1
|
Ukleja M, Kricks L, Torrens G, Peschiera I, Rodrigues-Lopes I, Krupka M, García-Fernández J, Melero R, Del Campo R, Eulalio A, Mateus A, López-Bravo M, Rico AI, Cava F, Lopez D. Flotillin-mediated stabilization of unfolded proteins in bacterial membrane microdomains. Nat Commun 2024; 15:5583. [PMID: 38961085 PMCID: PMC11222466 DOI: 10.1038/s41467-024-49951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The function of many bacterial processes depends on the formation of functional membrane microdomains (FMMs), which resemble the lipid rafts of eukaryotic cells. However, the mechanism and the biological function of these membrane microdomains remain unclear. Here, we show that FMMs in the pathogen methicillin-resistant Staphylococcus aureus (MRSA) are dedicated to confining and stabilizing proteins unfolded due to cellular stress. The FMM scaffold protein flotillin forms a clamp-shaped oligomer that holds unfolded proteins, stabilizing them and favoring their correct folding. This process does not impose a direct energy cost on the cell and is crucial to survival of ATP-depleted bacteria, and thus to pathogenesis. Consequently, FMM disassembling causes the accumulation of unfolded proteins, which compromise MRSA viability during infection and cause penicillin re-sensitization due to PBP2a unfolding. Thus, our results indicate that FMMs mediate ATP-independent stabilization of unfolded proteins, which is essential for bacterial viability during infection.
Collapse
Affiliation(s)
- Marta Ukleja
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Lara Kricks
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Gabriel Torrens
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Ilaria Peschiera
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ines Rodrigues-Lopes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marcin Krupka
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Julia García-Fernández
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Roberto Melero
- Department of Structural Biology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ramón y Cajal Hospital, 28034, Madrid, Spain
| | - Ana Eulalio
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - André Mateus
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - María López-Bravo
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Ana I Rico
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS). Umeå Center for Microbial Research (UCMR). Science for Life Laboratory (SciLifeLab), Umeå, SE-901 87, Sweden
| | - Daniel Lopez
- Department of Microbiology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, 28049, Spain.
| |
Collapse
|
2
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
3
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. Plants response to light stress. J Genet Genomics 2022; 49:735-747. [DOI: 10.1016/j.jgg.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
4
|
Thurotte A, Seidel T, Jilly R, Kahmann U, Schneider D. DnaK3 Is Involved in Biogenesis and/or Maintenance of Thylakoid Membrane Protein Complexes in the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2020; 10:life10050055. [PMID: 32366017 PMCID: PMC7281324 DOI: 10.3390/life10050055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active. An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron transfer is indicated. In conclusion, DnaK3 is a versatile chaperone required for biogenesis and/or maintenance of thylakoid membrane-localized protein complexes involved in electron transfer reactions. As mentioned above, Hsp70 proteins are involved in photoprotection and repair of PS II in chloroplasts.
Collapse
Affiliation(s)
- Adrien Thurotte
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Tobias Seidel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
| | - Ruven Jilly
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
| | - Uwe Kahmann
- Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (A.T.); (T.S.); (R.J.)
- Correspondence: ; Tel.: +49-6131-39-25833
| |
Collapse
|
5
|
Liu L, Li F, Xu L, Wang J, Li M, Yuan J, Wang H, Yang R, Li B. Cyclic AMP-CRP Modulates the Cell Morphology of Klebsiella pneumoniae in High-Glucose Environment. Front Microbiol 2020; 10:2984. [PMID: 32038513 PMCID: PMC6985210 DOI: 10.3389/fmicb.2019.02984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022] Open
Abstract
Bacteria can modify their morphology in response to environmental stimuli for survival or host defense evasion. The rich glucose in vivo or in the Luria–Bertani (LB) medium shortened the cell length of Klebsiella pneumoniae. The environmental glucose decreased the levels of cyclic AMP (cAMP) and the transcription of crp, which declined the cAMP–cAMP receptor protein (cAMP-CRP) activity. The cell length of crp deletion mutant was significantly shorter than that of the wild type (0.981 ± 0.057 μm vs. 2.415 ± 0.075 μm, P < 0.001). These results indicated that the high environmental glucose alters the bacterial morphology to a round form through regulating the activity of cAMP-CRP complex. Comparative proteomics analysis showed increased expression of 10 proteins involved in cell division or cell wall biosynthesis in the crp deletion strain. Five of them (ompA, tolB, ybgC, ftsI, and rcsF) were selected to verify their expression in the high-glucose environment, and overexpression of tolB or rcsF shortened the bacterial length similar to that of the crp deletion strain. Electrophoretic mobility shift assay indicated that CRP directly negatively regulates the transcription of tolB and rcsF by binding to the promoter regions. This study first proved the role and partial regulation mechanism of CRP in altering cell morphology during infection and provided a theoretical basis for elucidating the mechanism in diabetes mellitus susceptible to K. pneumoniae.
Collapse
Affiliation(s)
- Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Feiyu Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Li Xu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Jingjie Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Jie Yuan
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Hui Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ruiping Yang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Mareš J, Strunecký O, Bučinská L, Wiedermannová J. Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. Front Microbiol 2019; 10:277. [PMID: 30853950 PMCID: PMC6395441 DOI: 10.3389/fmicb.2019.00277] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/01/2019] [Indexed: 01/28/2023] Open
Abstract
While photosynthetic processes have become increasingly understood in cyanobacterial model strains, differences in the spatial distribution of thylakoid membranes among various lineages have been largely unexplored. Cyanobacterial cells exhibit an intriguing diversity in thylakoid arrangements, ranging from simple parietal to radial, coiled, parallel, and special types. Although metabolic background of their variability remains unknown, it has been suggested that thylakoid patterns are stable in certain phylogenetic clades. For decades, thylakoid arrangements have been used in cyanobacterial classification as one of the crucial characters for definition of taxa. The last comprehensive study addressing their evolutionary history in cyanobacteria was published 15 years ago. Since then both DNA sequence and electron microscopy data have grown rapidly. In the current study, we map ultrastructural data of >200 strains onto the SSU rRNA gene tree, and the resulting phylogeny is compared to a phylogenomic tree. Changes in thylakoid architecture in general follow the phylogeny of housekeeping loci. Parietal arrangement is resolved as the original thylakoid organization, evolving into complex arrangement in the most derived group of heterocytous cyanobacteria. Cyanobacteria occupying intermediate phylogenetic positions (greater filamentous, coccoid, and baeocytous types) exhibit fascicular, radial, and parallel arrangements, partly tracing the reconstructed course of phylogenetic branching. Contrary to previous studies, taxonomic value of thylakoid morphology seems very limited. Only special cases such as thylakoid absence or the parallel arrangement could be used as taxonomically informative apomorphies. The phylogenetic trees provide evidence of both paraphyly and reversion from more derived architectures in the simple parietal thylakoid pattern. Repeated convergent evolution is suggested for the radial and fascicular architectures. Moreover, thylakoid arrangement is constrained by cell size, excluding the occurrence of complex architectures in cyanobacteria smaller than 2 μm in width. It may further be dependent on unknown (eco)physiological factors as suggested by recurrence of the radial type in unrelated but morphologically similar cyanobacteria, and occurrence of special features throughout the phylogeny. No straightforward phylogenetic congruences have been found between proteins involved in photosynthesis and thylakoid formation, and the thylakoid patterns. Remarkably, several postulated thylakoid biogenesis factors are partly or completely missing in cyanobacteria, challenging their proposed essential roles.
Collapse
Affiliation(s)
- Jan Mareš
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Otakar Strunecký
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Aquaculture, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Bučinská
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jana Wiedermannová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Angeleri M, Muth-Pawlak D, Wilde A, Aro EM, Battchikova N. Global proteome response ofSynechocystis6803 to extreme copper environments applied to control the activity of the induciblepetJpromoter. J Appl Microbiol 2019; 126:826-841. [DOI: 10.1111/jam.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- M. Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - D. Muth-Pawlak
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - A. Wilde
- Molecular Genetics of Prokaryotes; University of Freiburg; Freiburg Germany
| | - E.-M. Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - N. Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| |
Collapse
|
8
|
Affiliation(s)
- Benedikt Junglas
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Mainz Germany
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Mainz Germany
| |
Collapse
|
9
|
García-Fernández E, Koch G, Wagner RM, Fekete A, Stengel ST, Schneider J, Mielich-Süss B, Geibel S, Markert SM, Stigloher C, Lopez D. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017; 171:1354-1367.e20. [PMID: 29103614 PMCID: PMC5720476 DOI: 10.1016/j.cell.2017.10.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
A number of bacterial cell processes are confined functional membrane microdomains (FMMs), structurally and functionally similar to lipid rafts of eukaryotic cells. How bacteria organize these intricate platforms and what their biological significance is remain important questions. Using the pathogen methicillin-resistant Staphylococcus aureus (MRSA), we show here that membrane-carotenoid interaction with the scaffold protein flotillin leads to FMM formation, which can be visualized using super-resolution array tomography. These membrane platforms accumulate multimeric protein complexes, for which flotillin facilitates efficient oligomerization. One of these proteins is PBP2a, responsible for penicillin resistance in MRSA. Flotillin mutants are defective in PBP2a oligomerization. Perturbation of FMM assembly using available drugs interferes with PBP2a oligomerization and disables MRSA penicillin resistance in vitro and in vivo, resulting in MRSA infections that are susceptible to penicillin treatment. Our study demonstrates that bacteria possess sophisticated cell organization programs and defines alternative therapies to fight multidrug-resistant pathogens using conventional antibiotics. Staphyloxanthin and flotillin preferentially interact and accumulate in FMMs FMMs facilitate efficient oligomerization of multimeric protein complexes PBP2a, which confers β-lactam resistance on S. aureus, is harbored within FMMs FMM disruption disables PBP2a oligomerization and thus, S. aureus antibiotic resistance
Collapse
Affiliation(s)
- Esther García-Fernández
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Rabea M Wagner
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain; Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute Biocenter, Pharmaceutical Biology, University of Würzburg, 97082 Würzburg, Germany
| | - Stephanie T Stengel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sebastian Geibel
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sebastian M Markert
- Division of Electron Microscopy, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Lopez
- National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), 28049 Madrid, Spain; Research Centre for Infectious Diseases (ZINF), University of Würzburg, 97080 Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 2017; 36:76-84. [PMID: 28237903 DOI: 10.1016/j.mib.2017.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Recent studies show that internal organization of bacterial cells is more complex than previously appreciated. A clear example of this is the assembly of the nanoscale membrane platforms termed functional membrane microdomains. The lipid composition of these regions differs from that of the surrounding membrane; these domains confine a set of proteins involved in specific cellular processes such as protease secretion and signal transduction. It is currently thought that functional membrane microdomains act as oligomerization platforms and promote efficient oligomerization of interacting protein partners in bacterial membranes. In this review, we highlight the most noteworthy achievements, challenges and controversies of this emerging research field over the past five years.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; Spanish National Centre for Biotechnology (CNB), Madrid 28049, Spain.
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
11
|
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:537-549. [PMID: 27693914 DOI: 10.1016/j.bbamem.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Adrien Thurotte
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Functional Membrane Microdomains Organize Signaling Networks in Bacteria. J Membr Biol 2016; 250:367-378. [PMID: 27566471 DOI: 10.1007/s00232-016-9923-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/16/2016] [Indexed: 11/27/2022]
Abstract
Membrane organization is usually associated with the correct function of a number of cellular processes in eukaryotic cells as diverse as signal transduction, protein sorting, membrane trafficking, or pathogen invasion. It has been recently discovered that bacterial membranes are able to compartmentalize their signal transduction pathways in functional membrane microdomains (FMMs). In this review article, we discuss the biological significance of the existence of FMMs in bacteria and comment on possible beneficial roles that FMMs play on the harbored signal transduction cascades. Moreover, four different membrane-associated signal transduction cascades whose functions are linked to the integrity of FMMs are introduced, and the specific role that FMMs play in stabilizing and promoting interactions of their signaling components is discussed. Altogether, FMMs seem to play a relevant role in promoting more efficient activation of signal transduction cascades in bacterial cells and show that bacteria are more sophisticated organisms than previously appreciated.
Collapse
|
13
|
Plohnke N, Seidel T, Kahmann U, Rögner M, Schneider D, Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol Cell Proteomics 2015; 14:572-84. [PMID: 25561504 PMCID: PMC4349978 DOI: 10.1074/mcp.m114.042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.
Collapse
Affiliation(s)
- Nicole Plohnke
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias Seidel
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Uwe Kahmann
- ¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dirk Schneider
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany;
| |
Collapse
|
14
|
Bryan SJ, Burroughs NJ, Shevela D, Yu J, Rupprecht E, Liu LN, Mastroianni G, Xue Q, Llorente-Garcia I, Leake MC, Eichacker LA, Schneider D, Nixon PJ, Mullineaux CW. Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol 2014; 94:1179-1195. [PMID: 25308470 PMCID: PMC4297356 DOI: 10.1111/mmi.12826] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/22/2022]
Abstract
The Vipp1 protein is essential in cyanobacteria and chloroplasts for the maintenance of photosynthetic function and thylakoid membrane architecture. To investigate its mode of action we generated strains of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 in which Vipp1 was tagged with green fluorescent protein at the C-terminus and expressed from the native chromosomal locus. There was little perturbation of function. Live-cell fluorescence imaging shows dramatic relocalisation of Vipp1 under high light. Under low light, Vipp1 is predominantly dispersed in the cytoplasm with occasional concentrations at the outer periphery of the thylakoid membranes. High light induces Vipp1 coalescence into localised puncta within minutes, with net relocation of Vipp1 to the vicinity of the cytoplasmic membrane and the thylakoid membranes. Pull-downs and mass spectrometry identify an extensive collection of proteins that are directly or indirectly associated with Vipp1 only after high-light exposure. These include not only photosynthetic and stress-related proteins but also RNA-processing, translation and protein assembly factors. This suggests that the Vipp1 puncta could be involved in protein assembly. One possibility is that Vipp1 is involved in the formation of stress-induced localised protein assembly centres, enabling enhanced protein synthesis and delivery to membranes under stress conditions.
Collapse
Affiliation(s)
- Samantha J Bryan
- School of Biological and Chemical Sciences, Queen Mary University of LondonMile End Road, London, E1 4NS, UK
| | - Nigel J Burroughs
- Mathematics Institute and Warwick Systems Biology Centre, University of WarwickCoventry, CV4 7AL, UK
| | - Dmitriy Shevela
- Department of Mathematics and Natural Science, University of Stavanger4036, Stavanger, Norway
| | - Jianfeng Yu
- Department of Life Sciences, Imperial College LondonLondon, SW7 2AZ, UK
| | - Eva Rupprecht
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-UniversitätStefan-Meier-Strasse 17, 79104, Freiburg, Germany
| | - Lu-Ning Liu
- School of Biological and Chemical Sciences, Queen Mary University of LondonMile End Road, London, E1 4NS, UK
| | - Giulia Mastroianni
- School of Biological and Chemical Sciences, Queen Mary University of LondonMile End Road, London, E1 4NS, UK
| | - Quan Xue
- Clarendon Laboratory, Department of Physics, University of OxfordParks Road, Oxford, OX1 3PU, UK
| | - Isabel Llorente-Garcia
- Clarendon Laboratory, Department of Physics, University of OxfordParks Road, Oxford, OX1 3PU, UK
- Department of Physics and Astronomy, University College LondonGower St., London, WC1E 6BT, UK
| | - Mark C Leake
- Biological Physical Sciences Institute (BPSI), Departments of Physics and Biology, University of YorkYork, YO105DD, UK
| | - Lutz A Eichacker
- Department of Mathematics and Natural Science, University of Stavanger4036, Stavanger, Norway
| | - Dirk Schneider
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-UniversitätStefan-Meier-Strasse 17, 79104, Freiburg, Germany
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz55128, Mainz, Germany
| | - Peter J Nixon
- Department of Life Sciences, Imperial College LondonLondon, SW7 2AZ, UK
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of LondonMile End Road, London, E1 4NS, UK
| |
Collapse
|
15
|
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:609-35. [PMID: 23451783 DOI: 10.1146/annurev-arplant-050312-120124] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
16
|
Robson A, Burrage K, Leake MC. Inferring diffusion in single live cells at the single-molecule level. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120029. [PMID: 23267182 DOI: 10.1098/rstb.2012.0029] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells.
Collapse
Affiliation(s)
- Alex Robson
- Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK
| | | | | |
Collapse
|
17
|
van de Meene AML, Sharp WP, McDaniel JH, Friedrich H, Vermaas WFJ, Roberson RW. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1427-34. [PMID: 22305964 DOI: 10.1016/j.bbamem.2012.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 11/17/2022]
Abstract
Cells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.5μmol photons m(-2)s(-1). The lumen of the thylakoid membranes of the WT cells grown at this low light intensity were inflated compared to cells grown at higher light intensity. Tubular as well as sheet-like thylakoid membranes were found in the PSI-less strain at all stages of development with organized regular arrays of phycobilisomes on the surface of the thylakoid membranes. Tubular structures were also found in the PSI/PSII-less strain, but these were smaller in diameter to those found in the PSI-less strain with what appeared to be a different internal structure and were less common. There were fewer and smaller thylakoid membrane sheets in the double mutant and the phycobilisomes were found on the surface in more disordered arrays. These differences in thylakoid membrane structure most likely reflect the altered composition of photosynthetic particles and distribution of other integral membrane proteins and their interaction with the lipid bilayer. These results suggest an important role for the presence of PSII in the formation of the highly ordered tubular structures.
Collapse
|