1
|
Zhang J, Goods BA, Pattarawat P, Wang Y, Haining T, Zhang Q, Shalek AK, Duncan FE, Woodruff TK, Xiao S. An ex vivo ovulation system enables the discovery of novel ovulatory pathways and nonhormonal contraceptive candidates†. Biol Reprod 2023; 108:629-644. [PMID: 36708230 PMCID: PMC10106841 DOI: 10.1093/biolre/ioad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Ovulation is an integral part of women's menstrual cycle and fertility. Understanding the mechanisms of ovulation has broad implications for the treatment of anovulatory diseases and the development of novel contraceptives. Now, few studies have developed effective models that both faithfully recapitulate the hallmarks of ovulation and possess scalability. We established a three-dimensional encapsulated in vitro follicle growth (eIVFG) system that recapitulates folliculogenesis and produces follicles that undergo ovulation in a controlled manner. Here, we determined whether ex vivo ovulation preserves molecular signatures of ovulation and demonstrated its use in discovering novel ovulatory pathways and nonhormonal contraceptive candidates through a high-throughput ovulation screening. Mature murine follicles from eIVFG were induced to ovulate ex vivo using human chorionic gonadotropin and collected at 0, 1, 4, and 8 hours post-induction. Phenotypic analyses confirmed key ovulatory events, including cumulus expansion, oocyte maturation, follicle rupture, and luteinization. Single-follicle RNA-sequencing analysis revealed the preservation of ovulatory genes and dynamic transcriptomic profiles and signaling. Soft clustering identified distinct gene expression patterns and new pathways that may critically regulate ovulation. We further used this ex vivo ovulation system to screen 21 compounds targeting established and newly identified ovulatory pathways. We discovered that proprotein convertases activate gelatinases to sustain follicle rupture and do not regulate luteinization and progesterone secretion. Together, our ex vivo ovulation system preserves molecular signatures of ovulation, presenting a new powerful tool for studying ovulation and anovulatory diseases as well as for establishing a high-throughput ovulation screening to identify novel nonhormonal contraceptives for women.
Collapse
Affiliation(s)
- Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Tessa Haining
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alex K Shalek
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- The Institute for Medical Science and Engineering, Department of Chemistry, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
2
|
Saeki K, Qiu W, Friedman RA, Pan S, Lu J, Ichimiya S, Chio IIC, Shawber CJ, Kitajewski J, Hu J, Su GH. Inactivation of Notch4 Attenuated Pancreatic Tumorigenesis in Mice. CANCER RESEARCH COMMUNICATIONS 2022; 2:1601-1616. [PMID: 36970723 PMCID: PMC10035463 DOI: 10.1158/2767-9764.crc-22-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Expression of the Notch family of receptors is often upregulated in pancreatic ductal adenocarcinoma (PDAC). In this study, we focused on Notch4, which had not been investigated in PDAC. We generated KC (LSL-KrasG12D;p48-Cre), N4 - / - KC (Notch4- / -;LSL-KrasG12D;p48-Cre), PKC (p16fl/fl;LSL-KrasG12D;p48-Cre), and N4 - / - PKC (Notch4-/ -; p16fl/f l;LSL-KrasG12D;p48-Cre) genetically engineered mouse models (GEMM). We performed caerulein treatment in both KC and N4 - / - KC mice, and the development of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions were significantly diminished in the N4 - / - KC than in the KC GEMM (P = 0.01). This in vivo result was validated by in vitro ADM induction of the explant cultures of pancreatic acinar cells from the N4 - / - KC and KC mice (P < 0.001), confirming that Notch4 is an important contributor to early pancreatic tumorigenesis. To evaluate the role of Notch4 in the later stage of pancreatic tumorigenesis, we compared the PKC and N4 - / - PKC mice. The N4 - / - PKC mice had better overall survival (P = 0.012) and significantly reduced tumor burden (PanIN: P = 0.018 at 2 months, PDAC: P = 0.039 at 5 months) compared with the PKC GEMM. RNA-sequencing analysis of pancreatic tumor cell lines derived from the PKC and N4 - / - PKC GEMMs revealed that 408 genes were differentially expressed (FDR < 0.05) and Pcsk5 is a potential downstream effector of the Notch4 signaling pathway (P < 0.001). Low expression of Pcsk5 positively correlates with good survival in patients with PDAC (P = 0.028). We have identified a novel role for Notch4 signaling with tumor-promoting function in pancreatic tumorigenesis. Our study also uncovered a novel association between Pcsk5 and Notch4 signaling in PDAC. Significance We demonstrated that global inactivation of Notch4 significantly improved the survival of an aggressive mouse model for PDAC and provided preclinical evidence that Notch4 and Pcsk5 are novel targets for PDAC therapies.
Collapse
Affiliation(s)
- Kiyoshi Saeki
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Wanglong Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Richard A. Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biostatistics, Columbia University Irving Medical Center, New York, New York
| | - Jordan Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Shu Ichimiya
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Iok In Christine Chio
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Carrie J. Shawber
- Deparments of Obstetrics and Gynecology and Surgery, Columbia University Irving Medical Center, New York, New York
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois
| | - Jianhua Hu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biostatistics, Columbia University Irving Medical Center, New York, New York
| | - Gloria H. Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Walton KL, Goney MP, Peppas Z, Stringer JM, Winship A, Hutt K, Goodchild G, Maskey S, Chan KL, Brûlé E, Bernard DJ, Stocker WA, Harrison CA. Inhibin Inactivation in Female Mice Leads to Elevated FSH Levels, Ovarian Overstimulation, and Pregnancy Loss. Endocrinology 2022; 163:6543938. [PMID: 35255139 PMCID: PMC9272799 DOI: 10.1210/endocr/bqac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 11/21/2022]
Abstract
Inhibins are members of the transforming growth factor-β family, composed of a common α-subunit disulfide-linked to 1 of 2 β-subunits (βA in inhibin A or βB in inhibin B). Gonadal-derived inhibin A and B act in an endocrine manner to suppress the synthesis of follicle-stimulating hormone (FSH) by pituitary gonadotrope cells. Roles for inhibins beyond the pituitary, however, have proven difficult to delineate because deletion of the inhibin α-subunit gene (Inha) results in unconstrained expression of activin A and activin B (homodimers of inhibin β-subunits), which contribute to gonadal tumorigenesis and lethal cachectic wasting. Here, we generated mice with a single point mutation (Arg233Ala) in Inha that prevents proteolytic processing and the formation of bioactive inhibin. In vitro, this mutation blocked inhibin maturation and bioactivity, without perturbing activin production. Serum FSH levels were elevated 2- to 3-fold in InhaR233A/R233A mice due to the loss of negative feedback from inhibins, but no pathological increase in circulating activins was observed. While inactivation of inhibin A and B had no discernible effect on male reproduction, female InhaR233A/R233A mice had increased FSH-dependent follicle development and enhanced natural ovulation rates. Nevertheless, inhibin inactivation resulted in significant embryo-fetal resorptions and severe subfertility and was associated with disrupted maternal ovarian function. Intriguingly, heterozygous Inha+/R233A females had significantly enhanced fecundity, relative to wild-type littermates. These studies have revealed novel effects of inhibins in the establishment and maintenance of pregnancy and demonstrated that partial inactivation of inhibin A/B is an attractive approach for enhancing female fertility.
Collapse
Affiliation(s)
- Kelly L Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Correspondence: Kelly L Walton, PhD, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia 4072.
| | - Monica P Goney
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Zoe Peppas
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jessica M Stringer
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Amy Winship
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Karla Hutt
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Georgia Goodchild
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Shreya Maskey
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Karen L Chan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Correspondence: Craig A Harrison, PhD, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia 3168.
| |
Collapse
|
4
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Reverter A, Vitezica ZG, Naval-Sánchez M, Henshall J, Raidan FSS, Li Y, Meyer K, Hudson NJ, Porto-Neto LR, Legarra A. Association analysis of loci implied in "buffering" epistasis. J Anim Sci 2020; 98:5734278. [PMID: 32047922 DOI: 10.1093/jas/skaa045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
The existence of buffering mechanisms is an emerging property of biological networks, and this results in the buildup of robustness through evolution. So far, there are no explicit methods to find loci implied in buffering mechanisms. However, buffering can be seen as interaction with genetic background. Here we develop this idea into a tractable model for quantitative genetics, in which the buffering effect of one locus with many other loci is condensed into a single statistical effect, multiplicative on the total additive genetic effect. This allows easier interpretation of the results and simplifies the problem of detecting epistasis from quadratic to linear in the number of loci. Using this formulation, we construct a linear model for genome-wide association studies that estimates and declares the significance of multiplicative epistatic effects at single loci. The model has the form of a variance components, norm reaction model and likelihood ratio tests are used for significance. This model is a generalization and explanation of previous ones. We test our model using bovine data: Brahman and Tropical Composite animals, phenotyped for body weight at yearling and genotyped at high density. After association analysis, we find a number of loci with buffering action in one, the other, or both breeds; these loci do not have a significant statistical additive effect. Most of these loci have been reported in previous studies, either with an additive effect or as footprints of selection. We identify buffering epistatic SNPs present in or near genes reported in the context of signatures of selection in multi-breed cattle population studies. Prominent among these genes are those associated with fertility (INHBA, TSHR, ESRRG, PRLR, and PPARG), growth (MSTN, GHR), coat characteristics (KIT, MITF, PRLR), and heat resistance (HSPA6 and HSPA1A). In these populations, we found loci that have a nonsignificant statistical additive effect but a significant epistatic effect. We argue that the discovery and study of loci associated with buffering effects allow attacking the difficult problems, among others, of the release of maintenance variance in artificial and natural selection, of quick adaptation to the environment, and of opposite signs of marker effects in different backgrounds. We conclude that our method and our results generate promising new perspectives for research in evolutionary and quantitative genetics based on the study of loci that buffer effect of other loci.
Collapse
Affiliation(s)
| | | | | | | | | | - Yutao Li
- CSIRO Agriculture & Food, St. Lucia, Brisbane, QLD, Australia
| | - Karin Meyer
- Animal Genetics and Breeding Unit, University of New England, Armidale, NSW, Australia
| | - Nicholas J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| | | | | |
Collapse
|
6
|
Gene Expression Profiling in Ovaries and Association Analyses Reveal HEP21 as a Candidate Gene for Sexual Maturity in Chickens. Animals (Basel) 2020; 10:ani10020181. [PMID: 31973127 PMCID: PMC7071030 DOI: 10.3390/ani10020181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Chicken meat and egg productions are essential for human beings. Sexual maturity is important for both egg production and meat flavor. It is necessary to elucidate the genetic mechanism of chicken sexual maturity. In current study, we used digital gene expression (DGE) RNA-sequencing analysis to investigate differential expression of genes in pre-pubertal and post-pubertal ovaries in two different sub-breeds of chicken with different onsets of sexual maturity. After the analysis of RNA-sequencing data, numerous differentially expressed genes were found in both comparisons (32 day old, early-sexual-maturity pre-laying hens (P-F-O1) vs. 103 day old early-sexual-maturity laying hens (P-F-O2), and 32 day old late-sexual-maturity pre-laying hens (L-F-O1) vs. 153 day old late-sexual-maturity pre-laying hens (L-F-O2)). With the bioinformatic analysis, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene to conduct following experiment. The variations in HEP21 were screened and association analyses between rs315156783 and reproductive traits were investigated in fifth-generation Ningdu Yellow chickens from a closely bred population. These results demonstrated that HEP21 is a candidate gene for sexual maturity and ovary development in chickens. However, the underlying mechanism of how HEP21 regulates chicken sexual maturity needs further focused studies. Abstract The age of onset of sexual maturity is an important reproductive trait in chickens. In this study, we explored candidate genes associated with sexual maturity and ovary development in chickens. We performed DGE RNA-sequencing analyses of ovaries of pre-laying (P-F-O1, L-F-O1) and laying (P-F-O2, L-F-O2) hens of two sub-breeds of Ningdu Yellow chicken. A total of 3197 genes were identified in the two comparisons, and 966 and 1860 genes were detected exclusively in comparisons of P-F-O1 vs. P-F-O2 and L-F-O1 vs. L-F-O2, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that genes involved in transmembrane signaling receptor activity, cell adhesion, developmental processes, the neuroactive ligand–receptor interaction pathway, and the calcium signaling pathway were enriched in both comparisons. Genes on these pathways, including growth hormone (GH), integrin subunit beta 3 (ITGB3), thyroid stimulating hormone subunit beta (TSHB), prolactin (PRL), and transforming growth factor beta 3 (TGFB3), play indispensable roles in sexual maturity. As a gene unique to poultry, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene. Differential expression and association analyses were performed. RNA-seq data and qPCR showed that HEP21 was significantly differentially expressed in pre-pubertal and pubertal ovaries. A total of 23 variations were detected in HEP21. Association analyses of single nucleotide polymorphisms (SNPs) in HEP21 and reproductive traits showed that rs315156783 was significantly related to comb height at 84 and 91 days. These results indicate that HEP21 is a candidate gene for sexual maturity in chickens. Our results contribute to a more comprehensive understanding of sexual maturity and reproduction in chickens.
Collapse
|
7
|
Oikawa S, Kobayashi S, Miyagawa S, Iguchi T, Sato T. Diethylstilbestrol Alters the Expression of Activins in the Neonatal Mouse Ovary In Vitro. In Vivo 2019; 33:1095-1102. [PMID: 31280197 DOI: 10.21873/invivo.11578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIM Perinatal diethylstilbestrol (DES) treatment induces the polyovular follicle containing two or more oocytes in a follicle of mouse ovary through estrogen receptor (ER) β. The aim of the study was to investigate the direct effects of DES on the neonatal mouse ovary and the gene expression of activins. MATERIALS AND METHODS Ovaries from neonatal wild-type (WT) or ERβ- knockout (ERβKO) mice were organ-cultured in a serum-free medium with or without DES, and polyovular follicle induction and expression of activin signaling related genes were examined. RESULTS The polyovular follicle and cyst incidence in DES-treated organ-cultured ovaries from WT mice, but not from ERβKO mice, was significantly higher than that of control non-treated cultures. DES altered inhibin (Inh) a, Inhba and Inhbb expression in organ-cultured ovaries from C57BL/6J mice, while no change in Inha and an increase of Inhbb were observed by DES, in both WT and ERβKO mice. CONCLUSION Alterations in activin signaling are involved in the polyovular follicle induction by DES.
Collapse
Affiliation(s)
- Sachiyo Oikawa
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Sachiyo Kobayashi
- International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan .,International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
8
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Pankhurst MW, Shorakae S, Rodgers RJ, Teede HJ, Moran LJ. Efficacy of predictive models for polycystic ovary syndrome using serum levels of two antimüllerian hormone isoforms (proAMH and AMHN,C). Fertil Steril 2017; 108:851-857.e2. [DOI: 10.1016/j.fertnstert.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
10
|
Walton KL, Kelly EK, Johnson KE, Robertson DM, Stanton PG, Harrison CA. A Novel, More Efficient Approach to Generate Bioactive Inhibins. Endocrinology 2016; 157:2799-809. [PMID: 27054553 DOI: 10.1210/en.2015-1963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gonadal-derived inhibins are essential factors in mammalian reproduction, negatively regulating pituitary production of FSH. Interestingly, declines in inhibin levels across the menopause transition correlate with not only an increase in FSH but also a rapid decrease in bone mass. Therefore, inhibins have been touted as potential therapeutics for osteoporosis in postmenopausal women. However, as heterodimeric proteins of α- and β- (βA or βB)-subunits, inhibins are difficult to produce recombinantly, are poorly processed to their mature bioactive forms, and their expression is always accompanied by production of activins (β-subunit homodimers), the proteins they antagonize. In this study, we developed the methodology to circumvent most of these issues. Initially, the cleavage sites between the pro- and mature domains of the α- and βA-subunits were modified to ensure complete processing. These modifications led to a marked increase (9-fold) in the levels of bioactive inhibin A and a striking decrease (12.5-fold) in mature activin A production. Next, a single point mutation (M418A) was incorporated into the βA-subunit, which reduced residual activin activity approximately 100-fold and, in so doing, increased inhibin bioactivity 8-fold. Finally, we showed that inhibin A noncovalently associated with its prodomain was more potent (∼20-fold) than mature inhibin A in specific in vitro bioassays, indicating an important role of the prodomain in inhibin bioactivity. In conclusion, the production of potent inhibin analogs in the virtual absence of activin activity will greatly facilitate the investigation of the therapeutic potential of these gonadal hormones on bone and other tissues.
Collapse
Affiliation(s)
- Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Emily K Kelly
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | | | - David M Robertson
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Peter G Stanton
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
11
|
Bernard DJ. Disinhibiting an Inhibitor: Genetic Engineering Leads to Improvements in Recombinant Inhibin A Production. Endocrinology 2016; 157:2583-5. [PMID: 27363870 DOI: 10.1210/en.2016-1345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Canada QC H3G 1Y6
| |
Collapse
|
12
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
13
|
McLennan IS, Pankhurst MW. Anti-Müllerian hormone is a gonadal cytokine with two circulating forms and cryptic actions. J Endocrinol 2015; 226:R45-57. [PMID: 26163524 DOI: 10.1530/joe-15-0206] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Anti-Müllerian hormone (AMH) is a multi-faceted gonadal cytokine. It is present in all vertebrates with its original function in phylogeny being as a regulator of germ cells in both sexes, and as a prime inducer of the male phenotype. Its ancient functions appear to be broadly conserved in mammals, but with this being obscured by its overt role in triggering the regression of the Müllerian ducts in male embryos. Sertoli and ovarian follicular cells primarily release AMH as a prohormone (proAMH), which forms a stable complex (AMHN,C) after cleavage by subtilisin/kexin-type proprotein convertases or serine proteinases. Circulating AMH is a mixture of proAMH and AMHN,C, suggesting that proAMH is activated within the gonads and putatively by its endocrine target-cells. The gonadal expression of the cleavage enzymes is subject to complex regulation, and the preliminary data suggest that this influences the relative proportions of proAMH and AMHN,C in the circulation. AMH shares an intracellular pathway with the bone morphogenetic protein (BMP) and growth differentiation factor (GDF) ligands. AMH is male specific during the initial stage of development, and theoretically should produce male biases throughout the body by adding a male-specific amplification of BMP/GDF signalling. Consistent with this, some of the male biases in neuron number and the non-sexual behaviours of mice are dependent on AMH. After puberty, circulating levels of AMH are similar in men and women. Putatively, the function of AMH in adulthood maybe to add a gonadal influence to BMP/GDF-regulated homeostasis.
Collapse
Affiliation(s)
- Ian S McLennan
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Michael W Pankhurst
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
14
|
Chang HM, Cheng JC, Klausen C, Leung PCK. Recombinant BMP4 and BMP7 increase activin A production by up-regulating inhibin βA subunit and furin expression in human granulosa-lutein cells. J Clin Endocrinol Metab 2015; 100:E375-86. [PMID: 25562508 DOI: 10.1210/jc.2014-3026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Granulosa cell-derived activins play important roles in the regulation of ovarian functions. To date, there is limited information pertaining to the intracellular regulation, assembly, and secretion of endogenous activin A in human granulosa cells. OBJECTIVE The aim of this study was to examine the effects of BMP4 and BMP7 on furin expression and activin A production as well as the underlying mechanisms of action in human granulosa cells. DESIGN An established immortalized human granulosa cell line (SVOG) and primary granulosa-lutein cells were used as study models. Expression of inhibin subunits and furin as well as activin A accumulation were examined after exposure to recombinant human BMP4 or BMP7. A BMP type I receptor inhibitor (dorsomorphin), a furin inhibitor (Decanoyl-Arg-Val-Lys-Arg-chloromethylketone), and small interfering RNAs targeting SMAD4 and furin were used to verify the specificity of the effects and investigate potential mechanisms. SETTING The study was conducted in an academic center. MAIN OUTCOME MEASURES Specific mRNA and protein levels were examined using real time qPCR and Western blot. Activin A levels were measured using enzyme immunoassay. RESULTS Treatment with bone morphogenetic protein (BMP) 4 and BMP7 significantly increased furin mRNA and protein, inhibin βA mRNA, and activin A accumulation. Pre-treatment with dorsomorphin or SMAD4 knockdown reversed the stimulatory effects of BMP4 and BMP7 on furin and inhibin βA expression. In addition, furin knockdown or pre-treatment with a furin inhibitor attenuated the BMP4- and BMP7-induced accumulation of activin A. CONCLUSION Recombinant BMP4 and BMP7 increase the production of bioactive mature activin A by up-regulating both the production and proteolytic processing of inhibin βA subunit in human granulosa cells. The enhancement of inhibin βA subunit processing is attributable to a SMAD-dependent up-regulation of its proprotein convertase, furin. These findings provide a potential mechanism by which theca cells can regulate neighboring granulosa cells in the ovary.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, Canada V5Z 4H4
| | | | | | | |
Collapse
|
15
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kwok SC, Chakraborty D, Soares MJ, Dai G. Relative expression of proprotein convertases in rat ovaries during pregnancy. J Ovarian Res 2013; 6:91. [PMID: 24330629 PMCID: PMC3874651 DOI: 10.1186/1757-2215-6-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 11/29/2022] Open
Abstract
Background Proprotein convertases are a family of serine proteinases that are related to bacterial subtilisin and yeast kexin. They are involved in posttranslational processing of the precursors of a vast number of cellular proteins. With the exception of PC1/3, the relative expression levels of the proprotein convertases in the ovary during pregnancy have not been reported. The purpose of this study is to determine by real-time PCR the relative expression levels of all nine proprotein convertases in rat ovaries during pregnancy and at 3 days postpartum. Methods RNA was extracted from ovaries at Day 0, 4, 9, 11, 13, 15, 18, and 20 of pregnancy as well as 3 days postpartum. Relative expression levels of Pcsk1, Pcsk2, Furin, Pcsk4, Pcsk5, Pcsk6, Pcsk7, Mbtps1 and Pcsk9 were determined with real-time PCR. Results were reported as fold-change over the level at Day 0 of pregnancy. Results Results showed that Pcsk1 and Pcsk6 were upregulated as gestation advanced, in parallel with an observed increase in relaxin transcript. Pcsk2 showed downregulation as gestation advanced, while Pcsk5 showed relatively higher levels in early pregnancy and postpartum, but lower level in mid-pregnancy. On the other hand, Furin, Pcsk4, Pcsk7, Mbtps1 and Pcsk9 showed little change of expression throughout gestation. Conclusion PC1/3 (PCSK1) and PACE4 (PCSK6) may play an important role in proprotein processing in the ovary during late pregnancy.
Collapse
Affiliation(s)
- Simon Cm Kwok
- ORTD, Albert Einstein Medical Center, 5501 Old York Road, Philadelphia, PA 19141-3098, USA.
| | | | | | | |
Collapse
|
17
|
Yang X, Wang Q, Gao Z, Zhou Z, Peng S, Chang WL, Lin HY, Zhang W, Wang H. Proprotein convertase furin regulates apoptosis and proliferation of granulosa cells in the rat ovary. PLoS One 2013; 8:e50479. [PMID: 23418414 PMCID: PMC3572104 DOI: 10.1371/journal.pone.0050479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 10/24/2012] [Indexed: 12/20/2022] Open
Abstract
Folliculogenesis is tightly controlled by a series of hormones, growth factors and cytokines, many of which are secreted as proproteins and require processing by proteases before becoming functional. Furin is a member of the subtilisin-like proteases that activate large numbers of proprotein substrates and is ubiquitously expressed and implicated in many physiological and pathological processes. However, the precise role of furin during folliculogenesis has not been thoroughly investigated. The goal of the present work is to identify the role of furin in the development of granulosa cells during folliculogenesis, using immunohistochemistry, RT-PCR, Western blot and functional studies in primary cultured rat granulosa cells. Our results demonstrate that furin is highly expressed in granulosa cells and oocytes of the ovary with very limited expression in other ovarian cells such as the epithelial, stromal or theca cells. Furin siRNA significantly increases apoptosis of the granulosa cells from large antral/preovulatory follicles, in part via downregulation of the anti-apoptotic proteins, XIAP and p-AKT. On the contrary, furin siRNA markedly decreases proliferation of granulosa cells based on the downregulation of proliferation cell nuclear antigen (PCNA). Taken together, these data suggest that furin may play an important role in regulating apoptosis and proliferation of granulosa cells.
Collapse
Affiliation(s)
- Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingxin Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiying Gao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Zhi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Sha Peng
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wen-Lin Chang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weiyuan Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- * E-mail: (HW); (WZ)
| | - Hongmei Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HW); (WZ)
| |
Collapse
|
18
|
Schjoldager KTBG, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:2079-94. [PMID: 23022508 DOI: 10.1016/j.bbagen.2012.09.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively. SCOPE OF REVIEW Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease. MAJOR CONCLUSIONS Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events. GENERAL SIGNIFICANCE Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.
Collapse
|
19
|
Akiyama I, Yoshino O, Osuga Y, Shi J, Hirota Y, Hirata T, Harada M, Koga K, Fujimoto A, Yano T, Taketani Y. The localization and regulation of proprotein convertase subtilisin/kexin (PCSK) 6 in human ovary. Am J Reprod Immunol 2012; 68:491-8. [PMID: 22935039 DOI: 10.1111/aji.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 07/09/2012] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The aim of this study is to evaluate the expression and regulation of proprotein convertase subtilisin/kexin (PCSK) 6, which is known to be an important factor in the production of bone morphogenetic protein (BMP) cytokines in human ovary. METHOD OF STUDY The localization of PCSK 6 protein in normal human ovaries was examined by immunohistochemistry. Human granulosa cells (GC), obtained from 34 patients undergoing ovarian stimulation for in vitro fertilization, were cultured with BMP-2, BMP-6, BMP-7, BMP-15, growth differentiation factor (GDF)-9, and activin-A with or without FSH. PCSK 6 mRNA expression level was evaluated by quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR). RESULTS An immunohistochemistry study revealed that GC expressed PCSK 6 throughout follicular development, beginning in the primary follicle stage, while oocytes expressed PCSK 6 from the primordial follicle stage onwards. An in vitro study demonstrated that BMP-2, BMP-6, BMP-7, and BMP-15, not activin-A and GDF-9, decreased PCSK 6 gene expression in human GC. FSH induced PCSK 6 mRNA in the presence of activin-A or GDF-9. GDF-3, which is an inhibitor of BMP cytokines, also induced PCSK 6 mRNA expression. CONCLUSIONS PCSK 6, which is a critical factor to produce BMP cytokines, was suppressed with BMP stimulation in human GC, suggesting the presence of a negative feedback system in the follicular development process.
Collapse
Affiliation(s)
- Ikumi Akiyama
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schjoldager KTBG, Vester-Christensen MB, Goth CK, Petersen TN, Brunak S, Bennett EP, Levery SB, Clausen H. A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing. J Biol Chem 2011; 286:40122-32. [PMID: 21937429 DOI: 10.1074/jbc.m111.287912] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model for O-glycosylation especially of isolated sites, but serine and to a lesser extent threonine residues are frequently found adjacent to PC processing sites. In the present study we used in vitro enzyme assays and ex vivo cell models to systematically address the boundaries of the region within site-specific O-glycosylation affect PC processing. The results demonstrate that O-glycans within at least ±3 residues of the RXXR furin cleavage site may affect PC processing suggesting that site-specific O-glycosylation is a major co-regulator of PC processing.
Collapse
Affiliation(s)
- Katrine Ter-Borch Gram Schjoldager
- Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|