017; 35:27-32. [PMID: 28303814 DOI: 10.4103/0255-0857.202327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Drug-resistant tuberculosis (TB) is a major challenge to TB control strategy worldwide. Analysis of genetic polymorphism among drug resistant Mycobacterium tuberculosis (MTB) strains may help provide some insight into the transmission dynamics of these strains. Spoligotyping is a widely used technique to identify genetic polymorphism, based on 43 known spacers interspersed between direct repeat regions. Considerable work has been done in various parts of the world using this technique to identify and analyse the polymorphic nature of MTB. Many studies have been carried out to determine the association of drug resistance with spoligotype defined lineages, and much data has been produced over the years. New information continues to be generated. This review aims to put together the findings of relevant studies in an attempt to understand the correlation of drug resistance with spoligotype defined lineages of MTB. This would help provide a perspective of the available data that can be used as a starting point to understand the molecular epidemiology of drug resistant TB.
Collapse
Affiliation(s)
- Nikita Panwalkar
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| | - Devendra S Chauhan
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Indian Council of Medical Research, Agra, Uttar Pradesh, India
| | - Prabha Desikan
- Department of Microbiology and NRL, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
6
|
Outhred AC, Holmes N, Sadsad R, Martinez E, Jelfs P, Hill-Cawthorne GA, Gilbert GL, Marais BJ, Sintchenko V. Identifying Likely Transmission Pathways within a 10-Year Community Outbreak of Tuberculosis by High-Depth Whole Genome Sequencing. PLoS One 2016; 11:e0150550. [PMID: 26938641 PMCID: PMC4777479 DOI: 10.1371/journal.pone.0150550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Background Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways. Methods We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants. Results Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade. Conclusion Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster.
Collapse
Affiliation(s)
- Alexander C. Outhred
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
- Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
- Children’s Hospital at Westmead, Sydney, Australia
- * E-mail:
| | - Nadine Holmes
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
| | - Rosemarie Sadsad
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
| | - Elena Martinez
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
| | - Peter Jelfs
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
| | - Grant A. Hill-Cawthorne
- Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
- School of Public Health, University of Sydney, Sydney, Australia
| | - Gwendolyn L. Gilbert
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
- Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Ben J. Marais
- Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
- Children’s Hospital at Westmead, Sydney, Australia
| | - Vitali Sintchenko
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research–Pathology West, Sydney, Australia
- Centre for Infectious Diseases and Microbiology–Public Health, Westmead Hospital, Sydney, Australia
- Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Genomic Analysis of Bacterial Outbreaks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zaychikova MV, Zakharevich NV, Sagaidak MO, Bogolubova NA, Smirnova TG, Andreevskaya SN, Larionova EE, Alekseeva MG, Chernousova LN, Danilenko VN. Mycobacterium tuberculosis Type II Toxin-Antitoxin Systems: Genetic Polymorphisms and Functional Properties and the Possibility of Their Use for Genotyping. PLoS One 2015; 10:e0143682. [PMID: 26658274 PMCID: PMC4680722 DOI: 10.1371/journal.pone.0143682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/08/2015] [Indexed: 12/05/2022] Open
Abstract
Various genetic markers such as IS-elements, DR-elements, variable number tandem repeats (VNTR), single nucleotide polymorphisms (SNPs) in housekeeping genes and other groups of genes are being used for genotyping. We propose a different approach. We suggest the type II toxin-antitoxin (TA) systems, which play a significant role in the formation of pathogenicity, tolerance and persistence phenotypes, and thus in the survival of Mycobacterium tuberculosis in the host organism at various developmental stages (colonization, infection of macrophages, etc.), as the marker genes. Most genes of TA systems function together, forming a single network: an antitoxin from one pair may interact with toxins from other pairs and even from other families. In this work a bioinformatics analysis of genes of the type II TA systems from 173 sequenced genomes of M. tuberculosis was performed. A number of genes of type II TA systems were found to carry SNPs that correlate with specific genotypes. We propose a minimally sufficient set of genes of TA systems for separation of M. tuberculosis strains at nine basic genotype and for further division into subtypes. Using this set of genes, we genotyped a collection consisting of 62 clinical isolates of M. tuberculosis. The possibility of using our set of genes for genotyping using PCR is also demonstrated.
Collapse
Affiliation(s)
- Marina V. Zaychikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Scientific Research Center for Biotechnology of Antibiotics "BIOAN", Moscow, Russia
| | | | - Maria O. Sagaidak
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- State University, Moscow Institute of Physics and Technology, Moscow, Russia
| | | | | | | | | | - Maria G. Alekseeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Scientific Research Center for Biotechnology of Antibiotics "BIOAN", Moscow, Russia
- * E-mail:
| |
Collapse
|
9
|
Källenius G, Correia-Neves M, Buteme H, Hamasur B, Svenson SB. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis (Edinb) 2015; 96:120-30. [PMID: 26586646 DOI: 10.1016/j.tube.2015.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/16/2015] [Indexed: 01/04/2023]
Abstract
Exposure to Mycobacterium tuberculosis (Mtb) may lead to active or latent tuberculosis, or clearance of Mtb, depending essentially on the quality of the host's immune response. This response is initiated through the interaction of Mtb cell wall surface components, mostly glycolipids, with cells of the innate immune system, particularly macrophages (Mφs) and dendritic cells (DCs). The way Mφs and DC alter their cytokine secretome, activate or inhibit different microbicidal mechanisms and present antigens and consequently trigger the T cell-mediated immune response impacts the host immune response against Mtb. Lipoarabinomannan (LAM) is one of the major cell wall components of Mtb. Mannosyl-capped LAM (ManLAM), and its related cell wall-associated types of glycolipids/lipoglycans, namely phosphatidylinositol mannosides (PIMs) and lipomannan (LM), exhibit important and distinct immunomodulatory properties. The structure, internal heterogeneity and abundance of these molecules vary between Mtb strains exhibiting distinct degrees of virulence. Thus ManLAM, LM and PIMs may be considered crucial Mtb-associated virulence factors in the pathogenesis of tuberculosis. Of particular relevance for this review, there is controversy about the specific immunomodulatory properties of these distinct glycolipids, particularly when tested as purified molecules in vitro. In addition to the variability in the glycolipid composition conflicting reports may also result from differences in the protocols used for glycolipid isolation and for in vitro experiments including immune cell types and procedures to generate them. Understanding the immunomodulatory properties of these cell wall glycolipids, how they differ between distinct Mtb strains, and how they influence the degree of Mtb virulence, is of utmost relevance to understand how the host mounts a protective or otherwise pathologic immune response. This is essential for the design of preventive strategies against tuberculosis. Thus, since clarifying the controversy on this matter is crucial we here review, summarize and discuss reported data from in vitro stimulation with the three major Mtb complex cell wall glycolipids (ManLAM, PIMs and LM) in an attempt to conciliate the conflicting findings.
Collapse
Affiliation(s)
- Gunilla Källenius
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden.
| | - Margarida Correia-Neves
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helen Buteme
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Beston Hamasur
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Stefan B Svenson
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| |
Collapse
|
10
|
Black PA, de Vos M, Louw GE, van der Merwe RG, Dippenaar A, Streicher EM, Abdallah AM, Sampson SL, Victor TC, Dolby T, Simpson JA, van Helden PD, Warren RM, Pain A. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics 2015; 16:857. [PMID: 26496891 PMCID: PMC4619333 DOI: 10.1186/s12864-015-2067-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. METHODS Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. RESULTS Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30% to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. CONCLUSIONS Our study demonstrated true levels of genetic diversity within an M. tuberculosis population and showed that genetic diversity may be re-defined when a selective pressure, such as drug exposure, is imposed on M. tuberculosis populations during the course of infection. This suggests that the genome of M. tuberculosis is more dynamic than previously thought, suggesting preparedness to respond to a changing environment.
Collapse
Affiliation(s)
- P A Black
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - M de Vos
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - G E Louw
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - R G van der Merwe
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - E M Streicher
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A M Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - S L Sampson
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - T C Victor
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - T Dolby
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - J A Simpson
- National Health Laboratory Services, Green Point, Cape Town, South Africa
| | - P D van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - R M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - A Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, Viratyosin W, Thaipisuttikul I. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics 2015; 290:1933-41. [DOI: 10.1007/s00438-015-1048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
12
|
Pouseele H, Supply P. Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
WGS Analysis and Interpretation in Clinical and Public Health Microbiology Laboratories: What Are the Requirements and How Do Existing Tools Compare? Pathogens 2014; 3:437-58. [PMID: 25437808 PMCID: PMC4243455 DOI: 10.3390/pathogens3020437] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 11/16/2022] Open
Abstract
Recent advances in DNA sequencing technologies have the potential to transform the field of clinical and public health microbiology, and in the last few years numerous case studies have demonstrated successful applications in this context. Among other considerations, a lack of user-friendly data analysis and interpretation tools has been frequently cited as a major barrier to routine use of these techniques. Here we consider the requirements of microbiology laboratories for the analysis, clinical interpretation and management of bacterial whole-genome sequence (WGS) data. Then we discuss relevant, existing WGS analysis tools. We highlight many essential and useful features that are represented among existing tools, but find that no single tool fulfils all of the necessary requirements. We conclude that to fully realise the potential of WGS analyses for clinical and public health microbiology laboratories of all scales, we will need to develop tools specifically with the needs of these laboratories in mind.
Collapse
|
14
|
Wamala D, Asiimwe B, Kigozi E, Mboowa G, Joloba M, Kallenius G. Clinico-pathological features of tuberculosis due to Mycobacterium tuberculosis Uganda genotype in patients with tuberculous lymphadenitis: a cross sectional study. BMC Clin Pathol 2014; 14:14. [PMID: 24690344 PMCID: PMC3974774 DOI: 10.1186/1472-6890-14-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Background Tuberculous lymphadenitis is next to pulmonary tuberculosis as the most common cause of tuberculosis. Uganda genotype, one of the sub-lineages of Mycobacterium tuberculosis, is the most prevalent cause of pulmonary tuberculosis in Uganda. We here investigate the clinicopathological characteristics of patients with tuberculous lymphadenitis infected with M. tuberculosis Uganda genotype compared with those infected with M. tuberculosis non-Uganda genotype strains. Methods Between 2010 and 2012, we enrolled 121 patients (mean age 28.5 yrs, male 48%; female 52%) with tuberculous lymphadenitis, and categorized them by their M. tuberculosis genotypes. The clinical features and lymph node cytopathological parameters were compared between patients in the Uganda and non-Uganda categories using a crude and multivariable logistic regression model with adjustment for confounding factors. Results Of the 121participants, 56 (46%) were infected with strains of Uganda genotype. Patients infected with this genotype had significantly lower frequency of abdominal lymphadenopathy (odds ratio 0.4, p = 0.046) after adjusting for sex, age and HIV. Abdominal lymphadenopathy was also significantly associated with abnormal chest X-ray (p = 0.027). Conclusion Tuberculous lymphadenitis patients infected with M. tuberculosis Uganda genotype were significantly less prone to have abdominal lymphadenopathy indicating potential reduced ability to disseminate and supporting the concept that differences in M. tuberculosis genotype may have clinical implications.
Collapse
Affiliation(s)
- Dan Wamala
- Department of Pathology, Mulago Hospital and Makerere University College of Health Sciences, PO Box 7072, Kampala, Uganda.
| | | | | | | | | | | |
Collapse
|
15
|
Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D. Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 2014; 9:e91024. [PMID: 24618815 PMCID: PMC3949705 DOI: 10.1371/journal.pone.0091024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/06/2014] [Indexed: 12/03/2022] Open
Abstract
Very little is known about the growth and mutation rates of Mycobacterium tuberculosis during latent infection in humans. However, studies in rhesus macaques have suggested that latent infections have mutation rates that are higher than that observed during active tuberculosis disease. Elevated mutation rates are presumed risk factors for the development of drug resistance. Therefore, the investigation of mutation rates during human latency is of high importance. We performed whole genome mutation analysis of M. tuberculosis isolates from a multi-decade tuberculosis outbreak of the New Zealand Rangipo strain. We used epidemiological and phylogenetic analysis to identify four cases of tuberculosis acquired from the same index case. Two of the tuberculosis cases occurred within two years of exposure and were classified as recently transmitted tuberculosis. Two other cases occurred more than 20 years after exposure and were classified as reactivation of latent M. tuberculosis infections. Mutation rates were compared between the two recently transmitted pairs versus the two latent pairs. Mean mutation rates assuming 20 hour generation times were 5.5X10−10 mutations/bp/generation for recently transmitted tuberculosis and 7.3X10−11 mutations/bp/generation for latent tuberculosis. Generation time versus mutation rate curves were also significantly higher for recently transmitted tuberculosis across all replication rates (p = 0.006). Assuming identical replication and mutation rates among all isolates in the final two years before disease reactivation, the u20hr mutation rate attributable to the remaining latent period was 1.6×10−11 mutations/bp/generation, or approximately 30 fold less than that calculated during the two years immediately before disease. Mutations attributable to oxidative stress as might be caused by bacterial exposure to the host immune system were not increased in latent infections. In conclusion, we did not find any evidence to suggest elevated mutation rates during tuberculosis latency in humans, unlike the situation in rhesus macaques.
Collapse
Affiliation(s)
- Roberto Colangeli
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Vic L. Arcus
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Ray T. Cursons
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Ali Ruthe
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Noel Karalus
- Respiratory Research Unit, Waikato Hospital, Hamilton, New Zealand
| | - Kathy Coley
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Soyeon Kim
- Department of Preventive Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Emily Marchiano
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, United States of America
| | - David Alland
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
16
|
Borgdorff MW, van Soolingen D. The re-emergence of tuberculosis: what have we learnt from molecular epidemiology? Clin Microbiol Infect 2013; 19:889-901. [PMID: 23731470 DOI: 10.1111/1469-0691.12253] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tuberculosis (TB) has re-emerged over the past two decades: in industrialized countries in association with immigration, and in Africa owing to the human immunodeficiency virus epidemic. Drug-resistant TB is a major threat worldwide. The variable and uncertain impact of TB control necessitates not only better tools (diagnostics, drugs, and vaccines), but also better insights into the natural history and epidemiology of TB. Molecular epidemiological studies over the last two decades have contributed to such insights by answering long-standing questions, such as the proportion of cases attributable to recent transmission, risk factors for recent transmission, the occurrence of multiple Mycobacterium tuberculosis infection, and the proportion of recurrent TB cases attributable to re-infection. M. tuberculosis lineages have been identified and shown to be associated with geographical origin. The Beijing genotype is strongly associated with multidrug resistance, and may have escaped from bacille Calmette-Guérin-induced immunity. DNA fingerprinting has quantified the importance of institutional transmission and laboratory cross-contamination, and has helped to focus contact investigations. Questions to be answered in the near future with whole genome sequencing include identification of chains of transmission within clusters of patients, more precise quantification of mixed infection, and transmission probabilities and rates of progression from infection to disease of various M. tuberculosis lineages, as well as possible variations in vaccine efficacy by lineage. Perhaps most importantly, dynamics in the population structure of M. tuberculosis in response to control measures in high-prevalence areas should be better understood.
Collapse
Affiliation(s)
- M W Borgdorff
- Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, The Netherlands; Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam and Centre for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Abstract
Recent years have witnessed an increased appreciation of the extent and relevance of strain-to-strain variation in Mycobacterium tuberculosis. This paradigm shift can largely be attributed to an improved understanding of the global population structure of this organism, and to the realisation that the various members of the M. tuberculosis complex (MTBC) harbour more genetic diversity than previously realised. Moreover, many studies using experimental models of infection have demonstrated that MTBC diversity translates into significant differences in immunogenecity and virulence . However, linking these experimental phenotypes to relevant clinical phenotypes has been difficult, and to date, largely unsuccessful. Nevertheless, emerging high-throughput technologies, in particular next-generation sequencing , offer new opportunities, and have already lead to important new insights. Given the complexity of the host-pathogen interaction in tuberculosis, systems approaches will be key to define the role of MTBC diversity in the fight against one of humankind's most important pathogens.
Collapse
|
18
|
Groenheit R, Ghebremichael S, Pennhag A, Jonsson J, Hoffner S, Couvin D, Koivula T, Rastogi N, Källenius G. Mycobacterium tuberculosis strains potentially involved in the TB epidemic in Sweden a century ago. PLoS One 2012; 7:e46848. [PMID: 23056484 PMCID: PMC3466202 DOI: 10.1371/journal.pone.0046848] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 09/10/2012] [Indexed: 11/30/2022] Open
Abstract
A hundred years ago the prevalence of tuberculosis (TB) in Sweden was one of the highest in the world. In this study we conducted a population-based search for distinct strains of Mycobacterium tuberculosis complex isolated from patients born in Sweden before 1945. Many of these isolates represent the M. tuberculosis complex population that fueled the TB epidemic in Sweden during the first half of the 20th century.
Collapse
Affiliation(s)
- Ramona Groenheit
- Department of Preparedness, Swedish Institute for Communicable Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance. Antimicrob Agents Chemother 2012; 56:6080-7. [PMID: 23006760 DOI: 10.1128/aac.01641-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being genetically monomorphic, the limited genetic diversity within the Mycobacterium tuberculosis complex (MTBC) has practical consequences for molecular methods for drug susceptibility testing and for the use of current antibiotics and those in clinical trials. It renders some representatives of MTBC intrinsically resistant against one or multiple antibiotics and affects the spectrum and consequences of resistance mutations selected for during treatment. Moreover, neutral or silent changes within genes responsible for drug resistance can cause false-positive results with hybridization-based assays, which have been recently introduced to replace slower phenotypic methods. We discuss the consequences of these findings and propose concrete steps to rigorously assess the genetic diversity of MTBC to support ongoing clinical trials.
Collapse
|
20
|
Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells. PLoS One 2012; 7:e42515. [PMID: 22880012 PMCID: PMC3411746 DOI: 10.1371/journal.pone.0042515] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/10/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is able to evade the immune defenses and may persist for years, decades and even lifelong in the infected host. Mtb cell wall components may contribute to such persistence by modulating several pivotal types of immune cells. Dendritic cells (DCs) are the most potent antigen-presenting cells and hence play a crucial role in the initial immune response to infections by connecting the innate with the adaptive immune system. PRINCIPAL FINDINGS We investigated the effects of two of the major mycobacterial cell wall-associated types of glycolipids, mannose-capped lipoarabinomannan (ManLAM) and phosphatidylinositol mannosides (PIMs) purified from the Mtb strains H37Rv and Mycobacterium bovis, on the maturation and cytokine profiles of immature human monocyte-derived DCs. ManLAM from Mtb H37Rv stimulated the release of pro-inflammatory cytokines TNF, IL-12, and IL-6 and expression of co-stimulatory (CD80, CD86) and antigen-presenting molecules (MHC class II). ManLAM from M. bovis also induced TNF, IL-12 and IL-6 but at significantly lower levels. Importantly, while ManLAM was found to augment LPS-induced DC maturation and pro-inflammatory cytokine production, addition of PIMs from both Mtb H37Rv and M. bovis strongly reduced this stimulatory effect. CONCLUSIONS These results indicate that the mycobacterial cell wall contains macromolecules of glycolipid nature which are able to induce strong and divergent effects on human DCs; i.e while ManLAM is immune-stimulatory, PIMs act as powerful inhibitors of DC cytokine responses. Thus PIMs may be important Mtb-associated virulence factors contributing to the pathogenesis of tuberculosis disease. These findings may also aid in the understanding of some earlier conflicting reports on the immunomodulatory effects exerted by different ManLAM preparations.
Collapse
|
21
|
Mazurek J, Ignatowicz L, Källenius G, Jansson M, Pawlowski A. Mycobacteria-infected bystander macrophages trigger maturation of dendritic cells and enhance their ability to mediate HIV transinfection. Eur J Immunol 2012; 42:1192-202. [PMID: 22539293 DOI: 10.1002/eji.201142049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synergistic interplay between Mycobacterium tuberculosis (Mtb) and HIV in coinfected individuals leads to the acceleration of both tuberculosis and HIV disease. Mtb, as well as HIV, may modulate the function of many immune cells, including DCs. To dissect the bystander impact of Mφs infected with Mtb on DC functionality, we here investigated changes in DC phenotype, cytokine profiles, and HIV-1 transinfecting ability. An in vitro system was used in which human monocyte-derived DCs were exposed to soluble factors released by Mφs infected with mycobacteria, including virulent clinical Mtb isolates and nonvirulent BCG. Soluble factors secreted from Mtb-infected Mφs, and to a lesser extent BCG-infected Mφs, resulted in the production of proinflammatory cytokines and partial upregulation of DC maturation markers. Interestingly, the HIV-1 transinfecting ability of DCs was enhanced upon exposure to soluble factors released by Mtb-infected Mφs. In summary, our study shows that DCs exposed to soluble factors released by mycobacteria-infected Mφs undergo maturation and display an augmented ability to transmit HIV-1 in trans. These findings highlight the important role of bystander effects during the course of Mtb-HIV coinfection and suggest that Mtb-infected Mφs may contribute to an environment that supports DC-mediated spread and amplification of HIV in coinfected individuals.
Collapse
Affiliation(s)
- Jolanta Mazurek
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Tuberculosis Genotyping Information Management System: Enhancing Tuberculosis Surveillance in the United States. INFECTION GENETICS AND EVOLUTION 2012; 12:782-8. [DOI: 10.1016/j.meegid.2011.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/14/2011] [Accepted: 10/16/2011] [Indexed: 11/21/2022]
|
23
|
Detection of first- and second-line drug resistance in Mycobacterium tuberculosis clinical isolates by pyrosequencing. J Clin Microbiol 2012; 50:2026-33. [PMID: 22461677 DOI: 10.1128/jcm.06664-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Conventional phenotypic drug susceptibility testing (DST) methods for Mycobacterium tuberculosis are laborious and very time-consuming. Early detection of drug-resistant tuberculosis (TB) is essential for prevention and control of TB transmission. We have developed a pyrosequencing method for simultaneous detection of mutations associated with resistance to rifampin, isoniazid, ethambutol, amikacin, kanamycin, capreomycin, and ofloxacin. Seven pyrosequencing assays were optimized for following loci: rpoB, katG, embB, rrs, gyrA, and the promoter regions of inhA and eis. The molecular method was evaluated on a panel of 290 clinical isolates of M. tuberculosis. In comparison to phenotypic DST, the pyrosequencing method demonstrated high specificity (100%) and sensitivity (94.6%) for detection of multidrug-resistant M. tuberculosis as well as high specificity (99.3%) and sensitivity (86.9%) for detection of extensively drug-resistant M. tuberculosis. The short turnaround time combined with multilocus sequencing of several isolates in parallel makes pyrosequencing an attractive method for drug resistance screening in M. tuberculosis.
Collapse
|
24
|
Ricks PM, Cain KP, Oeltmann JE, Kammerer JS, Moonan PK. Estimating the burden of tuberculosis among foreign-born persons acquired prior to entering the U.S., 2005-2009. PLoS One 2011; 6:e27405. [PMID: 22140439 PMCID: PMC3226620 DOI: 10.1371/journal.pone.0027405] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/16/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The true burden of reactivation of remote latent tuberculosis infection (reactivation TB) among foreign-born persons with tuberculosis (TB) within the United States is not known. Our study objectives were to estimate the proportion of foreign-born persons with TB due reactivation TB and to describe characteristics of foreign-born persons with reactivation TB. METHODS We conducted a cross-sectional study of patients with an M. tuberculosis isolate genotyped by the U.S. National TB Genotyping Service, 2005-2009. TB cases were attributed to reactivation TB if they were not a member of a localized cluster of cases. Localized clusters were determined by a spatial scan statistic of cases with isolates with matching TB genotype results. Crude odds ratios and 95% confidence intervals were used to assess relations between reactivation TB and select factors among foreign-born persons. MAIN RESULTS Among the 36,860 cases with genotyping and surveillance data reported, 22,151 (60%) were foreign-born. Among foreign-born persons with TB, 18,540 (83.7%) were attributed to reactivation TB. Reactivation TB among foreign-born persons was associated with increasing age at arrival, incidence of TB in the country of origin, and decreased time in the U.S. at the time of TB diagnosis. CONCLUSIONS Four out of five TB cases among foreign-born persons can be attributed to reactivation TB and present the largest challenge to TB elimination in the U.S. TB control strategies among foreign-born persons should focus on finding and treating latent tuberculosis infection prior to or shortly after arrival to the United States and on reducing the burden of LTBI through improvements in global TB control.
Collapse
Affiliation(s)
- Philip M. Ricks
- Division of Tuberculosis Elimination, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kevin P. Cain
- Division of Tuberculosis Elimination, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John E. Oeltmann
- Division of Tuberculosis Elimination, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - J. Steve Kammerer
- Division of Tuberculosis Elimination, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patrick K. Moonan
- Division of Tuberculosis Elimination, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|