1
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels (Austin) 2024; 18:2313323. [PMID: 38354101 PMCID: PMC10868539 DOI: 10.1080/19336950.2024.2313323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.
Collapse
Affiliation(s)
- Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Ana M. Hernández-Vega
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
3
|
Zhao L, Xu K, Talyzina I, Shi J, Li S, Yang Y, Zhang S, Zheng J, Sobolevsky AI, Chen H, Cui J. Human TRPV4 engineering yields an ultrasound-sensitive actuator for sonogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618766. [PMID: 39464052 PMCID: PMC11507911 DOI: 10.1101/2024.10.16.618766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sonogenetics offers non-invasive and cell-type specific modulation of cells genetically engineered to express ultrasound-sensitive actuators. Finding an ion channel to serve as sonogenetic actuator it critical for advancing this promising technique. Here, we show that ultrasound can activate human TRP channel hTRPV4. By screening different hTRPV4 variants, we identify a mutation F617L that increases mechano-sensitivity of this channel to ultrasound, while reduces its sensitivity to hypo-osmolarity, elevated temperature, and agonist. This altered sensitivity profile correlates with structural differences in hTRPV4-F617L compared to wild-type channels revealed by our cryo-electron microscopy analysis. We also show that hTRPV4-F617L can serve as a sonogenetic actuator for neuromodulation in freely moving mice. Our findings demonstrate the use of structure-guided mutagenesis to engineer ion channels with tailored properties of ideal sonogenetic actuators.
Collapse
|
4
|
Zhang F, Mehta H, Choudhary HH, Islam R, Hanafy KA. TRPV4 Channel in Neurological Disease: from Molecular Mechanisms to Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04518-5. [PMID: 39333347 DOI: 10.1007/s12035-024-04518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a non-selective cation channel with pivotal roles in various physiological processes, including osmosensitivity, mechanosensation, neuronal development, vascular tone regulation, and bone homeostasis in human bodies. Recent studies have made significant progress in understanding the structure and functional role of TRPV4, shedding light on its involvement in pathological processes, particularly in the realm of neurological diseases. Here, we aim to provide a comprehensive exploration of the multifaceted contributions of TRPV4 to neurological diseases, spanning its intricate molecular mechanisms to its potential as a target for therapeutic interventions. We delve into the structural and functional attributes of TRPV4, scrutinize its expression profile, and elucidate the possible mechanisms through which it participates in the pathogenesis of neurological disorders. Furthermore, we discussed recent years' progress in therapeutic strategies aimed at harnessing TRPV4 for the treatment of these diseases. These insights will provide a basis for understanding and designing modality-specific pharmacological agents to treat TRPV4-associated disorders.
Collapse
Affiliation(s)
- Feng Zhang
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Rezwanul Islam
- Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper University Health Care, Camden, NJ, USA
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Khalid A Hanafy
- Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper Neurological Institute Center for Neuroinflammation, Cooper Medical School at Rowan University, Camden, NJ, USA.
| |
Collapse
|
5
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Kim YS, Steward N, Kim A, Fehle I, Guilak F. Tuning the Response of Synthetic Mechanogenetic Gene Circuits Using Mutations in TRPV4. Tissue Eng Part A 2024. [PMID: 39007506 DOI: 10.1089/ten.tea.2024.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Conventional gene therapy approaches for drug delivery generally rely on constitutive expression of the transgene and thus lack precise control over the timing and magnitude of delivery. Synthetic gene circuits with promoters that are responsive to user-defined stimuli can provide a molecular switch that can be utilized by cells to control drug production. Our laboratory has previously developed a mechanogenetic gene circuit that can deliver biological drugs, such as interleukin-1 receptor antagonist (IL-1Ra), on-demand through the activation of Transient receptor potential family, vanilloid 4 (TRPV4), a mechanosensory ion channel that has been shown to be activated transiently in response to physical stimuli such as physiological mechanical loading or hypo-osmotic stimuli. The goal of this study was to use mutations in TRPV4 to further tune the response of this mechanogenetic gene circuit. Human iPSC-derived chondrocytes harboring targeted gain-of-function mutations of TRPV4 were chondrogenically differentiated. Both mutants-V620I and T89I-showed greater total IL-1Ra production compared with wild type following TRPV4 agonist treatment, as well as mechanical or osmotic loading, but with altered temporal dynamics. Gene circuit output was dependent on the degree of TRPV4 activation secondary to GSK101 concentration or strain magnitude during loading. V620I constructs secreted more IL-1Ra compared with T89I across all experimental conditions, indicating that two mutations that cause similar functional changes to TRPV4 can result in distinct circuit activation profiles that differ from wild-type cells. In summary, we successfully demonstrate proof-of-concept that point mutations in TRPV4 that alter channel function can be used to tune the therapeutic output of mechanogenetic gene circuits.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Nancy Steward
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Autumn Kim
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Isabella Fehle
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Kuwashima Y, Yanagawa M, Maekawa M, Abe M, Sako Y, Arita M. TRPV4-dependent Ca 2+ influx determines cholesterol dynamics at the plasma membrane. Biophys J 2024; 123:867-884. [PMID: 38433447 PMCID: PMC10995426 DOI: 10.1016/j.bpj.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The activities of the transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, are controlled by its surrounding membrane lipids (e.g., cholesterol, phosphoinositides). The transmembrane region of TRPV4 contains a cholesterol recognition amino acid consensus (CRAC) motif and its inverted (CARC) motif located in the plasmalemmal cytosolic leaflet. TRPV4 localizes in caveolae, a bulb-shaped cholesterol-rich domain at the plasma membrane. Here, we visualized the spatiotemporal interactions between TRPV4 and cholesterol at the plasma membrane in living cells by dual-color single-molecule imaging using total internal reflection fluorescence microscopy. To this aim, we labeled cholesterol at the cytosolic leaflets of the plasma membrane using a cholesterol biosensor, D4H. Our single-molecule tracking analysis showed that the TRPV4 molecules colocalize with D4H-accessible cholesterol molecules mainly in the low fluidity membrane domains in which both molecules are highly clustered. Colocalization of TRPV4 and D4H-accessible cholesterol was observed both inside and outside of caveolae. Agonist-evoked TRPV4 activation remarkably decreased colocalization probability and association rate between TRPV4 and D4H-accessible cholesterol molecules. Interestingly, upon TRPV4 activation, the particle density of D4H-accessible cholesterol molecules was decreased and the D4H-accessible cholesterol molecules in the fast-diffusing state were increased at the plasma membrane. The introduction of skeletal dysplasia-associated R616Q mutation into the CRAC/CARC motif of TRPV4, which reduced the interaction with cholesterol clusters, could not alter the D4H-accessible cholesterol dynamics. Mechanistically, TRPV4-mediated Ca2+ influx and the C-terminal calmodulin-binding site of TRPV4 are essential for modulating the plasmalemmal D4H-accessible cholesterol dynamics. We propose that TRPV4 remodels its surrounding plasmalemmal environment by manipulating cholesterol dynamics through Ca2+ influx.
Collapse
Affiliation(s)
- Yutaro Kuwashima
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan.
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
8
|
Sun X, Kong J, Dong S, Kato H, Sato H, Hirofuji Y, Ito Y, Wang L, Kato TA, Torio M, Sakai Y, Ohga S, Fukumoto S, Masuda K. TRPV4-mediated Ca 2+ deregulation causes mitochondrial dysfunction via the AKT/α-synuclein pathway in dopaminergic neurons. FASEB Bioadv 2023; 5:507-520. [PMID: 38094157 PMCID: PMC10714070 DOI: 10.1096/fba.2023-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 06/30/2024] Open
Abstract
Mutations in the gene encoding the transient receptor potential vanilloid member 4 (TRPV4), a Ca2+ permeable nonselective cation channel, cause TRPV4-related disorders. TRPV4 is widely expressed in the brain; however, the pathogenesis underlying TRPV4-mediated Ca2+ deregulation in neurodevelopment remains unresolved and an effective therapeutic strategy remains to be established. These issues were addressed by isolating mutant dental pulp stem cells from a tooth donated by a child diagnosed with metatropic dysplasia with neurodevelopmental comorbidities caused by a gain-of-function TRPV4 mutation, c.1855C > T (p.L619F). The mutation was repaired using CRISPR/Cas9 to generate corrected isogenic stem cells. These stem cells were differentiated into dopaminergic neurons and the pharmacological effects of folic acid were examined. In mutant neurons, constitutively elevated cytosolic Ca2+ augmented AKT-mediated α-synuclein (α-syn) induction, resulting in mitochondrial Ca2+ accumulation and dysfunction. The TRPV4 antagonist, AKT inhibitor, or α-syn knockdown, normalizes the mitochondrial Ca2+ levels in mutant neurons, suggesting the importance of mutant TRPV4/Ca2+/AKT-induced α-syn in mitochondrial Ca2+ accumulation. Folic acid was effective in normalizing mitochondrial Ca2+ levels via the transcriptional repression of α-syn and improving mitochondrial reactive oxygen species levels, adenosine triphosphate synthesis, and neurite outgrowth of mutant neurons. This study provides new insights into the neuropathological mechanisms underlying TRPV4-related disorders and related therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- Present address:
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
- Present address:
Department of Pediatric DentistryCollege of Stomatology, Xi'an Jiaotong UniversityXi'anChina
| | - Jun Kong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Shuangshan Dong
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral AnatomyKyushu University Graduate School of Dental ScienceFukuokaJapan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Yosuke Ito
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Lu Wang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Takahiro A. Kato
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Michiko Torio
- Department of General Pediatrics, Fukuoka Children's HospitalFukuokaJapan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
9
|
Dicks AR, Maksaev GI, Harissa Z, Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL, Guilak F. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. eLife 2023; 12:e71154. [PMID: 36810131 PMCID: PMC9949800 DOI: 10.7554/elife.71154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.
Collapse
Affiliation(s)
- Amanda R Dicks
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Grigory I Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Zainab Harissa
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
- Department of Mechanical Engineering and Material Science, Washington University in St. LouisSt. LouisUnited States
| | - Ruhang Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Nancy Steward
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Pathobiology - NYU College of DentistryNew YorkUnited States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| |
Collapse
|
10
|
McDonough RC, Price C. Targeted Activation of GPCR-Mediated Ca 2+ Signaling Drives Enhanced Cartilage-Like Matrix Formation. Tissue Eng Part A 2021; 28:405-419. [PMID: 34693731 PMCID: PMC9271335 DOI: 10.1089/ten.tea.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular calcium ([Ca2+]i) signaling is a critical regulator of chondrogenesis, chondrocyte differentiation, and cartilage development. Calcium (Ca2+) signaling is known to direct processes that govern chondrocyte gene expression, protein synthesis, cytoskeletal remodeling, and cell fate. Control of chondrocyte/chondroprogenitor Ca2+ signaling has been attempted through mechanical and/or pharmacological activation of endogenous Ca2+ signaling transducers; however, such approaches can lack specificity and/or precision regarding Ca2+ activation mechanisms. Synthetic signaling platforms permitting precise and selective Ca2+ signal transduction can improve dissection of the roles that [Ca2+]i signaling play in chondrocyte behavior. One such platform is the chemogenetic hM3Dq DREADD (designer receptor exclusively activated by designer drugs) that activates [Ca2+]i signaling via the Gαq-PLCβ-IP3-ER pathway upon clozapine N-oxide (CNO) administration. We previously demonstrated hM3Dq's ability to precisely and synthetically initiate robust [Ca2+]i transients and oscillatory [Ca2+]i signaling in chondrocyte-like ATDC5 cells. Here, we investigate the effects that long-term CNO stimulatory culture have on hM3Dq [Ca2+]i signaling dynamics, proliferation, and protein deposition in 2D ATDC5 cultures. Long-term culturing under repeated CNO stimulation modified the temporal dynamics of hM3Dq [Ca2+]i signaling, increased cell proliferation, and enhanced matrix production in a CNO dose- and frequency-dependent manner, and triggered the formation of cell condensations that developed aligned, anisotropic neotissue structures rich in cartilaginous proteoglycans and collagens, all in the absence of differentiation inducers. This study demonstrated Gαq-GPCR-mediated [Ca2+]i signaling involvement in chondroprogenitor proliferation and cartilage-like matrix production, and established hM3Dq as a powerful tool for elucidating the role of GPCR-mediated Ca2+ signaling in chondrogenesis and chondrocyte differentiation.
Collapse
Affiliation(s)
- Ryan C McDonough
- University of Delaware, 5972, Biomedical Engineering, 161 Colburn Lab, Newark, Delaware, United States, 19716-5600;
| | - Christopher Price
- University of Delaware, 5972, Biomedical Engineering, Newark, Delaware, United States;
| |
Collapse
|
11
|
Arbabian A, Iftinca M, Altier C, Singh PP, Isambert H, Coscoy S. Mutations in calmodulin-binding domains of TRPV4/6 channels confer invasive properties to colon adenocarcinoma cells. Channels (Austin) 2021; 14:101-109. [PMID: 32186440 PMCID: PMC7153789 DOI: 10.1080/19336950.2020.1740506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential (TRP) channels form a family of polymodal cation channels gated by thermal, mechanical, or chemical stimuli, with many of them involved in the control of proliferation, apoptosis, or cell cycle. From an evolutionary point of view, TRP family is characterized by high conservation of duplicated genes originating from whole-genome duplication at the onset of vertebrates. The conservation of such “ohnolog” genes is theoretically linked to an increased probability of generating phenotypes deleterious for the organism upon gene mutation. We aimed to test experimentally the hypothesis that TRP mutations, in particular gain-of-function, could be involved in the generation of deleterious phenotypes involved in cancer, such as gain of invasiveness. Indeed, a number of TRP channels have been linked to cancer progression, and exhibit changes in expression levels in various types of cancers. However, TRP mutations in cancer have been poorly documented. We focused on 2 TRPV family members, TRPV4 and TRPV6, and studied the effect of putative gain-of-function mutations on invasiveness properties. TRPV channels have a C-terminal calmodulin-binding domain (CaMBD) that has important functions for regulating protein function, through different mechanisms depending on the channel (channel inactivation/potentiation, cytoskeleton regulation). We studied the effect of mutations mimicking constitutive phosphorylation in TRPV4 and TRPV6 CaMBDs: TRPV4 S823D, S824D and T813D, TRPV6 S691D, S692D and T702. We found that most of these mutants induced a strong gain of invasiveness of colon adenocarcinoma SW480 cells, both for TRPV4 and TRPV6. While increased invasion with TRPV6 S692D and T702D mutants was correlated to increased mutant channel activity, it was not the case for TRPV4 mutants, suggesting different mechanisms with the same global effect of gain in deleterious phenotype. This highlights the potential importance to search for TRP mutations involved in cancer.
Collapse
Affiliation(s)
- Atousa Arbabian
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Mircea Iftinca
- Department of Physiology and Pharmacology. Inflammation Research Network, Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology. Inflammation Research Network, Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Canada
| | - Param Priya Singh
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Hervé Isambert
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Sylvie Coscoy
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, PSL Research University, Paris, France.,Sorbonne Université, Paris, France.,Equipe Labellisée « Ligue contre le Cancer »
| |
Collapse
|
12
|
Xu BY, Jin Y, Ma XH, Wang CY, Guo Y, Zhou D. The potential role of mechanically sensitive ion channels in the physiology, injury, and repair of articular cartilage. J Orthop Surg (Hong Kong) 2021; 28:2309499020950262. [PMID: 32840428 DOI: 10.1177/2309499020950262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biomechanical factors play an extremely important role in regulating the function of articular chondrocytes. Understanding the mechanical factors that drive chondrocyte biological responses is at the heart of our interpretation of cascade events leading to changes in articular cartilage osteoarthritis. The mechanism by which mechanical load is transduced into intracellular signals that can regulate chondrocyte gene expression remains largely unknown. The mechanically sensitive ion channel (MSC) may be one of its specific mechanisms. This review focuses on four ion channels involved in the mechanotransduction of chondrocytes, exploring their properties and the main factors that activate the associated pathways. The upstream and downstream potential relationships between the protein pathways were also explored. The specific biophysical mechanism of the chondrocyte mechanical microenvironment is becoming the focus of research. Elucidating the mechanotransduction mechanism of MSC is essential for the research of biophysical pathogenesis and targeted drugs in cartilage injury-related diseases.
Collapse
Affiliation(s)
- Bo-Yang Xu
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yu Jin
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xiao-Hui Ma
- School of Culture and Health Communication, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chi-Yu Wang
- Department of Electrical Engineering and Computer Sciences, 1438University of California, Berkeley, CA, USA
| | - Yi Guo
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| | - Dan Zhou
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Neuropathy-causing TRPV4 mutations disrupt TRPV4-RhoA interactions and impair neurite extension. Nat Commun 2021; 12:1444. [PMID: 33664271 PMCID: PMC7933254 DOI: 10.1038/s41467-021-21699-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
TRPV4 is a cell surface-expressed calcium-permeable cation channel that mediates cell-specific effects on cellular morphology and function. Dominant missense mutations of TRPV4 cause distinct, tissue-specific diseases, but the pathogenic mechanisms are unknown. Mutations causing peripheral neuropathy localize to the intracellular N-terminal domain whereas skeletal dysplasia mutations are in multiple domains. Using an unbiased screen, we identified the cytoskeletal remodeling GTPase RhoA as a TRPV4 interactor. TRPV4-RhoA binding occurs via the TRPV4 N-terminal domain, resulting in suppression of TRPV4 channel activity, inhibition of RhoA activation, and extension of neurites in vitro. Neuropathy but not skeletal dysplasia mutations disrupt TRPV4-RhoA binding and cytoskeletal outgrowth. However, inhibition of RhoA restores neurite length in vitro and in a fly model of TRPV4 neuropathy. Together these results identify RhoA as a critical mediator of TRPV4-induced cell structure changes and suggest that disruption of TRPV4-RhoA binding may contribute to tissue-specific toxicity of TRPV4 neuropathy mutations. TRPV4 dominant mutations cause neuropathy. Here, the authors show that TRPV4 binds and interacts with RhoA, modulating the actin cytoskeleton. Neuropathy-causing mutations of TRPV4 disrupt this complex, leading to RhoA activation and impairment of neurite extension in cultured cells and flies.
Collapse
|
14
|
TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021; 10:cells10010165. [PMID: 33467654 PMCID: PMC7830798 DOI: 10.3390/cells10010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.
Collapse
|
15
|
Zhong W, Hu L, Cao X, Zhao J, Zhang X, Lee M, Wang H, Zhang J, Chen Q, Feng C, Duo L, Wang X, Tang L, Lin Z, Yang Y. Genotype‒Phenotype Correlation of TRPV3-Related Olmsted Syndrome. J Invest Dermatol 2020; 141:545-554. [PMID: 32795529 DOI: 10.1016/j.jid.2020.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/08/2020] [Accepted: 06/07/2020] [Indexed: 11/15/2022]
Abstract
We have previously shown that gain-of-function variations in transient receptor potential vanilloid-3 (TRPV3) underlay Olmsted syndrome, a rare hyperkeratotic skin channelopathy. In this study, we attempt to establish a genotype‒phenotype correlation in Olmsted syndrome, which has been unclear owing to the rarity and heterogeneity of the condition. We identified five previously unreported TRPV3 variations (R416Q, R416W, L655P, W692S, and L694P) and three recurrent variations (G568D, G568V, and L673F) in nine unrelated patients. Seven variants were expressed in human embryonic kidney 293 cells, and channel behavior was characterized electrophysiologically, with results compared with the clinical severity. These variant TRPV3 channels, in either homomeric or heteromeric form, exhibited differentially elevated basal open probability, increased voltage sensitivity, and cytotoxicity. Functional changes were particularly pronounced in variants corresponding to severer Olmsted syndrome (e.g., L673F and W692S) but not in mild Olmsted syndrome variants (e.g., R416Q). Interestingly, the extent of functional rescue by wild-type TRPV3 in vitro was also consistent with the clinical severity of the variants. These findings, in combination with all reported cases, indicate a preliminary genotype‒phenotype correlation, that is, variations in the S4‒S5 linker and transient receptor potential domain of TRPV3 significantly enhance channel function, causing severe phenotype, whereas other variations appear to exert milder effects on channel function and disease phenotype.
Collapse
Affiliation(s)
- Weilong Zhong
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China; Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Linghan Hu
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xu Cao
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jiahui Zhao
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Xianning Zhang
- Department of Genetics, Institute of Genetics, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyang Lee
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Huijun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Zhang
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Quan Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Cheng Feng
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Lina Duo
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Shanghai, China
| | - Li Tang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Shanghai, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China
| | - Yong Yang
- Department of Dermatology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
16
|
Nishimura H, Kawasaki M, Tsukamoto M, Menuki K, Suzuki H, Matsuura T, Baba K, Motojima Y, Fujitani T, Ohnishi H, Yamanaka Y, Kosugi K, Okada Y, Tokuda K, Tajima T, Yoshioka T, Okimoto N, Ueta Y, Sakai A. Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice. Bone Rep 2020; 12:100268. [PMID: 32373678 PMCID: PMC7191598 DOI: 10.1016/j.bonr.2020.100268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Calcium balance is important in bone homeostasis. The transient receptor potential vanilloid (TRPV) channel is a nonselective cation channel permeable to calcium and is activated by various physiological and pharmacological stimuli. TRPV1 and TRPV4, in particular, have important roles in intracellular Ca2+ signaling and extracellular calcium homeostasis in bone cells. TRPV1 and TRPV4 separately mediate osteoclast and osteoblast differentiation, and deficiency in any of these channels leads to increased bone mass. However, it remains unknown whether bone mass increases in the absence of both TRPV1 and TRPV4. In this study, we used TRPV1 and TRPV4 double knockout (DKO) mice to evaluate their bone mass in vivo, and osteoclast and osteoblast differentiation in vitro. Our results showed that DKO mice and wild type (WT) mice had no significant difference in body weight and femur length. However, the results of dual-energy X-ray absorption, microcomputed tomography, and bone histomorphometry clearly showed that DKO mice had higher bone mass than WT mice. Furthermore, DKO mice had less multinucleated osteoclasts and had lower bone resorption. In addition, the results of cell culture using flushed bone marrow from mouse femurs and tibias showed that osteoclast differentiation was suppressed, whereas osteoblast differentiation was promoted in DKO mice. In conclusion, our results suggest that the increase in bone mass in DKO mice was induced not only by the suppression of osteoclast differentiation and activity but also by the augmentation of osteoblast differentiation and activity. Our findings reveal that both the single deficiency of TRPVs and the concurrent deficiency of TRPVs result in an increase in bone mass. Furthermore, our data showed that DKO mice and single KO mice had varying approaches to osteoclast and osteoblast differentiation in vitro, and therefore, it is important to conduct further studies on TRPVs regarding the increase in bone mass to explore not only individual but also a combination of TRPVs. Knockout of either TRPV1 or TRPV4 results in increased bone mass in mice. This study evaluates the effects of TRPV1 and TRPV4 double knockout (DKO) in mice. Concurrent TRPV1 and TRPV4 deficiency increases mouse bone mass. TRPV1 and TRPV4 DKO suppresses osteoclast differentiation and activity. TRPV1 and TRPV4 DKO enhances osteoblast differentiation and activity.
Collapse
Key Words
- ALP, alkaline phosphatase
- BMD, bone mineral density
- BMSCs, bone marrow mesenchymal stem cells
- Bone histomorphometry
- CB, cannabinoid
- CT, computed tomography
- Cell culture
- DKO, double knock out
- DXA, dual-energy X-ray absorption
- MNCs, multinucleated cells
- Micro-CT
- Osteogenesis
- PCR, polymerase chain reaction
- POc, preosteoclast
- Preosteoclast
- RANK, receptor activator of nuclear factor-kappa B
- RANKL, receptor activator of nuclear factor-kappa B ligand
- TRACP, tartrate-resistant acid phosphatase
- TRPV, transient receptor potential vanilloid
- Transient receptor potential vanilloid
- V1KO, TRPV1 knock out
- V4KO, TRPV4 knock out
- WT, wild type
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kunitaka Menuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kenji Kosugi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Kotaro Tokuda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Toru Yoshioka
- Department of Orthopaedics, Shimura Hospital, 3-13 Funairimachi Naka-ku, Hiroshima 730-0841, Japan
| | - Nobukazu Okimoto
- Okimoto Clinic, 185-4 Yutakamachikubi, Kure, Hiroshima 734-0304, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
17
|
Toft-Bertelsen TL, Yarishkin O, Redmon S, Phuong TTT, Križaj D, MacAulay N. Volume sensing in the transient receptor potential vanilloid 4 ion channel is cell type-specific and mediated by an N-terminal volume-sensing domain. J Biol Chem 2019; 294:18421-18434. [PMID: 31619514 DOI: 10.1074/jbc.ra119.011187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.
Collapse
Affiliation(s)
- Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Bldg. 24.6, 2200 Copenhagen N, Denmark
| | - Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Sarah Redmon
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84132.
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Bldg. 24.6, 2200 Copenhagen N, Denmark.
| |
Collapse
|
18
|
Toft-Bertelsen TL, Larsen BR, MacAulay N. Sensing and regulation of cell volume - we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role? Channels (Austin) 2019; 12:100-108. [PMID: 29424275 PMCID: PMC5972811 DOI: 10.1080/19336950.2018.1438009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cellular volume changes lead to initiation of cell volume regulatory events, the molecular identity of which remains unresolved. We here discuss experimental challenges associated with investigation of volume regulation during application of large, non-physiological osmotic gradients. The TRPV4 ion channel responds to volume increase irrespectively of the molecular mechanism underlying cell swelling, and is thus considered a sensor of volume changes. Evidence pointing towards the involvement of TRPV4 in subsequent volume regulatory mechanisms is intriguing, yet far from conclusive. We here present an experimental setting with astrocytic cell swelling in the absence of externally applied osmotic gradients, and the lack of evidence for involvement of TRPV4 in this regulatory volume response. Our aim with these new data and the preceding discussion is to stimulate further experimental effort in this area of research to clarify the role of TRPV4 and other channels and transporters in regulatory volume responses.
Collapse
Affiliation(s)
| | - Brian R Larsen
- a Department of Neuroscience , University of Copenhagen , Copenhagen , Denmark
| | - Nanna MacAulay
- a Department of Neuroscience , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
19
|
Faye E, Modaff P, Pauli R, Legare J. Combined Phenotypes of Spondylometaphyseal Dysplasia-Kozlowski Type and Charcot-Marie-Tooth Disease Type 2C Secondary to a TRPV4 Pathogenic Variant. Mol Syndromol 2018; 10:154-160. [PMID: 31191204 DOI: 10.1159/000495778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
TRPV4, a nonselective calcium permeable ion channel, is expressed broadly in many organs including bone and neurons. Pathogenic variants in TRPV4 are known to cause both a spectrum of skeletal dysplasias and neuropathies. Recent publications have documented a few patients who have a combined phenotype of skeletal dysplasia and neuropathy secondary to TRPV4 pathogenic variants. We present an additional patient who has an overlapping neuromuscular and skeletal phenotype secondary to a TRPV4 pathogenic variant. The patient has spondylometaphyseal dysplasia-Kozlowski type and Charcot-Marie-Tooth disease type 2C. This and prior reports illustrate that TRPV4-related skeletal dysplasias and TRPV4-related neuropathies are not fully distinct disorders secondary to unique sets of pathogenic variants as originally postulated, but rather are 2 phenotypes on the same spectrum that may or may not overlap. We suggest that evaluation for patients presenting with any TRPV4-related disorder include assessment for both skeletal and neurological findings.
Collapse
Affiliation(s)
- Eden Faye
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peggy Modaff
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Richard Pauli
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Janet Legare
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
20
|
Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, Fang J, Wilcox DA, Zhang DX. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J Biol Chem 2018; 293:5307-5322. [PMID: 29462784 DOI: 10.1074/jbc.m117.811075] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel of the transient receptor potential (TRP) superfamily activated by diverse stimuli, including warm temperature, mechanical forces, and lipid mediators such as arachidonic acid (AA) and its metabolites. This activation is tightly regulated by protein phosphorylation carried out by various serine/threonine or tyrosine kinases. It remains poorly understood how phosphorylation differentially regulates TRPV4 activation in response to different stimuli. We investigated how TRPV4 activation by AA, an important signaling process in the dilation of coronary arterioles, is affected by protein kinase A (PKA)-mediated phosphorylation at Ser-824. Wildtype and mutant TRPV4 channels were expressed in human coronary artery endothelial cells (HCAECs). AA-induced TRPV4 activation was blunted in the S824A mutant but was enhanced in the phosphomimetic S824E mutant, whereas the channel activation by the synthetic agonist GSK1016790A was not affected. The low level of basal phosphorylation at Ser-824 was robustly increased by the redox signaling molecule hydrogen peroxide (H2O2). The H2O2-induced phosphorylation was accompanied by an enhanced channel activation by AA, and this enhanced response was largely abolished by PKA inhibition or S824A mutation. We further identified a potential structural context dependence of Ser-824 phosphorylation-mediated TRPV4 regulation involving an interplay between AA binding and the possible phosphorylation-induced rearrangements of the C-terminal helix bearing Ser-824. These results provide insight into how phosphorylation specifically regulates TRPV4 activation. Redox-mediated TRPV4 phosphorylation may contribute to pathologies associated with enhanced TRPV4 activity in endothelial and other systems.
Collapse
Affiliation(s)
- Sheng Cao
- From the Department of Medicine, Cardiovascular Center
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Natalya S Zinkevich
- From the Department of Medicine, Cardiovascular Center.,Department of Health and Medicine, Carroll University, Waukesha, Wisconsin 53186, and
| | | | | | - Zhihao Wang
- From the Department of Medicine, Cardiovascular Center
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - David X Zhang
- From the Department of Medicine, Cardiovascular Center,
| |
Collapse
|
21
|
Zheng W, Hu R, Cai R, Hofmann L, Hu Q, Fatehi M, Long W, Kong T, Tang J, Light P, Flockerzi V, Cao Y, Chen X. Identification and characterization of hydrophobic gate residues in TRP channels. FASEB J 2018; 32:639-653. [DOI: 10.1096/fj.201700599rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wang Zheng
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Ruikun Hu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruiqi Cai
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Qiaolin Hu
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Mohammad Fatehi
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Wentong Long
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tim Kong
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
| | - Peter Light
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Ying Cao
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xing‐Zhen Chen
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| |
Collapse
|
22
|
Toft-Bertelsen TL, Križaj D, MacAulay N. When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J Physiol 2017; 595:3287-3302. [PMID: 28295351 DOI: 10.1113/jp274135] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Mammalian cells are frequently exposed to stressors causing volume changes. The transient receptor potential vanilloid 4 (TRPV4) channel translates osmotic stress into ion flux. The molecular mechanism coupling osmolarity to TRPV4 activation remains elusive. TRPV4 responds to isosmolar cell swelling and osmolarity translated via different aquaporins. TRPV4 functions as a volume-sensing ion channel irrespective of the origin of the cell swelling. ABSTRACT Transient receptor potential channel 4 of the vanilloid subfamily (TRPV4) is activated by a diverse range of molecular cues, such as heat, lipid metabolites and synthetic agonists, in addition to hyposmotic challenges. As a non-selective cation channel permeable to Ca2+ , it transduces physical stress in the form of osmotic cell swelling into intracellular Ca2+ -dependent signalling events. Its contribution to cell volume regulation might include interactions with aquaporin (AQP) water channel isoforms, although the proposed requirement for a TRPV4-AQP4 macromolecular complex remains to be resolved. To characterize the elusive mechanics of TRPV4 volume-sensing, we expressed the channel in Xenopus laevis oocytes together with AQP4. Co-expression with AQP4 facilitated the cell swelling induced by osmotic challenges and thereby activated TRPV4-mediated transmembrane currents. Similar TRPV4 activation was induced by co-expression of a cognate channel, AQP1. The level of osmotically-induced TRPV4 activation, although proportional to the degree of cell swelling, was dependent on the rate of volume changes. Importantly, isosmotic cell swelling obtained by parallel activation of the co-expressed water-translocating Na+ /K+ /2Cl- cotransporter promoted TRPV4 activation despite the absence of the substantial osmotic gradients frequently employed for activation. Upon simultaneous application of an osmotic gradient and the selective TRPV4 agonist GSK1016790A, enhanced TRPV4 activation was observed only with subsaturating stimuli, indicating that the agonist promotes channel opening similar to that of volume-dependent activation. We propose that, contrary to the established paradigm, TRPV4 is activated by increased cell volume irrespective of the molecular mechanism underlying cell swelling. Thus, the channel functions as a volume-sensor, rather than as an osmo-sensor.
Collapse
Affiliation(s)
- Trine L Toft-Bertelsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
24
|
Billert M, Skrzypski M, Sassek M, Szczepankiewicz D, Wojciechowicz T, Mergler S, Strowski MZ, Nowak KW. TRPV4 regulates insulin mRNA expression and INS-1E cell death via ERK1/2 and NO-dependent mechanisms. Cell Signal 2017; 35:242-249. [PMID: 28359774 DOI: 10.1016/j.cellsig.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
TRPV4 is a Ca2+-permeable, nonselective cation channel. Recently, TRPV4 was implicated in controlling peripheral insulin sensitivity, insulin secretion and apoptosis of pancreatic beta cells. Here, we characterize the role and potential mechanisms of TRPV4 in regulating insulin mRNA expression and cell death in insulin producing INS-1E cells and rat pancreatic islets. TRPV4 protein production was downregulated by siRNA. Intracellular calcium level was measured using Fluo-3 AM. Gene expression was studied by real-time PCR. Phosphorylation of extracellular signal-regulated kinase (ERK1 and ERK2) was detected by Western blot. Nitric oxide (NO) production was assessed by chemiluminescent reaction. Reactive oxygen species (ROS) level was analysed using a fluorogenic dye (DCFDA). Cell death was evaluated by determination of cytoplasmic histone-associated DNA fragments. Downregulation of TRPV4 neither affected insulin mRNA expression nor INS-1E cell growth. By contrast, pharmacological TRPV4 activation by 100nmol/l GSK1016790A increased Ca2+ levels in INS-1E cells and enhanced insulin mRNA expression after 1 and 3h, whereas a suppression of insulin mRNA expression was detected after 24h incubation. GSK1016790A increased ERK1/2 phosphorylation and NO production but not ROS production. Pharmacological blockade of ERK1/2 attenuated GSK1016790A-induced insulin mRNA expression. Inhibition of NO synthesis by l-NAME failed to affect insulin mRNA expression in GSK1016790A treated INS-1E cells. Furthermore, inhibition of NO production attenuated GSK1016790A-induced INS-1E cell death. In pancreatic islets, 100nmol/l GSK1016790A increased insulin mRNA levels after 3h without inducing cytotoxicity after 24h. In conclusion, TRPV4 differently regulates insulin mRNA expression in INS-1E cells via ERK1/2 and NO-dependent mechanisms.
Collapse
Affiliation(s)
- M Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - M Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | - M Sassek
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - D Szczepankiewicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - T Wojciechowicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - S Mergler
- Department of Ophthalmology, Charité University Medicine Berlin, Germany
| | - M Z Strowski
- Department of Hepatology and Gastroenterology, Interdisciplinary Centre of Metabolism, Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, 13353 Berlin, Germany; Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, 13086 Berlin, Germany
| | - K W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
25
|
Teng J, Loukin SH, Anishkin A, Kung C. A competing hydrophobic tug on L596 to the membrane core unlatches S4-S5 linker elbow from TRP helix and allows TRPV4 channel to open. Proc Natl Acad Sci U S A 2016; 113:11847-11852. [PMID: 27698146 PMCID: PMC5081603 DOI: 10.1073/pnas.1613523113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have some generalized physical understanding of how ion channels interact with surrounding lipids but few detailed descriptions on how interactions of particular amino acids with contacting lipids may regulate gating. Here we discovered a structure-specific interaction between an amino acid and inner-leaflet lipid that governs the gating transformations of TRPV4 (transient receptor potential vanilloid type 4). Many cation channels use a S4-S5 linker to transmit stimuli to the gate. At the start of TRPV4's linker helix is leucine 596. A hydrogen bond between the indole of W733 of the TRP helix and the backbone oxygen of L596 secures the helix/linker contact, which acts as a latch maintaining channel closure. The modeled side chain of L596 interacts with the inner lipid leaflet near the polar-nonpolar interface in our model-an interaction that we explored by mutagenesis. We examined the outward currents of TRPV4-expressing Xenopus oocyte upon depolarizations as well as phenotypes of expressing yeast cells. Making this residue less hydrophobic (L596A/G/W/Q/K) reduces open probability [Po; loss-of-function (LOF)], likely due to altered interactions at the polar-nonpolar interface. L596I raises Po [gain-of-function (GOF)], apparently by placing its methyl group further inward and receiving stronger water repulsion. Molecular dynamics simulations showed that the distance between the levels of α-carbons of H-bonded residues L596 and W733 is shortened in the LOFs and lengthened in the GOFs, strengthening or weakening the linker/TRP helix latch, respectively. These results highlight that L596 lipid attraction counteracts the latch bond in a tug-of-war to tune the Po of TRPV4.
Collapse
Affiliation(s)
- Jinfeng Teng
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen H Loukin
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Ching Kung
- Laboratory of Molecular and Cell Biology, University of Wisconsin, Madison, WI 53706; Department of Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
26
|
A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthritis Cartilage 2016; 24:1441-50. [PMID: 27063440 DOI: 10.1016/j.joca.2016.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Scottish fold cats, named for their unique ear shape, have a dominantly inherited osteochondrodysplasia involving malformation in the distal forelimbs, distal hindlimbs and tail, and progressive joint destruction. This study aimed to identify the gene and the underlying variant responsible for the osteochondrodysplasia. DESIGN DNA samples from 44 Scottish fold and 54 control cats were genotyped using a feline DNA array and a case-control genome-wide association analysis conducted. The gene encoding a calcium permeable ion channel, transient receptor potential cation channel, subfamily V, member 4 (TRPV4) was identified as a candidate within the associated region and sequenced. Stably transfected HEK293 cells were used to compare wild-type and mutant TRPV4 expression, cell surface localisation and responses to activation with a synthetic agonist GSK1016709A, hypo-osmolarity, and protease-activated receptor 2 stimulation. RESULTS The dominantly inherited folded ear and osteochondrodysplasia in Scottish fold cats is associated with a p.V342F substitution (c.1024G>T) in TRPV4. The change was not found in 648 unaffected cats. Functional analysis in HEK293 cells showed V342F mutant TRPV4 was poorly expressed at the cell surface compared to wild-type TRPV4 and as a consequence the maximum response to a synthetic agonist was reduced. Mutant TRPV4 channels had a higher basal activity and an increased response to hypotonic conditions. CONCLUSIONS Access to a naturally-occurring TRPV4 mutation in the Scottish fold cat will allow further functional studies to identify how and why the mutations affect cartilage and bone development.
Collapse
|
27
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
28
|
Mah W, Sonkusare SK, Wang T, Azeddine B, Pupavac M, Carrot-Zhang J, Hong K, Majewski J, Harvey EJ, Russell L, Chalk C, Rosenblatt DS, Nelson MT, Séguin C. Gain-of-function mutation in TRPV4 identified in patients with osteonecrosis of the femoral head. J Med Genet 2016; 53:705-9. [PMID: 27330106 PMCID: PMC5035228 DOI: 10.1136/jmedgenet-2016-103829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
Abstract
Background Osteonecrosis of the femoral head is a debilitating disease that involves impaired blood supply to the femoral head and leads to femoral head collapse. Methods We use whole-exome sequencing and Sanger sequencing to analyse a family with inherited osteonecrosis of the femoral head and fluorescent Ca2+ imaging to functionally characterise the variant protein. Results We report a family with four siblings affected with inherited osteonecrosis of the femoral head and the identification of a c.2480_2483delCCCG frameshift deletion followed by a c.2486T>A substitution in one allele of the transient receptor potential vanilloid 4 (TRPV4) gene. TRPV4 encodes a Ca2+-permeable cation channel known to play a role in vasoregulation and osteoclast differentiation. While pathogenic TRPV4 mutations affect the skeletal or nervous systems, association with osteonecrosis of the femoral head is novel. Functional measurements of Ca2+ influx through mutant TRPV4 channels in HEK293 cells and patient-derived dermal fibroblasts identified a TRPV4 gain of function. Analysis of channel open times, determined indirectly from measurement of TRPV4 activity within a cluster of TRPV4 channels, revealed that the TRPV4 gain of function was caused by longer channel openings. Conclusions These findings identify a novel TRPV4 mutation implicating TRPV4 and altered calcium homeostasis in the pathogenesis of osteonecrosis while reinforcing the importance of TRPV4 in bone diseases and vascular endothelium.
Collapse
Affiliation(s)
- Wayne Mah
- Division of Hematology and Oncology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Tracy Wang
- Division of Hematology and Oncology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bouziane Azeddine
- Division of Hematology and Oncology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jian Carrot-Zhang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Human Genetics, McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Kwangseok Hong
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada Department of Human Genetics, McGill University and Genome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Edward J Harvey
- Department of Surgery, Division of Orthopaedic Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Laura Russell
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Colin Chalk
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Chantal Séguin
- Division of Hematology and Oncology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Shin DM, Son A, Park S, Kim MS, Ahuja M, Muallem S. The TRPCs, Orais and STIMs in ER/PM Junctions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:47-66. [PMID: 27161224 DOI: 10.1007/978-3-319-26974-0_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ca(2+) second messenger is initiated at ER/PM junctions and propagates into the cell interior to convey the receptor information. The signal is maintained by Ca(2+) influx across the plasma membrane through the Orai and TRPC channels. These Ca(2+) influx channels form complexes at ER/PM junctions with the ER Ca(2+) sensor STIM1, which activates the channels. The function of STIM1 is modulated by other STIM isoforms like STIM1L, STIM2 and STIM2.1/STIM2β and by SARAF, which mediates the Ca(2+)-dependent inhibition of Orai channels. The ER/PM junctions are formed at membrane contact sites by tethering proteins that generate several types of ER/PM junctions, such as PI(4,5)P2-poor and PI(4,5)P2-rich domains. This chapter discusses several properties of the TRPC channels, the Orai channels and the STIMs, their key interacting proteins and how interaction of the STIMs with the channels gates their activity. The chapter closes by highlighting open questions and potential future directions in this field.
Collapse
Affiliation(s)
- Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, 120-752, South Korea.
| | - Aran Son
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Seonghee Park
- Department of Physiology, School of Medicine, EwhaWomans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul, 158-710, South Korea
| | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan City, Jeonbuk, South Korea
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Sullivan JM, Zimanyi CM, Aisenberg W, Bears B, Chen DH, Day JW, Bird TD, Siskind CE, Gaudet R, Sumner CJ. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. NEUROLOGY-GENETICS 2015; 1:e29. [PMID: 27066566 PMCID: PMC4811381 DOI: 10.1212/nxg.0000000000000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023]
Abstract
Objective: To characterize 2 novel TRPV4 mutations in 2 unrelated families exhibiting the Charcot-Marie-Tooth disease type 2C (CMT2C) phenotype. Methods: Direct CMT gene testing was performed on 2 unrelated families with CMT2C. A 4-fold symmetric tetramer model of human TRPV4 was generated to map the locations of novel TRPV4 mutations in these families relative to previously identified disease-causing mutations (neuropathy, skeletal dysplasia, and osteoarthropathy). Effects of the mutations on TRPV4 expression, localization, and channel activity were determined by immunocytochemical, immunoblotting, Ca2+ imaging, and cytotoxicity assays. Results: Previous studies suggest that neuropathy-causing mutations occur primarily at arginine residues on the convex face of the TRPV4 ankyrin repeat domain (ARD). Further highlighting the key role of this domain in TRPV4-mediated hereditary neuropathy, we report 2 novel heterozygous missense mutations in the TRPV4-ARD convex face (p.Arg237Gly and p.Arg237Leu). Generation of a model of the TRPV4 homotetramer revealed that while ARD residues mutated in neuropathy (including Arg237) are likely accessible for intermolecular interactions, skeletal dysplasia–causing TRPV4 mutations occur at sites suggesting disruption of intramolecular and/or intersubunit interactions. Like previously described neuropathy-causing mutations, the p.Arg237Gly and p.Arg237Leu substitutions do not alter TRPV4 subcellular localization in transfected cells but cause elevations of cytosolic Ca2+ levels and marked cytotoxicity. Conclusions: These findings expand the number of ARD residues mutated in TRPV4-mediated neuropathy, providing further evidence of the central importance of this domain to TRPV4 function in peripheral nerve.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Christina M Zimanyi
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - William Aisenberg
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Breanne Bears
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Dong-Hui Chen
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - John W Day
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Thomas D Bird
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Carly E Siskind
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Rachelle Gaudet
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Charlotte J Sumner
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
31
|
Hurd L, Kirwin SM, Boggs M, Mackenzie WG, Bober MB, Funanage VL, Duncan RL. A mutation in TRPV4 results in altered chondrocyte calcium signaling in severe metatropic dysplasia. Am J Med Genet A 2015; 167A:2286-93. [PMID: 26249260 DOI: 10.1002/ajmg.a.37182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/15/2015] [Indexed: 11/06/2022]
Abstract
Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is a polymodal modulated non-selective cation channel required for normal development and maintenance of bone and cartilage. Heterozygous mutations of this channel cause a variety of channelopathies, including metatropic dysplasia (MD). We analyzed the effect of a novel TRPV4 mutation c.2398G>A, p.Gly800Asp on intracellular calcium ([Ca(2+) ]i ) regulation in chondrocytes and compared this response to chondrocytes with a frequently observed mutation, c.2396C>T, p.Pro799Leu. We observed temperature-dependent [Ca(2+) ]i oscillations in both intact and MD chondrocytes however, MD mutations exhibited increased peak magnitudes of [Ca(2+) ]i during oscillations. We also found increased baseline [Ca(2+) ]i in MD primary cells, as well as increased [Ca(2+) ]i response to either hypotonic swelling or the TRVP4-specific agonist, GSK1016790A. Oscillations and stimulation responses were blocked with the TRPV4-specific antagonist, GSK205. Analysis of [Ca(2+) ]i response kinetics showed that MD chondrocytes had increased frequency of temperature-sensitive oscillations, and the magnitude and duration of [Ca(2+) ]i responses to given stimuli. Duration of the response of the p.Gly800Asp mutation to stimulation was greater than for the p.Pro799Leu mutation. These experiments show that this region of the channel is essential for proper [Ca(2+) ]i regulation. These studies of primary cells from patients show how both mutant and WT TRPV4 channels regulate cartilage and bone development. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren Hurd
- Department of Biological Sciences, University of Delaware, Newark, Delaware.,Molecular Diagnostics Laboratory, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Susan M Kirwin
- Molecular Diagnostics Laboratory, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Mary Boggs
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - William G Mackenzie
- Department of Orthopaedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Michael B Bober
- Department of Orthopaedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware.,Division of Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Vicky L Funanage
- Department of Biological Sciences, University of Delaware, Newark, Delaware.,Molecular Diagnostics Laboratory, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
32
|
Loukin SH, Teng J, Kung C. A channelopathy mechanism revealed by direct calmodulin activation of TrpV4. Proc Natl Acad Sci U S A 2015; 112:9400-5. [PMID: 26170305 PMCID: PMC4522800 DOI: 10.1073/pnas.1510602112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+)-calmodulin (CaM) regulates varieties of ion channels, including Transient Receptor Potential vanilloid subtype 4 (TrpV4). It has previously been proposed that internal Ca(2+) increases TrpV4 activity through Ca(2+)-CaM binding to a C-terminal Ca(2+)-CaM binding domain (CBD). We confirmed this model by directly presenting Ca(2+)-CaM protein to membrane patches excised from TrpV4-expressing oocytes. Over 50 TRPV4 mutations are now known to cause heritable skeletal dysplasia (SD) and other diseases in human. We have previously examined 14 SD alleles and found them to all have gain-of-function effects, with the gain of constitutive open probability paralleling disease severity. Among the 14 SD alleles examined, E797K and P799L are located immediate upstream of the CBD. They not only have increase basal activity, but, unlike the wild-type or other SD-mutant channels examined, they were greatly reduced in their response to Ca(2+)-CaM. Deleting a 10-residue upstream peptide (Δ795-804) that covers the two SD mutant sites resulted in strong constitutive activity and the complete lack of Ca(2+)-CaM response. We propose that the region immediately upstream of CBD is an autoinhibitory domain that maintains the closed state through electrostatic interactions, and adjacent detachable Ca(2+)-CaM binding to CBD sterically interferes with this autoinhibition. This work further supports the notion that TrpV4 mutations cause SD by constitutive leakage. However, the closed conformation is likely destabilized by various mutations by different mechanisms, including the permanent removal of an autoinhibition documented here.
Collapse
Affiliation(s)
- Stephen H Loukin
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706;
| | - Jinfeng Teng
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706
| | - Ching Kung
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; Department of Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
33
|
L596-W733 bond between the start of the S4-S5 linker and the TRP box stabilizes the closed state of TRPV4 channel. Proc Natl Acad Sci U S A 2015; 112:3386-91. [PMID: 25737550 DOI: 10.1073/pnas.1502366112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike other cation channels, each subunit of most transient receptor potential (TRP) channels has an additional TRP-domain helix with an invariant tryptophan immediately trailing the gate-bearing S6. Recent cryo-electron microscopy of TRP vanilloid subfamily, member 1 structures revealed that this domain is a five-turn amphipathic helix, and the invariant tryptophan forms a bond with the beginning of the four-turn S4-S5 linker helix. By homology modeling, we identified the corresponding L596-W733 bond in TRP vanilloid subfamily, member 4 (TRPV4). The L596P mutation blocks bone development in Kozlowski-type spondylometaphyseal dysplasia in human. Our previous screen also isolated W733R as a strong gain-of-function (GOF) mutation that suppresses growth when the W733R channel is expressed in yeast. We show that, when expressed in Xenopus oocytes, TRPV4 with the L596P or W733R mutation displays normal depolarization-induced activation and outward rectification. However, these mutant channels have higher basal open probabilities and limited responses to the agonist GSK1016790A, explaining their biological GOF phenotypes. In addition, W733R current fails to inactivate during depolarization. Systematic replacement of W733 with amino acids of different properties produced similar electrophysiological and yeast phenotypes. The results can be interpreted consistently in the context of the homology model of TRPV4 molecule we have developed and refined using simulations in explicit medium. We propose that this bond maintains the orientation of the S4-S5 linker to keep the S6 gate closed. Further, the two partner helices, both amphipathic and located at the polar-nonpolar interface of the inner lipid monolayer, may receive and integrate various physiological stimuli.
Collapse
|
34
|
Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J Neurosci 2015; 34:15689-700. [PMID: 25411497 DOI: 10.1523/jneurosci.2540-14.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function.
Collapse
|
35
|
Leddy HA, McNulty AL, Guilak F, Liedtke W. Unraveling the mechanism by which TRPV4 mutations cause skeletal dysplasias. Rare Dis 2014; 2:e962971. [PMID: 26942100 PMCID: PMC4755236 DOI: 10.4161/2167549x.2014.962971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/03/2014] [Indexed: 01/02/2023] Open
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a mechano- and osmosensitive cation channel that is highly expressed in chondrocytes, the cells in cartilage. A large number of mutations in TRPV4 have been linked to skeletal dysplasias, and the goal of this addendum is to shed light on the mechanisms by which mutations in TRPV4 can cause skeletal dysplasias by focusing on 3 recent publications. These papers suggest that skeletal dysplasia-causing TRPV4 mutations reprogram chondrocytes to increase follistatin production, which inhibits BMP signaling, thus slowing the process of endochondral ossification and leading to skeletal dysplasia. In spite of these important advances in our understanding of the disease mechanism, much remains to be elucidated. Nonetheless, these new data suggest that inhibiting aberrant TRPV4 activity in the cartilage may be a promising direction for therapeutic intervention.
Collapse
Affiliation(s)
- Holly A Leddy
- Department of orthopedic Surgery; Duke University Medical Center ; Durham, NC USA
| | - Amy L McNulty
- Department of orthopedic Surgery; Duke University Medical Center ; Durham, NC USA
| | - Farshid Guilak
- Department of orthopedic Surgery; Duke University Medical Center ; Durham, NC USA
| | - Wolfgang Liedtke
- Department of Neurology and Duke University Clinics for Pain and Palliative Care; Duke University Medical Center ; Durham, NC USA
| |
Collapse
|
36
|
Teng J, Loukin S, Anishkin A, Kung C. The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 2014; 467:27-37. [PMID: 24888690 DOI: 10.1007/s00424-014-1530-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 12/27/2022]
Abstract
Focus on touch and hearing distracts attention from numerous subconscious force sensors, such as the vital control of blood pressure and systemic osmolarity, and sensors in nonanimals. Multifarious manifestations should not obscure invariant and fundamental physicochemical principles. We advocate that force from lipid (FFL) is one such principle. It is based on the fact that the self-assembled bilayer necessitates inherent forces that are large and anisotropic, even at life's origin. Functional response of membrane proteins is governed by bilayer force changes. Added stress can redirect these forces, leading to geometric changes of embedded proteins such as ion channels. The FFL principle was first demonstrated when purified bacterial mechanosensitive channel of large conductance (MscL) remained mechanosensitive (MS) after reconstituting into bilayers. This key experiment has recently been unequivocally replicated with two vertebrate MS K2p channels. Even the canonical Kv and the Drosophila canonical transient receptor potentials (TRPCs) have now been shown to be MS in biophysical and in physiological contexts, supporting the universality of the FFL paradigm. We also review the deterministic role of mechanical force during stem cell differentiation as well as the cell-cell and cell-matrix tethers that provide force communications. In both the ear hair cell and the worm's touch neuron, deleting the cadherin or microtubule tethers reduces but does not eliminate MS channel activities. We found no evidence to distinguish whether these tethers directly pull on the channel protein or a surrounding lipid platform. Regardless of the implementation, pulling tether tenses up the bilayer. Membrane tenting is directly visible at the apexes of the stereocilia.
Collapse
Affiliation(s)
- Jinfeng Teng
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI, 53706, USA
| | | | | | | |
Collapse
|
37
|
Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 2014; 111:7898-905. [PMID: 24850861 DOI: 10.1073/pnas.1313364111] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life's origin entails enclosing a compartment to hoard material, energy, and information. The envelope necessarily comprises amphipaths, such as prebiotic fatty acids, to partition the two aqueous domains. The self-assembled lipid bilayer comes with a set of properties including its strong anisotropic internal forces that are chemically or physically malleable. Added bilayer stretch can alter force vectors on embedded proteins to effect conformational change. The force-from-lipid principle was demonstrated 25 y ago when stretches opened purified Escherichia coli MscL channels reconstituted into artificial bilayers. This reductionistic exercise has rigorously been recapitulated recently with two vertebrate mechanosensitive K(+) channels (TREK1 and TRAAK). Membrane stretches have also been known to activate various voltage-, ligand-, or Ca(2+)-gated channels. Careful analyses showed that Kv, the canonical voltage-gated channel, is in fact exquisitely sensitive even to very small tension. In an unexpected context, the canonical transient-receptor-potential channels in the Drosophila eye, long presumed to open by ligand binding, is apparently opened by membrane force due to PIP2 hydrolysis-induced changes in bilayer strain. Being the intimate medium, lipids govern membrane proteins by physics as well as chemistry. This principle should not be a surprise because it parallels water's paramount role in the structure and function of soluble proteins. Today, overt or covert mechanical forces govern cell biological processes and produce sensations. At the genesis, a bilayer's response to osmotic force is likely among the first senses to deal with the capricious primordial sea.
Collapse
|
38
|
Saitta B, Passarini J, Sareen D, Ornelas L, Sahabian A, Argade S, Krakow D, Cohn DH, Svendsen CN, Rimoin DL. Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFβ1. Stem Cells Dev 2014; 23:1464-78. [PMID: 24559391 DOI: 10.1089/scd.2014.0014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skeletal dysplasias (SDs) are caused by abnormal chondrogenesis during cartilage growth plate differentiation. To study early stages of aberrant cartilage formation in vitro, we generated the first induced pluripotent stem cells (iPSCs) from fibroblasts of an SD patient with a lethal form of metatropic dysplasia, caused by a dominant mutation (I604M) in the calcium channel gene TRPV4. When micromasses were grown in chondrogenic differentiation conditions and compared with control iPSCs, mutant TRPV4-iPSCs showed significantly (P<0.05) decreased expression by quantitative real-time polymerase chain reaction of COL2A1 (IIA and IIB forms), SOX9, Aggrecan, COL10A1, and RUNX2, all of which are cartilage growth plate markers. We found that stimulation with BMP2, but not TGFβ1, up-regulated COL2A1 (IIA and IIB) and SOX9 gene expression, only in control iPSCs. COL2A1 (Collagen II) expression data were confirmed at the protein level by western blot and immunofluorescence microscopy. TRPV4-iPSCs showed only focal areas of Alcian blue stain for proteoglycans, while in control iPSCs the stain was seen throughout the micromass sample. Similar staining patterns were found in neonatal cartilage from control and patient samples. We also found that COL1A1 (Collagen I), a marker of osteogenic differentiation, was significantly (P<0.05) up-regulated at the mRNA level in TRPV4-iPSCs when compared with the control, and confirmed at the protein level. Collagen I expression in the TRPV4 model also may correlate with abnormal staining patterns seen in patient tissues. This study demonstrates that an iPSC model can recapitulate normal chondrogenesis and that mutant TRPV4-iPSCs reflect molecular evidence of aberrant chondrogenic developmental processes, which could be used to design therapeutic approaches for disorders of cartilage.
Collapse
Affiliation(s)
- Biagio Saitta
- 1 Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, Hutson MR, Cohn DH, Guilak F, Liedtke W. Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J 2014; 28:2525-37. [PMID: 24577120 DOI: 10.1096/fj.13-245936] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4(V620I) channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of the TRPV4(V620I) mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4(T89I) mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel H Cohn
- Department of Molecular, Cell, and Developmental Biology and Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California at Los Angeles, Los Angeles, California, USA
| | | | - Wolfgang Liedtke
- Department of Neurology, Duke University Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, North Carolina, USA; and
| |
Collapse
|
40
|
Abstract
The widely distributed TRPV4 cationic channel participates in the transduction of both physical (osmotic, mechanical, and heat) and chemical (endogenous, plant-derived, and synthetic ligands) stimuli. In this chapter we will review TRPV4 expression, biophysics, structure, regulation, and interacting partners as well as physiological and pathological insights obtained in TRPV4 animal models and human genetic studies.
Collapse
|
41
|
Teng J, Loukin S, Zhou X, Kung C. Yeast luminometric and Xenopus oocyte electrophysiological examinations of the molecular mechanosensitivity of TRPV4. J Vis Exp 2013:50816. [PMID: 24637628 PMCID: PMC4396860 DOI: 10.3791/50816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
TRPV4 (Transient Receptor Potentials, vanilloid family, type 4) is widely expressed in vertebrate tissues and is activated by several stimuli, including by mechanical forces. Certain TRPV4 mutations cause complex hereditary bone or neuronal pathologies in human. Wild-type or mutant TRPV4 transgenes are commonly expressed in cultured mammalian cells and examined by Fura-2 fluorometry and by electrodes. In terms of the mechanism of mechanosensitivity and the molecular bases of the diseases, the current literature is confusing and controversial. To complement existing methods, we describe two additional methods to examine the molecular properties of TRPV4. (1) Rat TRPV4 and an aequorin transgene are transformed into budding yeast. A hypo-osmtic shock of the transformant population yields a luminometric signal due to the combination of aequorin with Ca(2+), released through the TRPV4 channel. Here TRPV4 is isolated from its usual mammalian partner proteins and reveals its own mechanosensitivity. (2) cRNA of TRPV4 is injected into Xenopus oocytes. After a suitable period of incubation, the macroscopic TRPV4 current is examined with a two-electrode voltage clamp. The current rise upon removal of inert osmoticum from the oocyte bath is indicative of mechanosensitivity. The microAmpere (10(-6) to 10(-4) A) currents from oocytes are much larger than the subnano- to nanoAmpere (10(-10) to 10(-9) A) currents from cultured cells, yielding clearer quantifications and more confident assessments. Microscopic currents reflecting the activities of individual channel proteins can also be directly registered under a patch clamp, in on-cell or excised mode. The same oocyte provides multiple patch samples, allowing better data replication. Suctions applied to the patches can activate TRPV4 to directly assess mechanosensitivity. These methods should also be useful in the study of other types of TRP channels.
Collapse
Affiliation(s)
- Jinfeng Teng
- Laboratory of Cell and Molecular Biology, University of Wisconsin - Madison
| | - Stephen Loukin
- Laboratory of Cell and Molecular Biology, University of Wisconsin - Madison
| | - Xinliang Zhou
- Laboratory of Cell and Molecular Biology, University of Wisconsin - Madison
| | - Ching Kung
- Laboratory of Cell and Molecular Biology, University of Wisconsin - Madison; Department of Genetics, University of Wisconsin - Madison;
| |
Collapse
|
42
|
Liao M, Cao E, Julius D, Cheng Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013; 504:107-12. [PMID: 24305160 PMCID: PMC4078027 DOI: 10.1038/nature12822] [Citation(s) in RCA: 1236] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
Collapse
Affiliation(s)
- Maofu Liao
- 1] Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158-2517, USA [2]
| | | | | | | |
Collapse
|
43
|
Klausen TK, Janssens A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Nilius B. Single point mutations of aromatic residues in transmembrane helices 5 and -6 differentially affect TRPV4 activation by 4α-PDD and hypotonicity: implications for the role of the pore region in regulating TRPV4 activity. Cell Calcium 2013; 55:38-47. [PMID: 24342753 DOI: 10.1016/j.ceca.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The importance of the TRPV4 channel for human physiology has been highlighted in recent years with the identification of an increasing number of hereditary diseases associated with mutations of this channel. However, the functional understanding of TRPV4 associated pathologies remains a puzzle due to incomplete understanding of the polymodal regulation of TRPV4 channels and lack of insight into the structure-function relationship of the channel. In this work, we identified a series of highly conserved aromatic residues in transmembrane (TM) helices 5-6 with profound importance for TRPV4 activity. Substituting F617, Y621 or F624 in TM5 with leucine reduced channel sensitivity to the agonist 4α-PDD and heat, yet two of these mutants - F617L and Y621L - showed increased activation in response to cell swelling. In TM6, a Y702L mutation significantly reduced sensitivity to all of the above stimuli. In conclusion, we have identified residues in TM5-6 which differentially affect heat and agonist activation, and we have demonstrated distinct activation pathways for 4α-PDD and osmolarity.
Collapse
Affiliation(s)
- Thomas Kjær Klausen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, Bus 802, Leuven, Belgium; Department of Biology, The August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | - Annelies Janssens
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, Bus 802, Leuven, Belgium
| | - Jean Prenen
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, Bus 802, Leuven, Belgium
| | - Grzegorz Owsianik
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, Bus 802, Leuven, Belgium
| | - Else Kay Hoffmann
- Department of Biology, The August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Stine Falsig Pedersen
- Department of Biology, The August Krogh Building, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Bernd Nilius
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory Ion Channel Research, Campus Gasthuisberg, Herestraat 49, Bus 802, Leuven, Belgium
| |
Collapse
|
44
|
Lei L, Cao X, Yang F, Shi DJ, Tang YQ, Zheng J, Wang K. A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 2013; 288:10427-39. [PMID: 23457335 DOI: 10.1074/jbc.m113.457291] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Ca(2+)-permeable transient receptor potential vanilloid subtype 4 (TRPV4) channel mediates crucial physiological functions, such as calcium signaling, temperature sensing, and maintaining cell volume and energy homeostasis. Noticeably, most disease-causing genetic mutations are concentrated in the cytoplasmic domains. In the present study, we focused on the role of the TRPV4 C terminus in modulating protein folding, trafficking, and activity. By examining a series of C-terminal deletions, we identified a 20-amino acid distal region covering residues 838-857 that is critical for channel folding, maturation, and trafficking. Surface biotinylation, confocal imaging, and fluorescence-based calcium influx assay demonstrated that mutant proteins missing this region were trapped in the endoplasmic reticulum and unglycosylated, leading to accelerated degradation and loss of channel activity. Rosetta de novo structural modeling indicated that residues 838-857 assume a defined conformation, with Gly(849) and Pro(851) located at critical positions. Patch clamp recordings confirmed that lowering the temperature from 37 to 30 °C rescued channel activity of folding-defective mutants. Moreover, biochemical tests demonstrated that, in addition to participating in C-C interaction, the C terminus also interacts with the N terminus. Taken together, our findings indicate that the C-terminal region of TRPV4 is critical for channel protein folding and maturation, and the short distal segment plays an essential role in this process. Therefore, selectively disrupting the folding-sensitive region may present therapeutic potential for treating overactive TRPV4-mediated diseases, such as pain and skeletal dysplasias.
Collapse
Affiliation(s)
- Lei Lei
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Kang SS, Shin SH, Auh CK, Chun J. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation. Exp Mol Med 2012; 44:707-22. [PMID: 23143559 PMCID: PMC3538978 DOI: 10.3858/emm.2012.44.12.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2012] [Indexed: 12/23/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca²⁺ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Collapse
Affiliation(s)
- Sang Sun Kang
- Department of Biology Education Chungbuk National University Cheongju 361-763, Korea.
| | | | | | | |
Collapse
|
46
|
Inada H, Procko E, Sotomayor M, Gaudet R. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 2012; 51:6195-206. [PMID: 22702953 PMCID: PMC3413242 DOI: 10.1021/bi300279b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The TRPV4 calcium-permeable cation channel plays important
physiological
roles in osmosensation, mechanosensation, cell barrier formation,
and bone homeostasis. Recent studies reported that mutations in TRPV4,
including some in its ankyrin repeat domain (ARD), are associated
with human inherited diseases, including neuropathies and skeletal
dysplasias, probably because of the increased constitutive activity
of the channel. TRPV4 activity is regulated by the binding of calmodulin
and small molecules such as ATP to the ARD at its cytoplasmic N-terminus.
We determined structures of ATP-free and -bound forms of human TRPV4-ARD
and compared them with available TRPV-ARD structures. The third inter-repeat
loop region (Finger 3 loop) is flexible and may act as a switch to
regulate channel activity. Comparisons of TRPV-ARD structures also
suggest an evolutionary link between ARD structure and ATP binding
ability. Thermal stability analyses and molecular dynamics simulations
suggest that ATP increases stability in TRPV-ARDs that can bind ATP.
Biochemical analyses of a large panel of TRPV4-ARD mutations associated
with human inherited diseases showed that some impaired thermal stability
while others weakened ATP binding ability, suggesting molecular mechanisms
for the diseases.
Collapse
Affiliation(s)
- Hitoshi Inada
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
47
|
Nishimura G, Lausch E, Savarirayan R, Shiba M, Spranger J, Zabel B, Ikegawa S, Superti-Furga A, Unger S. TRPV4-associated skeletal dysplasias. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:190-204. [PMID: 22791502 DOI: 10.1002/ajmg.c.31335] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dominant mutations in the TRPV4 gene result in a bone dysplasia family and form a continuous phenotypic spectrum that includes, in decreasing severity, lethal, and nonlethal metatropic dysplasia (MD), spondylometaphyseal dysplasia Kozlowski type (SMDK), and autosomal dominant brachyolmia. Several rare variant phenotypes that have some overlap but deviate in some ways from the general pattern have also been described. The known variant phenotypes are spondyloepiphyseal dysplasia Maroteaux type (Pseudo-Morquio type 2), parastremmatic dysplasia, and familial digital arthropathy with brachydactyly. Interestingly, different TRPV4 mutations have been associated with dominantly inherited neurologic disorders such as congenital spinal muscular atrophy and hereditary motor and sensory neuropathy. Finally, a small number of patients have been identified in whom a TRPV4 mutation results in a phenotype combining skeletal dysplasia with peripheral neuropathy. The TRPV4 gene encodes a regulated calcium channel implicated in multiple and diverse cellular processes. Over 50 different TRPV4 mutations have been reported, with two codons appearing to be mutational hot spots: P799 in exon 15, mostly associated with MD, and R594 in exon 11, associated with SMDK. While most pathogenic mutations tested so far result in activation of the calcium channel in vitro, the mechanisms through which TRPV4 activation results in skeletal dysplasia and/or peripheral neuropathy remain unclear and the genotype-phenotype correlations in this group of disorders remains somewhat mysterious. Since the phenotypic expression of most mutations seems to be relatively constant, careful clinical and radiographic assessment is useful in directing molecular analysis.
Collapse
Affiliation(s)
- Gen Nishimura
- Génétique Médicale, CHUV, Av. Decker 2, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 2012; 19:927-33. [DOI: 10.1016/j.jocn.2011.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/18/2011] [Indexed: 11/21/2022]
|
49
|
Cho TJ, Matsumoto K, Fano V, Dai J, Kim OH, Chae JH, Yoo WJ, Tanaka Y, Matsui Y, Takigami I, Monges S, Zabel B, Shimizu K, Nishimura G, Lausch E, Ikegawa S. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients. Am J Med Genet A 2012; 158A:795-802. [PMID: 22419508 DOI: 10.1002/ajmg.a.35268] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 01/16/2012] [Indexed: 01/17/2023]
Abstract
Heterozygous missense mutations of transient receptor potential vanilloid 4 channel (TRPV4) cause a spectrum of skeletal disorders, including brachyolmia, spondylometaphyseal dysplasia Kozlowski type, metatropic dysplasia, parastremmatic dysplasia, and spondyloepimetaphyseal dysplasia Maroteaux type. Similarly, heterozygous missense mutations of TRPV4 cause a spectrum of peripheral neuropathy, including hereditary motor and sensory neuropathy type IIC, congenital spinal muscular atrophy, and scapuloperoneal spinal muscular atrophy. There are no apparent differences in the amino acid positions affected or type of change predicted by the TRPV4 mutations responsible for the two disease spectrums; nevertheless, no fundamental phenotypic overlap has been shown between the two spectrums. Here, we report on three patients who had both skeletal dysplasia and peripheral neuropathy caused by heterozygous TRPV4 missense mutations. The skeletal and neurologic phenotypes of these patients covered the wide spectrum of reported TRPV4-pathies (disease caused by TRPV4 mutations). The molecular data are complementary, proving that "neuropathic" mutations can cause skeletal dysplasia but also the "skeletopathic" mutations can lead to neuropathies. Our findings suggest that pathogenic mechanisms of TRPV4-pathies in skeletal and nervous systems are not always mutually exclusive and provide further evidence that there is no clear genotype-phenotype correlation for either spectrum. Co-occurrence of skeletal dysplasia and degenerative neuropathy should be kept in mind in clinical practice including diagnostic testing, surgical evaluation, and genetic counseling.
Collapse
Affiliation(s)
- Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 2011; 43:1142-6. [DOI: 10.1038/ng.945] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
|