1
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Lista MJ, Winstone H, Wilson HD, Dyer A, Pickering S, Galao RP, De Lorenzo G, Cowton VM, Furnon W, Suarez N, Orton R, Palmarini M, Patel AH, Snell L, Nebbia G, Swanson C, Neil SJD. The P681H Mutation in the Spike Glycoprotein of the Alpha Variant of SARS-CoV-2 Escapes IFITM Restriction and Is Necessary for Type I Interferon Resistance. J Virol 2022; 96:e0125022. [PMID: 36350154 PMCID: PMC9749455 DOI: 10.1128/jvi.01250-22] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The appearance of new dominant variants of concern (VOC) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the coronavirus disease 2019 (COVID-19) pandemic. Of these, the alpha variant (also known as B.1.1.7), which appeared initially in the United Kingdom, became the dominant variant in much of Europe and North America in the first half of 2021. The spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation adjacent to the polybasic cleavage site, which has been suggested to enhance S cleavage. Here, we show that the alpha spike protein confers a level of resistance to beta interferon (IFN-β) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN-β and context-dependent resistance to IFITMs in the alpha S. P681H reduces dependence on endosomal cathepsins, consistent with enhanced cell surface entry. However, reversion of H681 does not reduce cleaved spike incorporation into particles, indicating that it exerts its effect on entry and IFN-β downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOC may well also confer a replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCE Accumulating evidence suggests that variants of concern (VOC) of SARS-CoV-2 evolve to evade the human immune response, with much interest focused on mutations in the spike protein that escape from antibodies. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here, we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type I interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2 and enhancement by its paralogue IFITM3. The key determinant of this is a proline-to-histidine change at position 681 in S adjacent to the furin cleavage site, which in the context of the alpha spike modulates cell entry pathways of SARS-CoV-2. Reversion of the mutation is sufficient to restore interferon and IFITM2 sensitivity, highlighting the dynamic nature of the SARS CoV-2 as it adapts to both innate and adaptive immunity in the humans.
Collapse
Affiliation(s)
- Maria Jose Lista
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Helena Winstone
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Harry D. Wilson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Adam Dyer
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Rui Pedro Galao
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Vanessa M. Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolas Suarez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| | - Luke Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chad Swanson
- Department of Infectious Diseases, King’s College London, London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King’s College London, London, United Kingdom
- UKRI Genotype-2-Phenotype Consortium, London, United Kingdom
| |
Collapse
|
3
|
Zhou J, Peacock TP, Brown JC, Goldhill DH, Elrefaey AME, Penrice-Randal R, Cowton VM, De Lorenzo G, Furnon W, Harvey WT, Kugathasan R, Frise R, Baillon L, Lassaunière R, Thakur N, Gallo G, Goldswain H, Donovan-Banfield I, Dong X, Randle NP, Sweeney F, Glynn MC, Quantrill JL, McKay PF, Patel AH, Palmarini M, Hiscox JA, Bailey D, Barclay WS. Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Rep 2022; 38:110344. [PMID: 35093235 PMCID: PMC8768428 DOI: 10.1016/j.celrep.2022.110344] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan C Brown
- Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Rebekah Penrice-Randal
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ria Lassaunière
- Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Nazia Thakur
- The Pirbright Institute, Woking, Surrey, UK; The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Hannah Goldswain
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - I'ah Donovan-Banfield
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Nadine P Randle
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK
| | - Fiachra Sweeney
- Department of Infectious Disease, Imperial College London, London, UK
| | - Martha C Glynn
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Paul F McKay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, Liverpool, UK; Infectious Diseases Horizontal Technology Centre (ID HTC), A(∗)STAR, Singapore, Singapore
| | | | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Kouprina N, Kim J, Larionov V. Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast. Curr Protoc 2021; 1:e207. [PMID: 34370406 PMCID: PMC8363120 DOI: 10.1002/cpz1.207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the high level of in vivo recombination that occurs between a specific genomic DNA fragment of interest and targeting sequences (hooks) in a TAR vector that are homologous to the 5' and 3' ends of the targeted region. Upon co-transformation into yeast, this results in the isolation of the chromosomal region of interest as a circular YAC molecule, which then propagates and segregates in yeast cells and can be selected for. In the updated TAR cloning protocol described here, the fraction of region-positive clones typically obtained is increased from 1% up to 35% by pre-treatment of the genomic DNA with specifically designed CRISPR/Cas9 endonucleases that create double-strand breaks (DSBs) bracketing the target genomic DNA sequence, thereby making the ends of the chromosomal region of interest highly recombinogenic. In addition, a new TAR vector was constructed that contains YAC and BAC cassettes, permitting direct transfer of a TAR-cloned DNA from yeast to bacterial cells. Once the TAR vector with the hooks is constructed and genomic DNA is prepared, the entire procedure takes 3 weeks to complete. The updated TAR protocol does not require significant yeast experience or extensively time-consuming yeast work because screening only about a dozen yeast transformants is typically enough to find a clone with the region of interest. TAR cloning of chromosomal fragments, individual genes, or gene families can be used for functional, structural, and population studies, for comparative genomics, and for long-range haplotyping, and has potential for gene therapy. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of CRISPR/Cas9-treated genomic DNA for TAR cloning Basic Protocol 2: Isolation of a gene or genomic locus by TAR cloning Basic Protocol 3: Transfer of TAR/YAC/BAC isolates from yeast to E. coli.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Jung‐Hyun Kim
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer InstituteNIHBethesdaMaryland
| |
Collapse
|
5
|
Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125:621-32. [PMID: 27116033 DOI: 10.1007/s00412-016-0588-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.
Collapse
|
6
|
Chavez-Dozal AA, Gorman C, Lostroh CP, Nishiguchi MK. Gene-swapping mediates host specificity among symbiotic bacteria in a beneficial symbiosis. PLoS One 2014; 9:e101691. [PMID: 25014649 PMCID: PMC4094467 DOI: 10.1371/journal.pone.0101691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/10/2014] [Indexed: 12/12/2022] Open
Abstract
Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin) from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii) to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.
Collapse
Affiliation(s)
- Alba A. Chavez-Dozal
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
| | - Clayton Gorman
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
| | - C. Phoebe Lostroh
- Colorado College, Department of Biology, Colorado Springs, Colorado, United States of America
| | - Michele K. Nishiguchi
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mugasa J, Qi W, Rusch S, Rottmann M, Beck HP. Genetic diversity of expressed Plasmodium falciparum var genes from Tanzanian children with severe malaria. Malar J 2012; 11:230. [PMID: 22799500 PMCID: PMC3488018 DOI: 10.1186/1475-2875-11-230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/02/2012] [Indexed: 11/17/2022] Open
Abstract
Background Severe malaria has been attributed to the expression of a restricted subset of the var multi-gene family, which encodes for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 mediates cytoadherence and sequestration of infected erythrocytes into the post-capillary venules of vital organs such as the brain, lung or placenta. var genes are highly diverse and can be classified in three major groups (ups A, B and C) and two intermediate groups (B/A and B/C) based on the genomic location, gene orientation and upstream sequences. The genetic diversity of expressed var genes in relation to severity of disease in Tanzanian children was analysed. Methods Children with defined severe (SM) and asymptomatic malaria (AM) were recruited. Full-length var mRNA was isolated and reversed transcribed into var cDNA. Subsequently, the DBL and N-terminal domains, and up-stream sequences were PCR amplified, cloned and sequenced. Sequences derived from SM and AM isolates were compared and analysed. Results The analysis confirmed that the var family is highly diverse in natural Plasmodium falciparum populations. Sequence diversity of amplified var DBL-1α and upstream regions showed minimal overlap among isolates, implying that the var gene repertoire is vast and most probably indefinite in endemic areas. var DBL-1α sequences from AM isolates were more diverse with more singletons found (p<0.05) than those from SM infections. Furthermore, few var DBL-1α sequences from SM patients were rare and restricted suggesting that certain PfEMP1 variants might induce severe disease. Conclusions The genetic sequence diversity of var genes of P. falciparum isolates from Tanzanian children is large and its relationship to disease severity has been studied. Observed differences suggest that different var genes might have fundamentally different roles in the host-parasite interaction. Further research is required to examine clear disease-associations of var gene subsets in different geographical settings. The importance of very strict clinical definitions and appropriate large control groups needs to be emphasized for future studies on disease associations of PfEMP1.
Collapse
|