1
|
Novelli V, Canonico F, Laborante R, Manzoni M, Arcudi A, Pompilio G, Mercuri E, Patti G, D'Amario D. Unraveling the Genetic Heartbeat: Decoding Cardiac Involvement in Duchenne Muscular Dystrophy. Biomedicines 2025; 13:102. [PMID: 39857686 PMCID: PMC11762982 DOI: 10.3390/biomedicines13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in 5000 live male births. Identifying the genetic background, in addition to DMD disease-causing variants, is one of the unmet needs in understanding the cardiac disease's pathogenetic mechanisms and its prognostic implications. The clinical scenario is made even more intricate by the difficulty in predicting the onset and progression of cardiomyopathy, as no clear genotype/phenotype correspondence has been found thus far. The evaluation of genes involved in the onset of primary cardiomyopathies could explore the hypothesis that changes in cytoskeletal and sarcomeric protein function are the modulators of ventricular dysfunction in DMD patients. In the last decade, with the advent of next-generation sequencing (NGS) technology, many disease-causing genes and modifiers have been identified. Assessing the genetic origin of the phenotypic variability of the disease in both the onset and progression of cardiomyopathy in DMD would be extremely helpful in managing these patients. This review article aims to spotlight the genetic background associated with Cardiomyopathy in DMD patients toward a more predictive personalized model of care.
Collapse
Affiliation(s)
| | - Francesco Canonico
- Thoracic-Cardiovascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Renzo Laborante
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Alessandra Arcudi
- Thoracic-Cardiovascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | | | - Eugenio Mercuri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Patti
- Thoracic-Cardiovascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100 Novara, Italy
| | - Domenico D'Amario
- Thoracic-Cardiovascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100 Novara, Italy
| |
Collapse
|
2
|
Lilliu E, Hackl B, Zabrodska E, Gewessler S, Karge T, Marksteiner J, Sauer J, Putz EM, Todt H, Hilber K, Koenig X. Cell size induced bias of current density in hypertrophic cardiomyocytes. Channels (Austin) 2024; 18:2361416. [PMID: 38836323 PMCID: PMC11155701 DOI: 10.1080/19336950.2024.2361416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.
Collapse
Affiliation(s)
- Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stefanie Gewessler
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tobias Karge
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva M. Putz
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Nasilli G, de Waal TM, Marchal GA, Bertoli G, Veldkamp MW, Rothenberg E, Casini S, Remme CA. Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes. Cardiovasc Res 2024; 120:723-734. [PMID: 38395031 PMCID: PMC11135645 DOI: 10.1093/cvr/cvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Tanja M de Waal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Giorgia Bertoli
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Marieke W Veldkamp
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU Grossman School of Medicine, 450 E 29TH ST Alexandria Center for Life Science, New York, NY 10016, USA
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sauer J, Marksteiner J, Lilliu E, Hackl B, Todt H, Kubista H, Dostal C, Podesser BK, Kiss A, Koenig X, Hilber K. Empagliflozin treatment rescues abnormally reduced Na + currents in ventricular cardiomyocytes from dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 2024; 326:H418-H425. [PMID: 38099845 PMCID: PMC11219046 DOI: 10.1152/ajpheart.00729.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mdx mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na+ current (INa) in ventricular cardiomyocytes. This finding provided a mechanistic explanation for ventricular conduction defects and concomitant arrhythmias in the dystrophic heart. In the present study, we explored the hypothesis that empagliflozin (EMPA), an inhibitor of sodium/glucose cotransporter 2 in clinical use to treat type II diabetes and nondiabetic heart failure, rescues peak INa loss in dystrophin-deficient ventricular cardiomyocytes. We found that INa of cardiomyocytes derived from mdx mice, which had received clinically relevant doses of EMPA for 4 wk, was restored to wild-type level. Moreover, incubation of isolated mdx ventricular cardiomyocytes with 1 µM EMPA for 24 h significantly increased their peak INa. This effect was independent of Na+-H+ exchanger 1 inhibition by the drug. Our findings imply that EMPA treatment can rescue abnormally reduced peak INa of dystrophin-deficient ventricular cardiomyocytes. Long-term EMPA administration may diminish arrhythmia vulnerability in patients with DMD.NEW & NOTEWORTHY Dystrophin deficiency in cardiomyocytes leads to abnormally reduced Na+ currents. These can be rescued by long-term empagliflozin treatment.
Collapse
Affiliation(s)
- Jakob Sauer
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Elena Lilliu
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christopher Dostal
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Meldgaard M, Kristensen RS, Z'Graggen WJ, Tan SV, Søndergaard K, Qerama E, Andersen H, Fuglsang-Frederiksen A, Tankisi H. Muscle velocity recovery cycles in myopathy. Clin Neurophysiol 2023; 151:41-49. [PMID: 37148747 DOI: 10.1016/j.clinph.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE To understand the pathophysiology of myopathies by using muscle velocity recovery cycles (MVRC) and frequency ramp (RAMP) methodologies. METHODS 42 patients with quantitative electromyography (qEMG) and biopsy or genetic verified myopathy and 42 healthy controls were examined with qEMG, MVRC and RAMP, all recorded from the anterior tibial muscle. RESULTS There were significant differences in the motor unit potential (MUP) duration, the early and late supernormalities of the MVRC and the RAMP latencies in myopathy patients compared to controls (p < 0.05 apart from muscle relatively refractory period (MRRP)). When dividing into subgroups, the above-mentioned changes in MVRC and RAMP parameters were increased for the patients with non-inflammatory myopathy, while there were no significant changes in the group of patients with inflammatory myopathy. CONCLUSIONS The MVRC and RAMP parameters can discriminate between healthy controls and myopathy patients, more significantly for non-inflammatory myopathy. MVRC differences with normal MRRP in myopathy differs from other conditions with membrane depolarisation. SIGNIFICANCE MVCR and RAMP may have a potential in understanding disease pathophysiology in myopathies. The pathogenesis in non-inflammatory myopathy does not seem to be caused by a depolarisation of the resting membrane potential but rather by the change in sodium channels of the muscle membrane.
Collapse
Affiliation(s)
- M Meldgaard
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - R S Kristensen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - W J Z'Graggen
- Departments of Neurology and Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - S V Tan
- Department of Neurology and Neurophysiology, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - K Søndergaard
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - E Qerama
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - H Andersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - A Fuglsang-Frederiksen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - H Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Szabo PL, Marksteiner J, Ebner J, Dostal C, Podesser BK, Sauer J, Kubista H, Todt H, Hackl B, Koenig X, Kiss A, Hilber K. Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Physiol Rep 2023; 11:e15664. [PMID: 37032434 PMCID: PMC10083165 DOI: 10.14814/phy2.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
7
|
Berger V, Gabriel L, Lilliu E, Hackl B, Marksteiner J, Hilber K, Koenig X, Uhrin P, Todt H. Modulation of cardiac ventricular conduction: Impact on QRS duration, amplitude and dispersion. Eur J Pharmacol 2023; 941:175495. [PMID: 36621601 DOI: 10.1016/j.ejphar.2023.175495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Alterations in cardiac impulse conduction may exert both beneficial and detrimental effects. The assessment of ventricular conduction properties is of paramount importance both in clinical and in experimental settings. Currently the duration of the QRS complex is regarded as hallmark of in-vivo assessment of global ventricular conduction time. In addition, the amplitude of the QRS complex has been suggested to reflect ventricular conduction time in man and in rats. Here, for the first time, we systematically investigated the relationship between QRS duration ("QRS") and QRS amplitude ("RS-height"; RSh) in the murine ECG obtained during anesthesia. In mice harbouring a homozygous knockout of the transmembrane protein podoplanin (PDPN-/-; n = 10) we found both a shorter QRS and a greater RSh than in wild-type animals (n = 13). In both genotypes cumulative i.p. administration of 5 mg/kg and 10 mg/kg of the Na channel blocker flecainide resulted in dose-dependent QRS increase and RSh decrease, whereby the drug-induced changes in RSh were greater than in QRS. In both genotypes the flecainide-induced changes in QRS and in RSh were significantly correlated with each other (R = -0.56, P = 0.004). Whereas dispersion of QRS and RSh was similar between genotypes, dispersion of the ratio QRS/RSh was significantly smaller in PDPN-/- than in wild-types. We conclude that in the murine ECG QRS is inversely related to RSh. We suggest that both parameters should be considered in the analysis of ventricular conduction time in the murine ECG.
Collapse
Affiliation(s)
- Valerie Berger
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Ludwig Gabriel
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Benjamin Hackl
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Jessica Marksteiner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1190, Vienna, Austria.
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1190, Vienna, Austria.
| |
Collapse
|
8
|
Jimenez-Vazquez EN, Arad M, Macías Á, Vera-Pedrosa ML, Cruz FM, Gutierrez LK, Cuttitta AJ, Monteiro da Rocha A, Herron TJ, Ponce-Balbuena D, Guerrero-Serna G, Binah O, Michele DE, Jalife J. SNTA1 gene rescues ion channel function and is antiarrhythmic in cardiomyocytes derived from induced pluripotent stem cells from muscular dystrophy patients. eLife 2022; 11:e76576. [PMID: 35762211 PMCID: PMC9239678 DOI: 10.7554/elife.76576] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background Patients with cardiomyopathy of Duchenne Muscular Dystrophy (DMD) are at risk of developing life-threatening arrhythmias, but the mechanisms are unknown. We aimed to determine the role of ion channels controlling cardiac excitability in the mechanisms of arrhythmias in DMD patients. Methods To test whether dystrophin mutations lead to defective cardiac NaV1.5-Kir2.1 channelosomes and arrhythmias, we generated iPSC-CMs from two hemizygous DMD males, a heterozygous female, and two unrelated control males. We conducted studies including confocal microscopy, protein expression analysis, patch-clamping, non-viral piggy-bac gene expression, optical mapping and contractility assays. Results Two patients had abnormal ECGs with frequent runs of ventricular tachycardia. iPSC-CMs from all DMD patients showed abnormal action potential profiles, slowed conduction velocities, and reduced sodium (INa) and inward rectifier potassium (IK1) currents. Membrane NaV1.5 and Kir2.1 protein levels were reduced in hemizygous DMD iPSC-CMs but not in heterozygous iPSC-CMs. Remarkably, transfecting just one component of the dystrophin protein complex (α1-syntrophin) in hemizygous iPSC-CMs from one patient restored channelosome function, INa and IK1 densities, and action potential profile in single cells. In addition, α1-syntrophin expression restored impulse conduction and contractility and prevented reentrant arrhythmias in hiPSC-CM monolayers. Conclusions We provide the first demonstration that iPSC-CMs reprogrammed from skin fibroblasts of DMD patients with cardiomyopathy have a dysfunction of the NaV1.5-Kir2.1 channelosome, with consequent reduction of cardiac excitability and conduction. Altogether, iPSC-CMs from patients with DMD cardiomyopathy have a NaV1.5-Kir2.1 channelosome dysfunction, which can be rescued by the scaffolding protein α1-syntrophin to restore excitability and prevent arrhythmias. Funding Supported by National Institutes of Health R01 HL122352 grant; 'la Caixa' Banking Foundation (HR18-00304); Fundación La Marató TV3: Ayudas a la investigación en enfermedades raras 2020 (LA MARATO-2020); Instituto de Salud Carlos III/FEDER/FSE; Horizon 2020 - Research and Innovation Framework Programme GA-965286 to JJ; the CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation), and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). American Heart Association postdoctoral fellowship 19POST34380706s to JVEN. Israel Science Foundation to OB and MA [824/19]. Rappaport grant [01012020RI]; and Niedersachsen Foundation [ZN3452] to OB; US-Israel Binational Science Foundation (BSF) to OB and TH [2019039]; Dr. Bernard Lublin Donation to OB; and The Duchenne Parent Project Netherlands (DPPNL 2029771) to OB. National Institutes of Health R01 AR068428 to DM and US-Israel Binational Science Foundation Grant [2013032] to DM and OB.
Collapse
Affiliation(s)
- Eric N Jimenez-Vazquez
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, and Tel Aviv UniversityTel AvivIsrael
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Maria L Vera-Pedrosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Francisco Miguel Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Lilian K Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - André Monteiro da Rocha
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Todd J Herron
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of TechnologyHaifaIsrael
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - José Jalife
- Department of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of MichiganAnn ArborUnited States
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
9
|
Marksteiner J, Ebner J, Salzer I, Lilliu E, Hackl B, Todt H, Kubista H, Hallström S, Koenig X, Hilber K. Evidence for a Physiological Role of T-Type Ca Channels in Ventricular Cardiomyocytes of Adult Mice. MEMBRANES 2022; 12:566. [PMID: 35736273 PMCID: PMC9230067 DOI: 10.3390/membranes12060566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
T-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.1 and Cav3.2 are expressed at a protein level in ventricular cardiomyocytes from healthy adult C57/BL6 mice. Myocytes isolated from adult wild-type and Cav3.2 KO mice showed considerable whole cell T-type Ca currents under beta-adrenergic stimulation with isoprenaline. We further show that the detectability of basal T-type Ca currents in murine wild-type cardiomyocytes depends on the applied experimental conditions. Together, these findings reveal the presence of functional T-type Ca channels in the membrane of ventricular myocytes. In addition, electrically evoked Ca release from the sarcoplasmic reticulum was significantly impaired in Cav3.2 KO compared to wild-type cardiomyocytes. Our work implies a physiological role of T-type Ca channels in the healthy adult murine ventricular working myocardium.
Collapse
Affiliation(s)
- Jessica Marksteiner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Isabella Salzer
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Elena Lilliu
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Benjamin Hackl
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (J.M.); (J.E.); (I.S.); (E.L.); (B.H.); (H.T.); (H.K.)
| |
Collapse
|
10
|
Hackl B, Lukacs P, Ebner J, Pesti K, Haechl N, Földi MC, Lilliu E, Schicker K, Kubista H, Stary-Weinzinger A, Hilber K, Mike A, Todt H, Koenig X. The Bradycardic Agent Ivabradine Acts as an Atypical Inhibitor of Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:809802. [PMID: 35586063 PMCID: PMC9108390 DOI: 10.3389/fphar.2022.809802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background and purpose: Ivabradine is clinically administered to lower the heart rate, proposedly by inhibiting hyperpolarization-activated cyclic nucleotide-gated cation channels in the sinoatrial node. Recent evidence suggests that voltage-gated sodium channels (VGSC) are inhibited within the same concentration range. VGSCs are expressed within the sinoatrial node and throughout the conduction system of the heart. A block of these channels thus likely contributes to the established and newly raised clinical indications of ivabradine. We, therefore, investigated the pharmacological action of ivabradine on VGSCs in sufficient detail in order to gain a better understanding of the pro- and anti-arrhythmic effects associated with the administration of this drug. Experimental Approach: Ivabradine was tested on VGSCs in native cardiomyocytes isolated from mouse ventricles and the His-Purkinje system and on human Nav1.5 in a heterologous expression system. We investigated the mechanism of channel inhibition by determining its voltage-, frequency-, state-, and temperature-dependence, complemented by a molecular drug docking to the recent Nav1.5 cryoEM structure. Automated patch-clamp experiments were used to investigate ivabradine-mediated changes in Nav1.5 inactivation parameters and inhibition of different VGSC isoforms. Key results: Ivabradine inhibited VGSCs in a voltage- and frequency-dependent manner, but did not alter voltage-dependence of activation and fast inactivation, nor recovery from fast inactivation. Cardiac (Nav1.5), neuronal (Nav1.2), and skeletal muscle (Nav1.4) VGSC isoforms were inhibited by ivabradine within the same concentration range, as were sodium currents in native cardiomyocytes isolated from the ventricles and the His-Purkinje system. Molecular drug docking suggested an interaction of ivabradine with the classical local anesthetic binding site. Conclusion and Implications: Ivabradine acts as an atypical inhibitor of VGSCs. Inhibition of VGSCs likely contributes to the heart rate lowering effect of ivabradine, in particular at higher stimulation frequencies and depolarized membrane potentials, and to the observed slowing of intra-cardiac conduction. Inhibition of VGSCs in native cardiomyocytes and across channel isoforms may provide a potential basis for the anti-arrhythmic potential as observed upon administration of ivabradine.
Collapse
Affiliation(s)
- Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Pesti
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Nicholas Haechl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Mátyás C Földi
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Mike
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Oshiyama NF, Pereira AHM, Cardoso AC, Franchini KG, Bassani JWM, Bassani RA. Developmental differences in myocardial transmembrane Na + transport: Implications for excitability and Na + handling. J Physiol 2022; 600:2651-2667. [PMID: 35489088 DOI: 10.1113/jp282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Previous studies showed that myocardial preparations from immature rats are less sensitive to electrical field stimulation than adult preparations. Freshly-isolated ventricular myocytes from neonatal rats showed lower excitability than adult cells, e.g., less negative threshold membrane potential and greater membrane depolarization required for action potential triggering. In addition to differences in mRNA levels for Na+ channels isoforms and greater Na+ current (INa ) density, Na+ channel voltage-dependence was shifted to the right in immature myocytes, which seems to be sufficient to decrease excitability, according to computer simulations. Only in neonatal myocytes did cyclic activity promote marked cytosolic Na+ accumulation, which was prevented by abolition of systolic Ca2+ transients by blockade of Ca2+ currents. Developmental changes in INa may account for the difference in action potential initiation parameters, but not for cytosolic Na+ accumulation, which seems to be due mainly to Na+ /Ca2+ exchanger-mediated Na+ influx. ABSTRACT Little is currently known about possible developmental changes in myocardial Na+ handling, which may have impact on cell excitability and Ca2+ content. Resting intracellular Na+ concentration ([Na+ ]i ), measured in freshly-isolated rat ventricular myocytes with CoroNa-green, was not significantly different in neonates (3-5 days old) and adults, but electrical stimulation caused marked [Na+ ]i rise only in neonates. Inhibition of L-type Ca2+ current by CdCl2 abolished not only systolic Ca2+ transients, but also activity-dependent intracellular Na+ accumulation in immature cells. This indicates that the main Na+ influx pathway during activity is the Na+ /Ca2+ exchanger, rather than voltage-dependent Na+ current (INa ), which was not affected by CdCl2 . In immature myocytes, INa density was 2-fold greater, inactivation was faster, and the current peak occurred at less negative transmembrane potential (Em ) than in adults. Na+ channel steady-state activation and inactivation curves in neonates showed a rightward shift, which should increase channel availability at diastolic Em , but also require greater depolarization for excitation, which was observed experimentally and reproduced in computer simulations. Ventricular mRNA levels of Nav 1.1, Nav 1.4 and Nav 1.5 pore-forming isoforms were greater in neonate ventricles, while decrease was seen for the β1 subunit. Both molecular and biophysical changes in the channel profile may contribute to the differences in INa density and voltage-dependence, and also to the less negative threshold Em in neonates, compared to adults. The apparently lower excitability in immature ventricle may confer protection against the development of spontaneous activity in this tissue. Abstract figure legend Little is currently known about possible developmental changes in myocardial Na+ transport, which may have impact on cell excitability and other physiological aspects. At the mRNA level, neonatal rat ventricle expresses a greater variety of Na+ channel isoforms than in adults. In immature ventricular cardiomyocytes, Na+ current (INa ) density was greater, but voltage-dependence is shifted to less negative potentials than in adults. This should increase channel availability at diastolic membrane potential, but also require greater depolarization for excitation, which was observed experimentally and reproduced in computer simulation. We also observed that electrical stimulation caused marked intracellular Na+ accumulation only in neonates, which was abolished when Ca2+ transients and the Na+ /Ca2+ exchanger (NCX) were inhibited by Cd2+ + Ni2+ . Thus, it seems that the main Na+ influx pathway during activity in neonates is the NCX, rather than voltage-dependent INa , which was not affected by these blockers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Natália F Oshiyama
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana H M Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil
| | - Alisson C Cardoso
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil
| | - Kleber G Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (LNBio/CNPEM), Campinas, SP, Brazil.,Department of Internal Medicine, School of Medicine, University of Campinas, Campinas, SP, Brazil
| | - José W M Bassani
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rosana A Bassani
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, SP, Brazil.,National Laboratory for Cell Calcium Study, (LabNECC), Center for Biomedical Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
12
|
Kim H, Yang H, Ednie AR, Bennett ES. Simulation Modeling of Reduced Glycosylation Effects on Potassium Channels of Mouse Cardiomyocytes. Front Physiol 2022; 13:816651. [PMID: 35309072 PMCID: PMC8931503 DOI: 10.3389/fphys.2022.816651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure and the primary reason for heart transplantation; upward of 70% of DCM cases are considered idiopathic. Our in-vitro experiments showed that reduced hybrid/complex N-glycosylation in mouse cardiomyocytes is linked with DCM. Further, we observed direct effects of reduced N-glycosylation on Kv gating. However, it is difficult to rigorously determine the effects of glycosylation on Kv activity, because there are multiple Kv isoforms in cardiomyocytes contributing to the cardiac excitation. Due to complex functions of Kv isoforms, only the sum of K+ currents (IKsum) can be recorded experimentally and decomposed later using exponential fitting to estimate component currents, such as IKto, IKslow, and IKss. However, such estimation cannot adequately describe glycosylation effects and Kv mechanisms. Here, we propose a framework of simulation modeling of Kv kinetics in mouse ventricular myocytes and model calibration using the in-vitro data under normal and reduced glycosylation conditions through ablation of the Mgat1 gene (i.e., Mgat1KO). Calibrated models facilitate the prediction of Kv characteristics at different voltages that are not directly observed in the in-vitro experiments. A model calibration procedure is developed based on the genetic algorithm. Experimental results show that, in the Mgat1KO group, both IKto and IKslow densities are shown to be significantly reduced and the rate of IKslow inactivation is much slower. The proposed approach has strong potential to couple simulation models with experimental data for gaining a better understanding of glycosylation effects on Kv kinetics.
Collapse
Affiliation(s)
- Haedong Kim
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
| | - Hui Yang
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hui Yang
| | - Andrew R. Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| | - Eric S. Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| |
Collapse
|
13
|
Hoebart C, Rojas‐Galvan NS, Ciotu CI, Aykac I, Reissig LF, Weninger WJ, Kiss A, Podesser BK, Fischer MJM, Heber S. No functional TRPA1 in cardiomyocytes. Acta Physiol (Oxf) 2021; 232:e13659. [PMID: 33819369 PMCID: PMC11478933 DOI: 10.1111/apha.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022]
Abstract
AIM There is mounting evidence that TRPA1 has a role in cardiac physiology and pathophysiology. We aim to clarify the site of TRPA1 expression in the heart and in particular whether the channel is expressed in cardiomyocytes. METHODS Due to the high calcium conductance of TRPA1, and marginal calcium changes being detectable, microfluorimetry in primary mouse cardiomyocytes, and in the cardiomyocyte cell lines H9c2 and HL-1, was applied. TRPA1 mRNA in mouse and human hearts, primary cardiomyocytes, and the cardiac cell lines were quantified. Dorsal root ganglia served as control for both methods. RESULTS In addition to AITC, the more potent and specific TRPA1 agonists JT010 and PF-4840154 failed to elicit a TRPA1-mediated response in native and electrically paced primary cardiomyocytes, and the cardiomyocyte cell lines H9c2 and HL-1. There were only marginal levels of TRPA1 mRNA in cardiomyocytes and cardiac cell lines, also in conditions of cell differentiation or inflammation, which might occur in pathophysiological conditions. Similarly, TRPV1 agonist capsaicin did not activate primary mouse cardiomyocytes, did not alter electrically paced activity in these, and did not activate H9c2 cells or alter spontaneous activity of HL-1 cells. Human pluripotent stem cells differentiated to cardiomyocytes had no relevant TRPA1 mRNA levels. Also in human post-mortem heart samples, TRPA1 mRNA levels were substantially lower compared with the respective dorsal root ganglion. CONCLUSION The results do not question a role of TRPA1 in the heart but exclude a direct effect in cardiomyocytes.
Collapse
Affiliation(s)
- Clara Hoebart
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | - Cosmin I. Ciotu
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Ibrahim Aykac
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | | | - Attila Kiss
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | - Bruno K. Podesser
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | - Stefan Heber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Marchal GA, Jouni M, Chiang DY, Pérez-Hernández M, Podliesna S, Yu N, Casini S, Potet F, Veerman CC, Klerk M, Lodder EM, Mengarelli I, Guan K, Vanoye CG, Rothenberg E, Charpentier F, Redon R, George AL, Verkerk AO, Bezzina CR, MacRae CA, Burridge PW, Delmar M, Galjart N, Portero V, Remme CA. Targeting the Microtubule EB1-CLASP2 Complex Modulates Na V1.5 at Intercalated Discs. Circ Res 2021; 129:349-365. [PMID: 34092082 PMCID: PMC8298292 DOI: 10.1161/circresaha.120.318643] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mariam Jouni
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - David Y Chiang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | | | - Svitlana Podliesna
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Nuo Yu
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Franck Potet
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Christiaan C Veerman
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Elisabeth M Lodder
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Isabella Mengarelli
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany (K.G.)
| | - Carlos G Vanoye
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology (E.R.), NYU School of Medicine
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Richard Redon
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Alfred L George
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Arie O Verkerk
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Department of Medical Biology, Amsterdam UMC - location AMC, The Netherlands (M.K., A.O.V.)
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| | - Calum A MacRae
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA (D.Y.C., C.A.M.)
| | - Paul W Burridge
- Department of Pharmacology, University Feinberg School of Medicine, Chicago, IL (M.J., F.P., C.G.V., A.L.G., P.W.B.)
| | - Mario Delmar
- Division of Cardiology (M.P.-H., M.D.), NYU School of Medicine
| | - Niels Galjart
- Department of Cell Biology, Erasmus Medical Centre Rotterdam, The Netherlands (N.Y., N.G.)
| | - Vincent Portero
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
- Université de Nantes, CNRS, INSERM, l'institut du Thorax, Nantes, France (F.C., R.R., V.P.)
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC - location AMC, The Netherlands (G.A.M., S.P., S.C., C.C.V., E.M.L., I.M., A.O.V., C.R.B., V.P., C.A.R.)
| |
Collapse
|
15
|
Jelinkova S, Sleiman Y, Fojtík P, Aimond F, Finan A, Hugon G, Scheuermann V, Beckerová D, Cazorla O, Vincenti M, Amedro P, Richard S, Jaros J, Dvorak P, Lacampagne A, Carnac G, Rotrekl V, Meli AC. Dystrophin Deficiency Causes Progressive Depletion of Cardiovascular Progenitor Cells in the Heart. Int J Mol Sci 2021; 22:ijms22095025. [PMID: 34068508 PMCID: PMC8125982 DOI: 10.3390/ijms22095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.
Collapse
MESH Headings
- Aging/genetics
- Aging/pathology
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiovascular System/metabolism
- Cardiovascular System/pathology
- DNA Damage/genetics
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression Regulation/genetics
- Humans
- Mice
- Mice, Inbred mdx/genetics
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-kit/genetics
- Stem Cells/metabolism
- Stem Cells/pathology
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Yvonne Sleiman
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Petr Fojtík
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Amanda Finan
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gerald Hugon
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Valerie Scheuermann
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Marie Vincenti
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Pascal Amedro
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Pediatric and Adult Congenital Cardiology Department, M3C Regional Reference CHD Center, CHU Montpellier, 371 Avenue du Doyen Giraud, 34295 Montpellier, France
| | - Sylvain Richard
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Josef Jaros
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5/A1, 62500 Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A3, 62500 Brno, Czech Republic; (S.J.); (P.F.); (D.B.); (P.D.)
- ICRC, St Anne’s University Hospital, Pekařská 53, 65691 Brno, Czech Republic;
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France; (Y.S.); (F.A.); (A.F.); (G.H.); (V.S.); (O.C.); (M.V.); (P.A.); (S.R.); (A.L.); (G.C.)
- Correspondence: (V.R.); (A.C.M.); Tel.: +420-549-498-002 (V.R.); +33-4-67-41-52-44 (A.C.M.); Fax: +420-549-491-327 (V.R.); +33-4-67-41-52-42 (A.C.M.)
| |
Collapse
|
16
|
Low human dystrophin levels prevent cardiac electrophysiological and structural remodelling in a Duchenne mouse model. Sci Rep 2021; 11:9779. [PMID: 33963238 PMCID: PMC8105358 DOI: 10.1038/s41598-021-89208-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder caused by loss of dystrophin. This lack also affects cardiac structure and function, and cardiovascular complications are a major cause of death in DMD. Newly developed therapies partially restore dystrophin expression. It is unclear whether this will be sufficient to prevent or ameliorate cardiac involvement in DMD. We here establish the cardiac electrophysiological and structural phenotype in young (2-3 months) and aged (6-13 months) dystrophin-deficient mdx mice expressing 100% human dystrophin (hDMD), 0% human dystrophin (hDMDdel52-null) or low levels (~ 5%) of human dystrophin (hDMDdel52-low). Compared to hDMD, young and aged hDMDdel52-null mice displayed conduction slowing and repolarisation abnormalities, while only aged hDMDdel52-null mice displayed increased myocardial fibrosis. Moreover, ventricular cardiomyocytes from young hDMDdel52-null animals displayed decreased sodium current and action potential (AP) upstroke velocity, and prolonged AP duration at 20% and 50% of repolarisation. Hence, cardiac electrical remodelling in hDMDdel52-null mice preceded development of structural alterations. In contrast to hDMDdel52-null, hDMDdel52-low mice showed similar electrophysiological and structural characteristics as hDMD, indicating prevention of the cardiac DMD phenotype by low levels of human dystrophin. Our findings are potentially relevant for the development of therapeutic strategies aimed at restoring dystrophin expression in DMD.
Collapse
|
17
|
Szabó PL, Ebner J, Koenig X, Hamza O, Watzinger S, Trojanek S, Abraham D, Todt H, Kubista H, Schicker K, Remy S, Anegon I, Kiss A, Podesser BK, Hilber K. Cardiovascular phenotype of the Dmdmdx rat - a suitable animal model for Duchenne muscular dystrophy. Dis Model Mech 2021; 14:14/2/dmm047704. [PMID: 33619211 PMCID: PMC7927653 DOI: 10.1242/dmm.047704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD. Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal. These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD. Summary: We characterized the cardiovascular abnormalities of Dmdmdx rats, demonstrating that Dmdmdx rats show similar cardiac and vascular endothelial function impairments to Duchenne muscular dystrophy patients, representing a model of the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabó
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Janine Ebner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Ouafa Hamza
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Simon Watzinger
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Sandra Trojanek
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna 1090, Austria
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Séverine Remy
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Center for Research in Transplantation and Immunology, UMR 1064, Nantes Université, F-44000 Nantes, France
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
18
|
Fortunato F, Rossi R, Falzarano MS, Ferlini A. Innovative Therapeutic Approaches for Duchenne Muscular Dystrophy. J Clin Med 2021; 10:jcm10040820. [PMID: 33671409 PMCID: PMC7922390 DOI: 10.3390/jcm10040820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~1:5000 live male births. Following the identification of pathogenic variations in the dystrophin gene in 1986, the underlining genotype/phenotype correlations emerged and the role of the dystrophin protein was elucidated in skeletal, smooth, and cardiac muscles, as well as in the brain. When the dystrophin protein is absent or quantitatively or qualitatively modified, the muscle cannot sustain the stress of repeated contractions. Dystrophin acts as a bridging and anchoring protein between the sarcomere and the sarcolemma, and its absence or reduction leads to severe muscle damage that eventually cannot be repaired, with its ultimate substitution by connective tissue and fat. The advances of an understanding of the molecular pathways affected in DMD have led to the development of many therapeutic strategies that tackle different aspects of disease etiopathogenesis, which have recently led to the first successful approved orphan drugs for this condition. The therapeutic advances in this field have progressed exponentially, with second-generation drugs now entering in clinical trials as gene therapy, potentially providing a further effective approach to the condition.
Collapse
|
19
|
Amstetter D, Badt F, Rubi L, Bittner RE, Ebner J, Uhrin P, Hilber K, Koenig X, Todt H. The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo. Eur J Pharmacol 2021; 893:173818. [PMID: 33345856 DOI: 10.1016/j.ejphar.2020.173818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Ivabradine blocks hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, thereby lowering the heart rate, an action that is used clinically for the treatment of heart failure and angina pectoris. We and others have shown previously that ivabradine, in addition to its HCN channel blocking activity, also inhibits voltage-gated Na channels in vitro at concentrations that may be clinically relevant. Such action may reduce conduction velocity in cardiac atria and ventricles. Here, we explore the effect of administration of ivabradine on parameters of ventricular conduction and repolarization in the surface ECG of anesthetized mice. We found that 5 min after i.p. administration of 10 mg/kg ivabradine spontaneous heart rate had declined by ~13%, which is within the range observed in human clinical studies. At the same time a significant increase in QRS duration by ~18% was observed, suggesting a reduction in ventricular conduction velocity. During transesophageal pacing at heart rates between 100 and 220 beats/min there was no obvious rate-dependence of ivabradine-induced QRS prolongation. On the other hand, ivabradine produced substantial rate-dependent slowing of AV nodal conduction. We conclude that ivabradine prolongs conduction in the AV-node and in the ventricles in vivo.
Collapse
Affiliation(s)
- Daniel Amstetter
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian Badt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Reginald E Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Janine Ebner
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Austria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Todt H, Dorninger F, Rothauer PJ, Fischer CM, Schranz M, Bruegger B, Lüchtenborg C, Ebner J, Hilber K, Koenig X, Erdem FA, Gawali VS, Berger J. Oral batyl alcohol supplementation rescues decreased cardiac conduction in ether phospholipid-deficient mice. J Inherit Metab Dis 2020; 43:1046-1055. [PMID: 32441337 PMCID: PMC7540404 DOI: 10.1002/jimd.12264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Plasmalogens (Pls) are a class of membrane phospholipids which serve a number of essential biological functions. Deficiency of Pls is associated with common disorders such as Alzheimer's disease or ischemic heart disease. A complete lack of Pls due to genetically determined defective biosynthesis gives rise to rhizomelic chondrodysplasia punctata (RCDP), characterized by a number of severe disabling pathologic features and death in early childhood. Frequent cardiac manifestations of RCDP include septal defects, mitral valve prolapse, and patent ductus arteriosus. In a mouse model of RCDP, reduced nerve conduction velocity was partially rescued by dietary oral supplementation of the Pls precursor batyl alcohol (BA). Here, we examine the impact of Pls deficiency on cardiac impulse conduction in a similar mouse model (Gnpat KO). In-vivo electrocardiographic recordings showed that the duration of the QRS complex was significantly longer in Gnpat KO mice than in age- and sex-matched wild-type animals, indicative of reduced cardiac conduction velocity. Oral supplementation of BA for 2 months resulted in normalization of cardiac Pls levels and of the QRS duration in Gnpat KO mice but not in untreated animals. BA treatment had no effect on the QRS duration in age-matched wild-type mice. These data suggest that Pls deficiency is associated with increased ventricular conduction time which can be rescued by oral BA supplementation.
Collapse
Affiliation(s)
- Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Peter J. Rothauer
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Claus M. Fischer
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Michael Schranz
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Britta Bruegger
- Heidelberg University Biochemistry CenterHeidelberg UniversityHeidelbergGermany
| | | | - Janine Ebner
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Fatma A. Erdem
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Vaibhavkumar S. Gawali
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
21
|
Jelinkova S, Vilotic A, Pribyl J, Aimond F, Salykin A, Acimovic I, Pesl M, Caluori G, Klimovic S, Urban T, Dobrovolna H, Soska V, Skladal P, Lacampagne A, Dvorak P, Meli AC, Rotrekl V. DMD Pluripotent Stem Cell Derived Cardiac Cells Recapitulate in vitro Human Cardiac Pathophysiology. Front Bioeng Biotechnol 2020; 8:535. [PMID: 32656189 PMCID: PMC7325914 DOI: 10.3389/fbioe.2020.00535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the lack of functional dystrophin. DMD is associated with progressive dilated cardiomyopathy, eventually leading to heart failure as the main cause of death in DMD patients. Although several molecular mechanisms leading to the DMD cardiomyocyte (DMD-CM) death were described, mostly in mouse model, no suitable human CM model was until recently available together with proper clarification of the DMD-CM phenotype and delay in cardiac symptoms manifestation. We obtained several independent dystrophin-deficient human pluripotent stem cell (hPSC) lines from DMD patients and CRISPR/Cas9-generated DMD gene mutation. We differentiated DMD-hPSC into cardiac cells (CC) creating a human DMD-CC disease model. We observed that mutation-carrying cells were less prone to differentiate into CCs. DMD-CCs demonstrated an enhanced cell death rate in time. Furthermore, ion channel expression was altered in terms of potassium (Kir2.1 overexpression) and calcium handling (dihydropyridine receptor overexpression). DMD-CCs exhibited increased time of calcium transient rising compared to aged-matched control, suggesting mishandling of calcium release. We observed mechanical impairment (hypocontractility), bradycardia, increased heart rate variability, and blunted β-adrenergic response connected with remodeling of β-adrenergic receptors expression in DMD-CCs. Overall, these results indicated that our DMD-CC models are functionally affected by dystrophin-deficiency associated and recapitulate functional defects and cardiac wasting observed in the disease. It offers an accurate tool to study human cardiomyopathy progression and test therapies in vitro.
Collapse
Affiliation(s)
- Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Aleksandra Vilotic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czechia
| | - Franck Aimond
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Anton Salykin
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Guido Caluori
- International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia.,First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Simon Klimovic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomas Urban
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hana Dobrovolna
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia
| | - Vladimir Soska
- Department of Clinical Biochemistry, St. Anne's University Hospital of Brno, Brno, Czechia.,Second Clinic of Internal Medicine, Masaryk University of Brno, Brno, Czechia
| | - Petr Skladal
- First Department of Internal Medicine-Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| | - Albano C Meli
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center ICRC, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
22
|
Ebner J, Uhrin P, Szabo PL, Kiss A, Podesser BK, Todt H, Hilber K, Koenig X. Reduced Na+ current in Purkinje fibers explains cardiac conduction defects and arrhythmias in Duchenne muscular dystrophy. Am J Physiol Heart Circ Physiol 2020; 318:H1436-H1440. [DOI: 10.1152/ajpheart.00224.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dystrophic cardiac Purkinje fibers have abnormally reduced Na+ current densities. This explains impaired ventricular conduction in the dystrophic heart.
Collapse
Affiliation(s)
- Janine Ebner
- Department of Neurophysiology-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Petra L. Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K. Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Mazzone A, Strege PR, Gibbons SJ, Alcaino C, Joshi V, Haak AJ, Tschumperlin DJ, Bernard CE, Cima RR, Larson DW, Chua HK, Graham RP, El Refaey M, Mohler PJ, Hayashi Y, Ordog T, Calder S, Du P, Farrugia G, Beyder A. microRNA overexpression in slow transit constipation leads to reduced Na V1.5 current and altered smooth muscle contractility. Gut 2020; 69:868-876. [PMID: 31757880 PMCID: PMC7147984 DOI: 10.1136/gutjnl-2019-318747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Constanza Alcaino
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl E Bernard
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert R Cima
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David W Larson
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi K Chua
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mona El Refaey
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J Mohler
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yujiro Hayashi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gianrico Farrugia
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Ebner J, Cagalinec M, Kubista H, Todt H, Szabo PL, Kiss A, Podesser BK, Cserne Szappanos H, Hool LC, Hilber K, Koenig X. Neuronal nitric oxide synthase regulation of calcium cycling in ventricular cardiomyocytes is independent of Ca v1.2 channel modulation under basal conditions. Pflugers Arch 2020; 472:61-74. [PMID: 31822999 PMCID: PMC6960210 DOI: 10.1007/s00424-019-02335-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.
Collapse
Affiliation(s)
- Janine Ebner
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Michal Cagalinec
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helmut Kubista
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Petra L Szabo
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Karlheinz Hilber
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| | - Xaver Koenig
- Department of Neurophysiology and-Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| |
Collapse
|
25
|
Esposito G, Carsana A. Metabolic Alterations in Cardiomyocytes of Patients with Duchenne and Becker Muscular Dystrophies. J Clin Med 2019; 8:jcm8122151. [PMID: 31817415 PMCID: PMC6947625 DOI: 10.3390/jcm8122151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) result in progressive weakness of skeletal and cardiac muscles due to the deficiency of functional dystrophin. Respiratory failure is a leading cause of mortality in DMD patients; however, improved management of the respiratory symptoms have increased patients' life expectancy, thereby also increasing the clinical relevance of heart disease. In fact, the prevalence of cardiomyopathy, which significantly contributes to mortality in DMD patients, increases with age and disease progression, so that over 95% of adult patients has cardiomyopathy signs. We here review the current literature featuring the metabolic alterations observed in the dystrophic heart of the mdx mouse, i.e., the best-studied animal model of the disease, and discuss their pathophysiological role in the DMD heart. It is well assessed that dystrophin deficiency is associated with pathological alterations of lipid metabolism, intracellular calcium levels, neuronal nitric oxide (NO) synthase localization, and NO and reactive oxygen species production. These metabolic stressors contribute to impair the function of the cardiac mitochondrial bulk, which has a relevant pathophysiological role in the development of cardiomyopathy. In fact, mitochondrial dysfunction becomes more severe as the dystrophic process progresses, thereby indicating it may be both the cause and the consequence of the dystrophic process in the DMD heart.
Collapse
Affiliation(s)
- Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Antonella Carsana
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
26
|
Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 2019; 132:13-23. [PMID: 31071333 DOI: 10.1016/j.yjmcc.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.
Collapse
|
27
|
Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the Dystrophin-Deficient Heart. Int J Mol Sci 2018; 19:ijms19113296. [PMID: 30360568 PMCID: PMC6274787 DOI: 10.3390/ijms19113296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in the gene encoding for the intracellular protein dystrophin cause severe forms of muscular dystrophy. These so-called dystrophinopathies are characterized by skeletal muscle weakness and degeneration. Dystrophin deficiency also gives rise to considerable complications in the heart, including cardiomyopathy development and arrhythmias. The current understanding of the pathomechanisms in the dystrophic heart is limited, but there is growing evidence that dysfunctional voltage-dependent ion channels in dystrophin-deficient cardiomyocytes play a significant role. Herein, we summarize the current knowledge about abnormalities in voltage-dependent sarcolemmal ion channel properties in the dystrophic heart, and discuss the potentially underlying mechanisms, as well as their pathophysiological relevance.
Collapse
|
28
|
El-Battrawy I, Zhao Z, Lan H, Li X, Yücel G, Lang S, Sattler K, Schünemann JD, Zimmermann WH, Cyganek L, Utikal J, Wieland T, Bieback K, Bauer R, Ratte A, Pribe-Wolferts R, Rapti K, Nowak D, Wittig J, Thomas D, Most P, Katus HA, Ravens U, Schmidt C, Borggrefe M, Zhou XB, Müller OJ, Akin I. Ion Channel Dysfunctions in Dilated Cardiomyopathy in Limb-Girdle Muscular Dystrophy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001893. [DOI: 10.1161/circgen.117.001893] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ibrahim El-Battrawy
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Zhihan Zhao
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Huan Lan
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Xin Li
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Gökhan Yücel
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Siegfried Lang
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Katherine Sattler
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Jan-Dierk Schünemann
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Wolfram-Hubertus Zimmermann
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Lukas Cyganek
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Jochen Utikal
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Thomas Wieland
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Karen Bieback
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Ralf Bauer
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Antonius Ratte
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Regina Pribe-Wolferts
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Kleopatra Rapti
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Daniel Nowak
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Janina Wittig
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Dierk Thomas
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Patrick Most
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Hugo A. Katus
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Ursula Ravens
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Constanze Schmidt
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Martin Borggrefe
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Xiao-Bo Zhou
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Oliver J. Müller
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| | - Ibrahim Akin
- From the First Department of Medicine, Faculty of Medicine (I.E.-B., Z.Z., H.L., X.L., G.Y., S.L., K.S., J.-D.S., M.B., X.-B.Z., I.A.) and Department of Dermatology, Venereology and Allergology (J.U.), University Medical Centre Mannheim, University of Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen (I.E.-B., Z.Z., H.L., G.Y., S.L., W.-H.Z., L.C., J.U., T.W., R.B., A.R., D.T., P.M., H.A.K., C.S., M.B., X.-B.Z., O.J.M., I.A.)
| |
Collapse
|
29
|
De Bellis M, Sanarica F, Carocci A, Lentini G, Pierno S, Rolland JF, Conte Camerino D, De Luca A. Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Front Pharmacol 2018; 8:907. [PMID: 29379434 PMCID: PMC5770958 DOI: 10.3389/fphar.2017.00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Mexiletine (Mex) has been recently appointed as an orphan-drug in myotonic-syndromes, being a potent use-dependent blocker of skeletal-muscle sodium channels (NaV1.4). Available evidences about a potential anti-oxidant effect of Mex and its tetramethyl-pyrroline-derivatives in vivo, suggest the possibility to further enlarge the therapeutic potential of Mex-like compounds in myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative stress. In line with this and based on our previous structure-activity-relationship studies, we synthesized new compounds with a tetramethyl-pyrroline-ring on the amino-group of both Mex (VM11) and of its potent use-dependent isopropyl-derivative (CI16). The compounds were tested for their ability to block native NaV1.4 and to exert cyto-protective effects against oxidative-stress injury in myoblasts. Voltage-clamp-recordings on adult myofibers were performed to assess the tonic and use-dependent block of peak sodium-currents (INa) by VM11 and CI16, as well as Mex, VM11 and CI16 were 3 and 6-fold more potent than Mex in producing a tonic-block of peak sodium-currents (INa), respectively. Interestingly, CI16 showed a 40-fold increase of potency with respect to Mex during high-frequency stimulation (10-Hz), resulting the strongest use-dependent Mex-like compound so far. The derivatives also behaved as inactivated channel blockers, however the voltage dependent block was modest. The experimental data fitted with the molecular-modeling simulation based on previously proposed interaction of main pharmacophores with NaV1.4 binding-site. CI16 and VM11 were then compared to Mex and its isopropyl derivative (Me5) for the ability to protect C2C12-cells from H2O2-cytotoxicity in the concentration range effective on Nav1.4. Mex and Me5 showed a moderate cyto-protective effect in the presence of H2O2, Importantly, CI16 and VM11 showed a remarkable cyto-protection at concentrations effective for use-dependent block of NaV1.4. This effect was comparable to that of selected anti-oxidant drugs proved to exert protective effect in preclinical models of progressive myopathies such as muscular dystrophies. Then, the tetramethyl-pyrroline compounds have increased therapeutic profile as sodium channel blockers and an interesting cyto-protective activity. The overall profile enlarges therapeutic potential from channelopathies to myopathies in which alteration of excitation-contraction coupling is paralleled by oxidative-stress, i.e., muscular dystrophies.
Collapse
Affiliation(s)
- Michela De Bellis
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Sanarica
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Carocci
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Lentini
- Unit of Medicinal Chemistry, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Sabata Pierno
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Diana Conte Camerino
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
30
|
Rubi L, Todt H, Kubista H, Koenig X, Hilber K. Calcium current properties in dystrophin-deficient ventricular cardiomyocytes from aged mdx mice. Physiol Rep 2018; 6:e13567. [PMID: 29333726 PMCID: PMC5789658 DOI: 10.14814/phy2.13567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the gene encoding for the cytoskeletal protein dystrophin, is linked with severe cardiac complications including cardiomyopathy development and cardiac arrhythmias. We and others recently reported that currents through L-type calcium (Ca) channels were significantly increased, and channel inactivation was reduced in dystrophin-deficient ventricular cardiomyocytes derived from the mdx mouse, the most commonly used animal model for human DMD. These gain-of-function Ca channel abnormalities may enhance the risk of Ca-dependent arrhythmias and cellular Ca overload in the dystrophic heart. All studies, which have so far investigated L-type Ca channel properties in dystrophic cardiomyocytes, have used hearts from either neonatal or young adult mdx mice as cell source. In consequence, the dimension of the Ca channel abnormalities present in the severely-diseased aged dystrophic heart has remained unknown. Here, we have studied potential abnormalities in Ca currents and intracellular Ca transients in ventricular cardiomyocytes derived from aged dystrophic mdx mice. We found that both the L-type and T-type Ca current properties of mdx cardiomyocytes were similar to those of myocytes derived from aged wild-type mice. Accordingly, Ca release from the sarcoplasmic reticulum was normal in cardiomyocytes from aged mdx mice. This suggests that, irrespective of the presence of a pronounced cardiomyopathy in aged mdx mice, Ca currents and Ca release in dystrophic cardiomyocytes are normal. Finally, our data imply that dystrophin- regulation of L-type Ca channel function in the heart is lost during aging.
Collapse
MESH Headings
- Action Potentials
- Aging/metabolism
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/metabolism
- Calcium Signaling
- Cells, Cultured
- Heart Ventricles/cytology
- Heart Ventricles/growth & development
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Hannes Todt
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Helmut Kubista
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Xaver Koenig
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Karlheinz Hilber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Rubi L, Kovar M, Zebedin-Brandl E, Koenig X, Dominguez-Rodriguez M, Todt H, Kubista H, Boehm S, Hilber K. Modulation of the heart's electrical properties by the anticonvulsant drug retigabine. Toxicol Appl Pharmacol 2017. [PMID: 28641963 DOI: 10.1016/j.taap.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.
Collapse
Affiliation(s)
- Lena Rubi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Kovar
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Zebedin-Brandl
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Johnstone VPA, Viola HM, Hool LC. Dystrophic Cardiomyopathy-Potential Role of Calcium in Pathogenesis, Treatment and Novel Therapies. Genes (Basel) 2017; 8:genes8040108. [PMID: 28338606 PMCID: PMC5406855 DOI: 10.3390/genes8040108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by defects in the DMD gene and results in progressive wasting of skeletal and cardiac muscle due to an absence of functional dystrophin. Cardiomyopathy is prominent in DMD patients, and contributes significantly to mortality. This is particularly true following respiratory interventions that reduce death rate and increase ambulation and consequently cardiac load. Cardiomyopathy shows an increasing prevalence with age and disease progression, and over 95% of patients exhibit dilated cardiomyopathy by the time they reach adulthood. Development of the myopathy is complex, and elevations in intracellular calcium, functional muscle ischemia, and mitochondrial dysfunction characterise the pathophysiology. Current therapies are limited to treating symptoms of the disease and there is therefore an urgent need to treat the underlying genetic defect. Several novel therapies are outlined here, and the unprecedented success of phosphorodiamidate morpholino oligomers (PMOs) in preclinical and clinical studies is overviewed.
Collapse
Affiliation(s)
- Victoria P A Johnstone
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Helena M Viola
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| |
Collapse
|
33
|
Karagueuzian HS, Pezhouman A, Angelini M, Olcese R. Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Front Pharmacol 2017; 8:36. [PMID: 28220073 PMCID: PMC5292429 DOI: 10.3389/fphar.2017.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022] Open
Abstract
While recent advances clarified the molecular and cellular modes of action of antiarrhythmic drugs (AADs), their link to suppression of dynamical arrhythmia mechanisms remains only partially understood. The current classifications of AADs (Classes I, III, and IV) rely on blocking peak Na, K and L-type calcium currents (ICa,L), with Class II with dominant beta receptor blocking activity and Class V including drugs with diverse classes of actions. The discovery that the calcium and redox sensor, cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) enhances both the late Na (INa-L) and the late ICa,L in patients at high risk of VT/VF provided a new and a rational AAD target. Pathological rise of either or both of INa-L and late ICa,L are demonstrated to promote cellular early afterdepolarizations (EADs) and EAD-mediated triggered activity that can initiate VT/VF in remodeled hearts. Selective inhibition of the INa-L without affecting their peak transients with the highly specific prototype drug, GS-967 suppresses these EAD-mediated VT/VFs. As in the case of INa-L, selective inhibition of the late ICa,L without affecting its peak with the prototype drug, roscovitine suppressed oxidative EAD-mediated VT/VF. These findings indicate that specific blockers of the late inward currents without affecting their peaks (gating modifiers), offer a new and effective AAD class action i.e., “Class VI.” The development of safe drugs with selective Class VI actions provides a rational and effective approach to treat VT/VF particularly in cardiac conditions associated with enhanced CaMKII activity such as heart failure.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Arash Pezhouman
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Riccardo Olcese
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
34
|
Rubi L, Koenig X, Kubista H, Todt H, Hilber K. Decreased inward rectifier potassium current I K1 in dystrophin-deficient ventricular cardiomyocytes. Channels (Austin) 2016; 11:101-108. [PMID: 27560040 PMCID: PMC5398571 DOI: 10.1080/19336950.2016.1228498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.
Collapse
Affiliation(s)
- Lena Rubi
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Xaver Koenig
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Helmut Kubista
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Hannes Todt
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| | - Karlheinz Hilber
- a Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
35
|
Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteomics 2016; 145:24-36. [DOI: 10.1016/j.jprot.2016.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022]
|
36
|
Viola HM, Hool LC. Role of the cytoskeleton in communication between L-type Ca(2+) channels and mitochondria. Clin Exp Pharmacol Physiol 2015; 40:295-304. [PMID: 23551128 DOI: 10.1111/1440-1681.12072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/15/2022]
Abstract
The L-type Ca(2+) channel is the main route for Ca(2+) entry into cardiac myocytes, which is essential for the maintenance of cardiac excitation and contraction. Alterations in L-type Ca(2+) channel activity and Ca(2+) homeostasis have been implicated in the development of cardiomyopathies. Cardiac excitation and contraction is fuelled by ATP, synthesized predominantly by the mitochondria via the Ca(2+)-dependent process oxidative phosphorylation. Mitochondrial reactive oxygen species (ROS) are by-products of oxidative phosphorylation and are associated with the development of cardiac pathology. The cytoskeleton plays a role in the communication of signals from the plasma membrane to intracellular organelles. There is good evidence that both L-type Ca(2+) channel activity and mitochondrial function can be modulated by changes in the cytoskeletal network. Activation of the L-type Ca(2+) channel can regulate mitochondrial function through cytoskeletal proteins as a result of transmission of movement from the β(2)-subunit of the channel that occurs during activation and inactivation of the channel. An association between cytoskeletal proteins and the mitochondrial voltage-dependent anion channel (VDAC) may play a role in this response. The L-type Ca(2+) channel is the initiator of contraction in cardiac muscle and the VDAC is responsible for regulating mitochondrial ATP/ADP trafficking. This article presents evidence that a functional coupling between L-type Ca(2+) channels and mitochondria may assist in meeting myocardial energy demand on a beat-to-beat basis.
Collapse
Affiliation(s)
- Helena M Viola
- Cardiovascular Electrophysiology Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
37
|
Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the mdx heart. Proc Natl Acad Sci U S A 2014; 111:E2905-14. [PMID: 24969422 DOI: 10.1073/pnas.1402544111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy is a fatal X-linked disease characterized by the absence of dystrophin. Approximately 20% of boys will die of dilated cardiomyopathy that is associated with cytoskeletal protein disarray, contractile dysfunction, and reduced energy production. However, the mechanisms for altered energy metabolism are not yet fully clarified. Calcium influx through the L-type Ca(2+) channel is critical for maintaining cardiac excitation and contraction. The L-type Ca(2+) channel also regulates mitochondrial function and metabolic activity via transmission of movement of the auxiliary beta subunit through intermediate filament proteins. Here, we find that activation of the L-type Ca(2+) channel is unable to induce increases in mitochondrial membrane potential and metabolic activity in intact cardiac myocytes from the murine model of Duchenne muscular dystrophy (mdx) despite robust increases recorded in wt myocytes. Treatment of mdx mice with morpholino oligomers to induce exon skipping of dystrophin exon 23 (that results in functional dystrophin accumulation) or application of a peptide that resulted in block of voltage-dependent anion channel (VDAC) "rescued" mitochondrial membrane potential and metabolic activity in mdx myocytes. The mitochondrial VDAC coimmunoprecipitated with the L-type Ca(2+) channel. We conclude that the absence of dystrophin in the mdx ventricular myocyte leads to impaired functional communication between the L-type Ca(2+) channel and mitochondrial VDAC. This appears to contribute to metabolic inhibition. These findings provide new mechanistic and functional insight into cardiomyopathy associated with Duchenne muscular dystrophy.
Collapse
|
38
|
Li Y, Zhang S, Zhang X, Li J, Ai X, Zhang L, Yu D, Ge S, Peng Y, Chen X. Blunted cardiac beta-adrenergic response as an early indication of cardiac dysfunction in Duchenne muscular dystrophy. Cardiovasc Res 2014; 103:60-71. [PMID: 24812281 DOI: 10.1093/cvr/cvu119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS To determine whether altered beta-adrenergic responses contribute to early cardiac dysfunction in mdx (X-linked muscular dystrophy) mice, an animal model for human Duchenne muscular dystrophy. METHODS AND RESULTS Replacement fibrosis in mdx hearts gradually increased with age, suggesting a gradual loss of cardiomyocytes. Echocardiography and intra-left ventricular haemodynamic measurements detected baseline cardiac dysfunction in mdx mice at ≥8 months. However, a reduction of cardiac beta-adrenergic response to isoproterenol (ISO) was already present in mdx mice at 4 months. Ventricular myocytes (VMs) isolated from 4- and 8-month-old mdx mice had greater baseline contractile function {fractional shortening, [Ca(2+)]i, and sarcoplasmic reticulum (SR) Ca(2+) content} and ICa-L than age-matched control VMs and than myocytes isolated from 2-month-old mdx mice. ISO increased myocyte function in the VMs of 4- and 8-month-old mdx mice to the same level as in age-matched control VMs. In the VMs of 12-month-old mdx mice, ISO failed to increase myocyte function to the level in VMs of 12-month-old control mice and could not further increaseICa-L. No differences were observed in the expression of Cav1.2α1c, Cav1.2β1, Cav1.2β2, sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA), and the Na(+)/Ca(2+) exchanger. In contrast, total ryanodine receptor 2 (RyR2) and basal phosphorylation of RyR2, phospholamban, and Cav1.2α1c were found to be increased in hearts of 4-month-old mdx mice; baseline protein kinase A activity was also increased. After ISO treatment, phosphorylation levels were the same in mdx and control hearts. VMs of 4-month-old mdx mice had reduced beta1-adrenergic receptor (β1-AR) density and beta-adrenergic sensitivity. CONCLUSION In young mdx mice, the myocyte increases its contractile function to compensate for myocyte loss. However, these myocytes with enhanced baseline function have reduced potential for stimulation, decreased β1-AR density/sensitivity, leading to blunted cardiac beta-adrenergic response.
Collapse
Affiliation(s)
- Ying Li
- Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shuai Zhang
- Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaoying Zhang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jing Li
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA School of Medicine, Nankai University, Tianjin, China
| | - Xiaojie Ai
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA College of Biological Sciences, Shanghai Jiaotong University, Shanghai, China
| | - Li Zhang
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA Drexel University College of Medicine, Philadelphia, PA, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shuping Ge
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Proteomic profiling of the dystrophin-deficient mdx phenocopy of dystrophinopathy-associated cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:246195. [PMID: 24772416 PMCID: PMC3977469 DOI: 10.1155/2014/246195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.
Collapse
|
40
|
Ultrastructural and functional alterations of EC coupling elements in mdx cardiomyocytes: an analysis from membrane surface to depth. Cell Biochem Biophys 2014; 66:723-36. [PMID: 23400933 DOI: 10.1007/s12013-013-9517-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A dilated cardiomyopathy (DCM) is associated with Duchenne muscular dystrophy (DMD). The loss of dystrophin leads to membrane instability and calcium dysregulation in skeletal muscle but effects of such a loss are not elucidated at cardiomyocytes level. We sought to examine whether membrane and transverse tubules damages occur in ventricular myocytes from mdx mouse model of DMD and how they impact the function of single excitation-contraction coupling elements. Scanning ion conductance microscopy (SICM) was used to characterize the integrity loss of living mdx cardiomyocytes surface. 2D Fourier transform analysis of labeled internal networks (transverse tubules, alpha-actinin, dihydropyridine receptors, ryanodine receptors) was performed to evaluate internal alterations. During calcium measurements, "smart microperfusions" of depolarizing solutions were applied through SICM nanopipette, stimulating single tubules elements. These approaches revealed structural membrane surface (39% decrease for Z-groove ratio) and transverse tubules disorganization (21% transverse tubules ratio decrease) in mdx as compared to control. These disruptions were associated with functional alterations (sixfold increase of calcium signal duration and twofold increase of sparks frequency). In DCM associated with DMD, myocytes display evident membrane alterations at the surface level but also in the cell depth with a disruption of transverse tubules network as observed in other cases of heart failure. These ultrastructural changes are associated with changes in the function of some coupling elements. Thus, these profound disruptions may play a role in calcium dysregulation through excitation-contraction coupling elements perturbation and suggest a transverse tubules stabilizing role for dystrophin.
Collapse
|
41
|
Tang Y, Stahl-Herz J, Sampson BA. Molecular diagnostics of cardiovascular diseases in sudden unexplained death. Cardiovasc Pathol 2014; 23:1-4. [DOI: 10.1016/j.carpath.2013.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/15/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022] Open
|
42
|
Koenig X, Rubi L, Obermair GJ, Cervenka R, Dang XB, Lukacs P, Kummer S, Bittner RE, Kubista H, Todt H, Hilber K. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart. Am J Physiol Heart Circ Physiol 2013; 306:H564-H573. [PMID: 24337461 DOI: 10.1152/ajpheart.00441.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.
Collapse
Affiliation(s)
- Xaver Koenig
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Rubi
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Rene Cervenka
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xuan B Dang
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Kummer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Reginald E Bittner
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 2013; 8:e73499. [PMID: 24023686 PMCID: PMC3758302 DOI: 10.1371/journal.pone.0073499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.
Collapse
|
44
|
Holland A, Dowling P, Zweyer M, Swandulla D, Henry M, Clynes M, Ohlendieck K. Proteomic profiling of cardiomyopathic tissue from the aged mdx model of Duchenne muscular dystrophy reveals a drastic decrease in laminin, nidogen and annexin. Proteomics 2013; 13:2312-23. [PMID: 23713012 DOI: 10.1002/pmic.201200578] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/11/2013] [Accepted: 04/24/2013] [Indexed: 01/07/2023]
Abstract
The majority of patients afflicted with Duchenne muscular dystrophy develop cardiomyopathic complications, warranting large-scale proteomic studies of global cardiac changes for the identification of new protein markers of dystrophinopathy. The aged heart from the X-linked dystrophic mdx mouse has been shown to exhibit distinct pathological aspects of cardiomyopathy. In order to establish age-related alterations in the proteome of dystrophin-deficient hearts, cardiomyopathic tissue from young versus aged mdx mice was examined by label-free LC-MS/MS. Significant age-dependent alterations were established for 67 proteins, of which 28 proteins were shown to exhibit a lower abundance and 39 proteins were found to be increased in their expression levels. Drastic changes were demonstrated for 17 proteins, including increases in Ig chains and transferrin, and drastic decreases in laminin, nidogen and annexin. An immunblotting survey of young and old wild-type versus mdx hearts confirmed these proteomic findings and illustrated the effects of natural aging versus dystrophin deficiency. These proteome-wide alterations suggest a disintegration of the basal lamina structure and cytoskeletal network in dystrophin-deficient cardiac fibres, increased levels of antibodies in a potential autoimmune reaction of the degenerating heart, compensatory binding of excess iron and a general perturbation of metabolic pathways in dystrophy-associated cardiomyopathy.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | | | | | | | | | | | | |
Collapse
|
45
|
Koenig X, Kovar M, Rubi L, Mike AK, Lukacs P, Gawali VS, Todt H, Hilber K, Sandtner W. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile. Toxicol Appl Pharmacol 2013; 273:259-68. [PMID: 23707769 PMCID: PMC3853361 DOI: 10.1016/j.taap.2013.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 01/15/2023]
Abstract
The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias.
Collapse
Affiliation(s)
- Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Viola HM, Davies SMK, Filipovska A, Hool LC. L-type Ca(2+) channel contributes to alterations in mitochondrial calcium handling in the mdx ventricular myocyte. Am J Physiol Heart Circ Physiol 2013; 304:H767-75. [PMID: 23335798 DOI: 10.1152/ajpheart.00700.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The L-type Ca(2+) channel is the main route for calcium entry into cardiac myocytes, and it is essential for contraction. Alterations in whole cell L-type Ca(2+) channel current and Ca(2+) homeostasis have been implicated in the development of cardiomyopathies. Cytoskeletal proteins can influence whole cell L-type Ca(2+) current and mitochondrial function. Duchenne muscular dystrophy is a fatal X-linked disease that leads to progressive muscle weakness due to the absence of cytoskeletal protein dystrophin. This includes dilated cardiomyopathy, but the mechanisms are not well understood. We sought to identify the effect of alterations in whole cell L-type Ca(2+) channel current on mitochondrial function in the murine model of Duchenne muscular dystrophy (mdx). Activation of the L-type Ca(2+) channel with the dihydropyridine agonist BayK(-) caused a significantly larger increase in cytosolic Ca(2+) in mdx vs. wild-type (wt) ventricular myocytes. Consistent with elevated cytosolic Ca(2+), resting mitochondrial Ca(2+), NADH, and mitochondrial superoxide were significantly greater in mdx vs. wt myocytes. Activation of the channel with BayK(-) caused a further increase in mitochondrial Ca(2+), NADH, and superoxide in mdx myocytes. The ratios of the increases were similar to the ratios recorded in wt myocytes. In mitochondria isolated from 8-wk-old mdx hearts, respiration and mitochondrial electron transport chain complex activity were similar to mitochondria isolated from wt hearts. We conclude that mitochondria function at a higher level of resting calcium in the intact mdx myocyte and activation of the L-type Ca(2+) channel contributes to alterations in calcium handling by the mitochondria. This perturbation may contribute to the development of cardiomyopathy.
Collapse
Affiliation(s)
- Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | | | | | | |
Collapse
|
48
|
Strege P, Beyder A, Bernard C, Crespo-Diaz R, Behfar A, Terzic A, Ackerman M, Farrugia G. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells. Channels (Austin) 2012; 6:457-62. [PMID: 23018927 PMCID: PMC3536731 DOI: 10.4161/chan.22017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na(+) current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na(+) current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.
Collapse
Affiliation(s)
- Peter Strege
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tang Y, Siegel D, Sampson B. Molecular Investigations of Sudden Unexplained Deaths. Acad Forensic Pathol 2011. [DOI: 10.23907/2011.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sudden unexplained deaths in apparently healthy individuals (newborn through adult) pose a vexing challenge to medical examiners, law enforcement and society as a whole. Recent advances in “molecular autopsies” have begun to uncover the mystery surrounding sudden unexplained deaths by identifying mutations that can result in or predispose an apparently healthy individual to sudden death. Genetic risks of sudden unexplained deaths have been studied from several different perspectives, and categorized generally by systems, including: cardiac, nervous, immune, and metabolic. This article reviews the genetic risks in sudden unexplained deaths, presents the current state and challenges of molecular investigations, and sheds light on future directions in sudden unexplained death investigations.
Collapse
Affiliation(s)
- Yingying Tang
- Molecular Genetics Laboratory in the New York City Office of Chief Medical Examiner and Forensic Medicine Department at New York University School of Medicine, New York, New York
| | - Donald Siegel
- New York City Office of Chief Medical Examiner, and Forensic Medicine Department at New York University School of Medicine, New York, New York (DS, BS)
| | - Barbara Sampson
- New York City Office of Chief Medical Examiner, and Forensic Medicine Department at New York University School of Medicine, New York, New York (DS, BS)
| |
Collapse
|