1
|
Berryhill CA, Doud EH, Hanquier JN, Smith-Kinnaman WR, McCourry DL, Mosley AL, Cornett EM. Protein Thermal Stability Changes Induced by the Global Methylation Inhibitor 3-Deazaneplanocin A (DZNep). Biomolecules 2024; 14:817. [PMID: 39062531 PMCID: PMC11274605 DOI: 10.3390/biom14070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.
Collapse
Affiliation(s)
- Christine A. Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jocelyne N. Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
| | - Whitney R. Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Devon L. McCourry
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Evan M. Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (E.H.D.); (J.N.H.)
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Lhuissier E, Aury-Landas J, Lenté M, Boumediene K, Baugé C. Co-Treatment with the Epigenetic Drug, 3-Deazaneplanocin A (DZNep) and Cisplatin after DZNep Priming Enhances the Response to Platinum-Based Therapy in Chondrosarcomas. Cancers (Basel) 2021; 13:cancers13184648. [PMID: 34572877 PMCID: PMC8472299 DOI: 10.3390/cancers13184648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chondrosarcoma is a rare bone tumor characterized by the secretion of a cartilage-like extracellular matrix. Its treatment poses major challenges, since chondrosarcoma is resistant to chemotherapy and radiotherapy. Consequently, chondrosarcoma treatment has been limited over the past 30 years, and consists in the surgical resection of the tumor. Increasing evidence suggests that future cancer therapies will be enhanced by the combination of epigenetic and conventional antitumor agents, leading to further investigations to combine 3-Deazaneplanocin A (DZNep), an epigenetic drug, with existing antitumoral agents. We show by in vitro and in vivo experiments that an optimised DZNep/cisplatin combination reduces chondrosarcoma viability and induces apoptosis more effectively than each of the drugs alone. These results demonstrate the potential use of this epigenetic-chemotherapeutic combination approach for further studies and management of chondrosarcoma treatment. Abstract Background: We have previously shown that 3-Deazaneplanocin A (DZNep) induces apoptosis in chondrosarcomas. Herein, we tested whether the combination of this epigenetic drug to a standard anticancer therapy may enhance the response to each drug in these bone tumors. Methods: Two chondrosarcoma cell lines (SW1353 and JJ012) were cultured in the presence of DZNep and/or cisplatin. Cell growth was evaluated by counting viable cells, and apoptosis was determined by Apo2.7 expression by flow cytometry. In vivo, the antitumoral effect of the DZNep/cisplatin combination was assessed through measurements of tumor volume of JJ012 xenografts in nude mice. Results: In vitro, the DZNep/cisplatin combination reduced cell survival and increased apoptosis compared to each drug alone in chondrosarcomas, but not in normal cells (chondrocytes). This enhancement of the antitumoral effect of the DZNep/cisplatin combination required a priming incubation with DZNep before the co-treatment with DZNep/cisplatin. Furthermore, in the chondrosarcoma xenograft mice model, the combination of both drugs more strongly reduced tumor growth and induced more apoptosis in tumoral cells than each of the drugs alone. Conclusion: Our results show that DZNep exposure can presensitize chondrosarcoma cells to a standard anticancer drug, emphasizing the promising clinical utilities of epigenetic-chemotherapeutic drug combinations in the future treatment of chondrosarcomas.
Collapse
|
3
|
He W, Cao X, Rong K, Chen X, Han S, Qin A. Combination of AZD3463 and DZNep Prevents Bone Metastasis of Breast Cancer by Suppressing Akt Signaling. Front Pharmacol 2021; 12:652071. [PMID: 34122074 PMCID: PMC8193724 DOI: 10.3389/fphar.2021.652071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Osteolysis resulting from osteoclast overactivation is one of the severe complications of breast cancer metastasis to the bone. Previous studies reported that the anti-cancer agent DZNep induces cancer cell apoptosis by activating Akt signaling. However, the effect of DZNep on breast cancer bone metastasis is unknown. We previously found that DZNep enhances osteoclast differentiation by activating Akt. Therefore, we explored the use of the anti-cancer agent AZD3463 (an Akt inhibitor) along with DZNep, as AZD3463 can act as an anti-cancer agent and can also potentially ameliorate bone erosion. We evaluated osteoclast and breast cancer cell phenotypes and Akt signaling in vitro by treating cells with DZNep and AZD3463. Furthermore, we developed a breast cancer bone metastasis animal model in mouse tibiae to further determine their combined effects in vivo. Treatment of osteoclast precursor cells with DZNep alone increased osteoclast differentiation, bone resorption, and expression of osteoclast-specific genes. These effects were ameliorated by AZD3463. The combination of DZNep and AZD3463 inhibited breast cancer cell proliferation, colony formation, migration, and invasion. Finally, intraperitoneal injection of DZNep and AZD3463 ameliorated tumor progression and protected against bone loss. In summary, DZNep combined with AZD3463 prevented skeletal complications and inhibited breast cancer progression by suppressing Akt signaling.
Collapse
Affiliation(s)
- Wenxin He
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Han
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Akpa CA, Kleo K, Oker E, Tomaszewski N, Messerschmidt C, López C, Wagener R, Oehl-Huber K, Dettmer K, Schoeler A, Lenze D, Oefner PJ, Beule D, Siebert R, Capper D, Dimitrova L, Hummel M. Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model. BMC Cancer 2020; 20:427. [PMID: 32408898 PMCID: PMC7227222 DOI: 10.1186/s12885-020-06937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application. METHODS To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis. RESULTS Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium. CONCLUSIONS This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep.
Collapse
Affiliation(s)
- Chidimma Agatha Akpa
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany.
| | - Karsten Kleo
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elisabeth Oker
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Nancy Tomaszewski
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Kathrin Oehl-Huber
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anne Schoeler
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dido Lenze
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter J Oefner
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, Charité Core Unit Bioinformatics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - David Capper
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lora Dimitrova
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Hummel
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis 2019; 10:355. [PMID: 31043583 PMCID: PMC6494881 DOI: 10.1038/s41419-019-1589-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
3-deazaneplanocin A (3-DZNeP) has been used as an inhibitor of enhancer of zeste homolog 2 (EZH2). Here, we explore the role and underlying mechanisms action of 3-DZNeP in abrogating cisplatin nephrotoxicity. Exposure of cultured mouse renal proximal tubular epithelial cells (mTECs) to cisplatin resulted in dose and time-dependent cleavage of caspase-3, decrease of cell viability, and increase of histone H3 lysine 27 trimethylation (H3K27me3), whereas expression levels of EZH2, a major methyltransferase of H3K27me3, were not affected. Treatment with 3-DZNeP significantly inhibited cisplatin-induced activation of caspase-3, apoptosis, loss of cell viability but did not alter levels of EZH2 and H3K27me3 in cultured mTECs. 3-DZNeP treatment did not affect activation of extracellular signal-regulated kinase (ERK) 1/2, p38 or c-Jun N-terminal kinases (JNK) 1/2, which contribute to renal epithelial cell death, but caused dose-dependent restoration of E-cadherin in mTECs exposed to cisplatin. Silencing of E-cadherin expression by siRNA abolished the cytoprotective effects of 3-DZNeP. In contrast, 3-DZNeP treatment potentiated the cytotoxic effect of cisplatin in H1299, a non-small cell lung cancer cell line that expresses lower E-cadherin levels. Finally, administration of 3-DZNeP attenuated renal dysfunction, morphological damage, and renal tubular cell death, which was accompanied by E-cadherin preservation, in a mouse model of cisplatin nephrotoxicity. Overall, these data indicate that 3-DZNeP suppresses cisplatin-induced tubular epithelial cell apoptosis and acute kidney injury via an E-cadherin-dependent mechanism, and suggest that combined application of 3-DZNeP with cisplatin would be a novel chemotherapeutic strategy that enhances the anti-tumor effect of cisplatin and reduces its nephrotoxicity.
Collapse
|
6
|
Wei Z, Guo H, Qin J, Lu S, Liu Q, Zhang X, Zou Y, Gong Y, Shao C. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radic Biol Med 2019; 130:267-277. [PMID: 30391675 DOI: 10.1016/j.freeradbiomed.2018.10.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence, an irreversible proliferative arrest, functions in tissue remodeling during development and is implicated in multiple aging-associated diseases. While senescent cells often manifest an array of senescence-associated phenotypes, such as cell cycle arrest, altered heterochromatin architecture, reprogrammed metabolism and senescence-associated secretory phenotype (SASP), the identification of senescence cells has been hindered by lack of specific and universal biomarkers. To systematically identify universal biomarkers of cellular senescence, we integrated multiple transcriptome data sets of senescent cells obtained through different in vitro manipulation modes as well as age-related gene expression data of human tissues. Our analysis showed that RRAD (Ras-related associated with diabetes) expression is up-regulated in all the manipulation modes and increases with age in human skin and adipose tissues. The elevated RRAD expression was then confirmed in senescent human fibroblasts that were induced by Ras, H2O2, ionizing radiation, hydroxyurea, etoposide and replicative passage, respectively. Further functional study suggests that RRAD up-regulation acts as a negative feedback mechanism to counter cellular senescence by reducing the level of reactive oxygen species. Finally, we found both p53 and NF-κB bind to RRAD genomic regions and modulate RRAD transcription. This study established RRAD to be a biomarker as well as a novel negative regulator of cellular senescence.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China; Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shihua Lu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Liu J, Liang L, Huang S, Nong L, Li D, Zhang B, Li T. Aberrant differential expression of EZH2 and H3K27me3 in extranodal NK/T-cell lymphoma, nasal type, is associated with disease progression and prognosis. Hum Pathol 2019; 83:166-176. [DOI: 10.1016/j.humpath.2018.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
|
8
|
Xie Z, Chooi JY, Toh SHM, Yang D, Basri NB, Ho YS, Chng WJ. MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells. Leukemia 2018; 33:739-748. [PMID: 30470837 DOI: 10.1038/s41375-018-0300-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. T(4;14) MM overexpresses multiple myeloma SET domain-containing protein (MMSET). MMSET has three major isoforms: the full-length form MMSET II and the short isoforms REIIBP and MMSET I. Here we show that the short isoform MMSET I is an oncoprotein that promoted cell survival and tumorigenesis in vitro and in vivo. Gene expression array analysis indicated that MMSET I increased glyoxalase I (GLO1) expression. Chromatin immunoprecipitation (ChIP) coupled with qPCR indicated that MMSET I bound upstream of the GLO1 transcription start site. Ectopic overexpression of MMSET I or its mutants showed MMSET I depended on its C terminus to regulate GLO1 expression. GLO1 knockdown (KD) induced apoptosis and reduced colony formation. MMSET I or GLO1 KD reduced the levels of anti-apoptosis factors such as MCL1 and BCL2. Ectopic overexpression of GLO1 resulted in the significant rescue of KMS11 cells from MMSET I KD-induced apoptosis and glycolysis inhibition. This suggested that GLO1 may be of functional importance target downstream of MMSET I. Cumulatively, our study suggests that MMSET I is an oncoprotein and potential therapeutic target for t(4;14) MM.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jing Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Dongxiao Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Nurhidayah Binte Basri
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,National University Cancer Institute, National University Health System, Singapore, 119228, Singapore.
| |
Collapse
|
9
|
Abstract
The enhancer of zeste homolog 2 (EZH2) is the enzymatic subunit of the polycomb repressive complex 2 (PRC2) that exerts important functions during normal development as well as disease. PRC2 through EZH2 tri-methylates histone H3 lysine tail residue 27 (H3K27me3), a modification associated with repression of gene expression programs related to stem cell self-renewal, cell cycle, cell differentiation, and cellular transformation. EZH2 is deregulated and subjected to gain of function or loss of function mutations, and hence functions as an oncogene or tumor suppressor gene in a context-dependent manner. The development of highly selective inhibitors against the histone methyltransferase activity of EZH2 has also contributed to insight into the role of EZH2 and PRC2 in tumorigenesis, and their potential as therapeutic targets in cancer. EZH2 can function as an oncogene in multiple myeloma (MM) by repressing tumor suppressor genes that control apoptosis, cell cycle control and adhesion properties. Taken together these findings have raised the possibility that EZH2 inhibitors could be a useful therapeutic modality in MM alone or in combination with other targeted agents in MM. Therefore, we review the current knowledge on the regulation of EZH2 and its biological impact in MM, the anti-myeloma activity of EZH2 inhibitors and their potential as a targeted therapy in MM.
Collapse
Affiliation(s)
- Mohammad Alzrigat
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185 Uppsala, Sweden;
| | - Jonathan D Licht
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
10
|
Herviou L, Cavalli G, Moreaux J. [EZH2 is therapeutic target for personalized treatment in multiple myeloma]. Bull Cancer 2018; 105:804-819. [PMID: 30041976 DOI: 10.1016/j.bulcan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that functions as the catalytic subunit of the polycomb repressive complex 2 (PRC2). PRC2 represses gene transcription through tri-methylation of lysine 27 of histone 3 (H3K27me3) by its catalytic subunit EZH2. EZH2 is also involved in normal B cell differentiation. EZH2 deregulation has been described in many cancer types including hematological malignancies. The oncogenic addiction of tumor cells to EZH2 represents a therapeutic target in several hematological malignancies and solid cancers. Specific small molecules have been recently developed to target cancer cells with EZH2 overexpression or activating mutation. Their therapeutic potential is currently under evaluation. In particular, EZH2 is overexpressed in multiple myeloma (MM), a neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow, with biological functions in the pathophysiology. This review summarizes the roles of EZH2 in B cell differentiation and pathologic hematological processes with a particular focus in multiple myeloma. We also discuss recent advances in the development of EZH2 inhibitors for the personalized treatment of patients with hematological malignancies.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Giacomo Cavalli
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Jerome Moreaux
- IGH, CNRS, université Montpellier, 141, rue de la Cardonille, 34090 Montpellier, France; CHU de Montpellier, department of biological hematology, 80, avenue Augustin-Fliche, 34090 Montpellier, France; Université Montpellier, UFR de médecine, 2, rue École de Médecine, CS 59001, 34060 Montpellier cedex 2, France.
| |
Collapse
|
11
|
Abstract
The aim of this study was to identify the most potent quinoline-based anti-infectives for the treatment of multiple myeloma (MM) and to understand the molecular mechanisms. A small-scale screen against a panel of marketed quinoline-based drugs was performed in MM cell lines. Cell apoptosis was examined by flow cytometry. Anti-MM activity was also evaluated in nude mice. Western blotting was performed to investigate mechanisms. Nitroxoline (NXQ) was the most effective in suppressing MM cell proliferation. NXQ induced more than 40% MM cell apoptosis within 24 h and potentiated anti-MM activities of current major drugs including doxorubicin and lenalidomide. This finding was shown by activation of caspase-3, a major executive apoptotic enzyme, and by inactivation of PARP, a major enzyme in DNA damage repair. NXQ also suppressed prosurvival proteins Bcl-xL and Mcl-1. Moreover, NXQ suppressed the growth of myeloma xenografts in nude mice models. In the mechanistic study, NXQ was found to downregulate TRIM25, a highly expressed ubiquitin ligase in MM. Notably, NXQ upregulated tumor suppressor p53, but not PTEN. Furthermore, overexpression of TRIM25 decreased p53 protein. This study indicated that the long-term use of anti-infective NXQ has potential for MM treatment by targeting the TRIM25/p53 axle.
Collapse
|
12
|
Johnson DP, Spitz GS, Tharkar S, Quayle SN, Shearstone JR, Jones S, McDowell ME, Wellman H, Tyler JK, Cairns BR, Chandrasekharan MB, Bhaskara S. HDAC1,2 inhibition impairs EZH2- and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget 2016; 6:4863-87. [PMID: 25605023 PMCID: PMC4467121 DOI: 10.18632/oncotarget.3120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/28/2014] [Indexed: 12/13/2022] Open
Abstract
Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor − B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells.
Collapse
Affiliation(s)
- Danielle P Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabriella S Spitz
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shweta Tharkar
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | - Simon Jones
- Acetylon Pharmaceuticals, Inc., Boston, MA, USA
| | - Maria E McDowell
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hannah Wellman
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jessica K Tyler
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
13
|
EZH2 in Bladder Cancer, a Promising Therapeutic Target. Int J Mol Sci 2015; 16:27107-32. [PMID: 26580594 PMCID: PMC4661858 DOI: 10.3390/ijms161126000] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management.
Collapse
|
14
|
Kikuchi J, Koyama D, Wada T, Izumi T, Hofgaard PO, Bogen B, Furukawa Y. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Invest 2015; 125:4375-90. [PMID: 26517694 DOI: 10.1172/jci80325] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3-lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion-mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion-dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug-induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index.
Collapse
|
15
|
Abstract
Post-translational modifications of histones (so-called epigenetic modifications) play a major role in transcriptional control and normal development, and are tightly regulated. Disruption of their control is a frequent event in disease. In particular, the methylation of lysine 27 on histone H3 (H3K27), induced by the methylase EZH2, emerges as a key control of gene expression and a major regulator of cell physiology. The identification of driver mutations in EZH2 has already led to new prognostic and therapeutic advances, and new classes of potent and specific inhibitors for EZH2 show promising results in preclinical trials. This review examines the roles of histone lysine methylases and demethylases in cells and focuses on the recent knowledge and developments about EZH2.
Collapse
|
16
|
MMSET regulates expression of IRF4 in t(4;14) myeloma and its silencing potentiates the effect of bortezomib. Leukemia 2015. [PMID: 26196464 DOI: 10.1038/leu.2015.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. In t(4;14) MM, the MM SET domain (MMSET) protein is universally overexpressed and has been suggested to have an important tumorigenic role. However, the exact molecular targets underlying MMSET activity are not well understood. Here, we found in t(4;14) MM cells that MMSET knockdown decreases interferon regulatory factor 4 (IRF4) expression, and ectopic MMSET increases IRF4 expression, suggesting that MMSET is an upstream regulator of IRF4. Further analyses indicated an interaction between MMSET and nuclear factor-κB, which both bind to the IRF4 promoter region. A luciferase reporter assay showed that MMSET is an important functional element for the IRF4 promoter. MMSET knockdown induces apoptosis and potentiates the effects of bortezomib in vitro and in vivo. Importantly, we found that bortezomib could reduce expression of MMSET and IRF4. This might partly explain the additive effect of combining MMSET knockdown and bortezomib treatment. These results identify MMSET as a key regulator involved in the regulatory network of transcription factor IRF4, which is critical for MM cell survival, suggesting that the combination of MMSET inhibition and bortezomib is likely to improve patient outcome in MM.
Collapse
|
17
|
Momparler RL, Côté S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs 2015; 24:1031-43. [PMID: 26004134 DOI: 10.1517/13543784.2015.1051220] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Curative chemotherapy should target cancer stem cells (CSCs). The key characteristics of CSCs are a block in differentiation and an epigenetic signature similar to embryonic stem cells (ESCs). Differentiation by ESCs and CSCs is suppressed by gene silencing through the polycomb repressive complex 2 (PRC2) and/or DNA methylation. PRC2 contains the EZH2 subunit, which catalyzes the trimethylation of histone 3 lysine 27, a gene silencing marker. It is possible to reverse this 'double lock' mechanism using a combination of inhibitors of EZH2 and DNA methylation (5-aza-2'-deoxycytidine), which exhibits remarkable synergistic antineoplastic activity in preclinical studies. AREAS COVERED The authors discuss several specific EZH2 inhibitors that have been synthesized with antineoplastic activity. One such inhibitor, EPZ-6438 (E7438), has been shown to be effective against lymphoma in a Phase I study. The indirect EZH2 inhibitor, 3-deazaneplanocin-A (DZNep), also exhibits remarkable anticancer activity due to its inhibition of methionine metabolism. EXPERT OPINION Agents that target EZH2 warrant Phase I trials. Due to its positive pharmacodynamics, DZNep merits a high priority for clinical investigation. Agents that show positive results in Phase I studies should be advanced to clinical trials for use in combination with 5-aza-2'-deoxycytidine due to the interesting potential of this epigenetic therapy to target CSCs.
Collapse
Affiliation(s)
- Richard L Momparler
- Université de Montréal, Centre de recherche, Département de Pharmacologie , CHU-Saint-Justine, Montréal, Québec , Canada
| | | |
Collapse
|
18
|
Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma. Oncotarget 2015; 6:15410-24. [PMID: 25945832 PMCID: PMC4558160 DOI: 10.18632/oncotarget.3795] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM.
Collapse
|
19
|
Ng SB, Ohshima K, Selvarajan V, Huang G, Choo SN, Miyoshi H, Shimizu N, Reghunathan R, Chua HC, Yeoh AEJ, Quah TC, Koh LP, Tan PL, Chng WJ. Epstein–Barr virus-associated T/natural killer-cell lymphoproliferative disorder in children and young adults has similar molecular signature to extranodal nasal natural killer/T-cell lymphoma but shows distinctive stem cell-like phenotype. Leuk Lymphoma 2015; 56:2408-15. [DOI: 10.3109/10428194.2014.983099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Ostrup O, Reiner AH, Aleström P, Collas P. The specific alteration of histone methylation profiles by DZNep during early zebrafish development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1307-15. [PMID: 25260724 DOI: 10.1016/j.bbagrm.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022]
Abstract
Early embryo development constitutes a unique opportunity to study acquisition of epigenetic marks, including histone methylation. This study investigates the in vivo function and specificity of 3-deazaneplanocin A (DZNep), a promising anti-cancer drug that targets polycomb complex genes. One- to two-cell stage embryos were cultured with DZNep, and subsequently evaluated at the post-mid blastula transition stage for H3K27me3, H3K4me3 and H3K9me3 occupancy and enrichment at promoters using ChIP-chip microarrays. DZNep affected promoter enrichment of H3K27me3 and H3K9me3, whereas H3K4me3 remained stable. Interestingly, DZNep induced a loss of H3K27me3 and H3K9me3 from a substantial number of promoters but did not prevent de novo acquisition of these marks on others, indicating gene-specific targeting of its action. Loss/gain of H3K27me3 on promoters did not result in changes in gene expression levels until 24h post-fertilization. In contrast, genes gaining H3K9me3 displayed strong and constant down-regulation upon DZNep treatment. H3K9me3 enrichment on these gene promoters was observed not only in the proximal area as expected, but also over the transcription start site. Altered H3K9me3 profiles were associated with severe neuronal and cranial phenotypes at day 4-5 post-fertilization. Thus, DZNep was shown to affect enrichment patterns of H3K27me3 and H3K9me3 at promoters in a gene-specific manner.
Collapse
Affiliation(s)
- Olga Ostrup
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, Oslo, Norway.
| | - Andrew H Reiner
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, Oslo, Norway.
| | - Peter Aleström
- BasAM, Norwegian School of Veterinary Science, PO Box 8146 Dep., 0033 Oslo, Norway.
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences and Norwegian Center for Stem Cell Research, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, Oslo, Norway.
| |
Collapse
|
21
|
Gaudichon J, Milano F, Cahu J, DaCosta L, Martens AC, Renoir JM, Sola B. Deazaneplanocin a is a promising drug to kill multiple myeloma cells in their niche. PLoS One 2014; 9:e107009. [PMID: 25255316 PMCID: PMC4177844 DOI: 10.1371/journal.pone.0107009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023] Open
Abstract
Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM), still an incurable pathology. Deazaneplanocin A (DZNep), a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2) and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3). DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- Equipe Associée 4652, Université de Caen, Normandie Univ, Caen, France
| | - Francesco Milano
- Equipe Associée 4652, Université de Caen, Normandie Univ, Caen, France
| | - Julie Cahu
- Equipe Associée 4652, Université de Caen, Normandie Univ, Caen, France
| | - Lætitia DaCosta
- Institut National de la Santé et de la Recherche Médicale U749, Institut Gustave Roussy, Villejuif, France
| | - Anton C. Martens
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jack-Michel Renoir
- Institut National de la Santé et de la Recherche Médicale U749, Institut Gustave Roussy, Villejuif, France
| | - Brigitte Sola
- Equipe Associée 4652, Université de Caen, Normandie Univ, Caen, France
- * E-mail:
| |
Collapse
|
22
|
Reghunathan R, Bi C, Liu SC, Loong KT, Chung TH, Huang G, Chng WJ. Clonogenic multiple myeloma cells have shared stemness signature associated with patient survival. Oncotarget 2014; 4:1230-40. [PMID: 23985559 PMCID: PMC3787153 DOI: 10.18632/oncotarget.1145] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple myeloma is the abnormal clonal expansion of post germinal B cells in the bone marrow. It was previously reported that clonogenic myeloma cells are CD138−. Human MM cell lines RPMI8226 and NCI H929 contained 2-5% of CD138− population. In this study, we showed that CD138− cells have increased ALDH1 activity, a hallmark of normal and neoplastic stem cells. CD138−ALDH+ cells were more clonogenic than CD138+ALDH− cells and only CD138− cells differentiated into CD138+ population. In vivo tumor initiation and clonogenic potentials of the CD138− population was confirmed using NOG mice. We derived a gene expression signature from functionally validated and enriched CD138− clonogenic population from MM cell lines and validated these in patient samples. This data showed that CD138− cells had an enriched expression of genes that are expressed in normal and malignant stem cells. Differentially expressed genes included components of the polycomb repressor complex (PRC) and their targets. Inhibition of PRC by DZNep showed differential effect on CD138− and CD138+ populations. The ‘stemness’ signature derived from clonogenic CD138− cells overlap significantly with signatures of common progenitor cells, hematopoietic stem cells, and Leukemic stem cells and is associated with poorer survival in different clinical datasets.
Collapse
|
23
|
Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, Blackstock WP, Chng WJ. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget 2014; 4:1008-18. [PMID: 23900284 PMCID: PMC3759662 DOI: 10.18632/oncotarget.1049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. MMSET, identified by its fusion to the IgH locus in t(4;14) MM, is universally overexpressed in t(4;14) MM. In order to identify cell surface biomarkers associated with t(4;14) MM for small molecule or antibody based therapies, we knocked down MMSET expression with shRNA and generated a cell line pair from KMS11, a t(4;14) MM cell line. We used quantitative mass spectrometry to identify plasma membrane proteins associated with MMSET overexpression. Using this approach, 50 cell surface proteins were identified as differentially expressed between KMS11 and KMS11/shMMSET. Western blot and flow cytometry analysis indicated SLAMF7 was over-expressed in t(4;14) MM cell lines and down-regulated by MMSET shRNAs. SLAMF7 expression was also confirmed in primary t(4;14) MM samples by flow cytometry analysis. Quantitative RT-PCR and ChIP analysis indicated MMSET might regulate the transcription level of SLAMF7 and be an important functional element for SLAMF7 promoter activity. Furthermore, SLAMF7 shRNA could induce G1 arrest or apoptosis and reduce clonogenetic capacity in t(4;14) MM cells. Overall, these results illustrated SLAMF7 might be a novel cell surface protein associated with t(4;14) MM. It is potential to develop t(4;14) MM targeted therapy by SLAMF7 antibody mediated drug delivery.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Ichinohasama R, Harigae H. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem 2014; 289:8121-34. [PMID: 24492606 PMCID: PMC3961643 DOI: 10.1074/jbc.m114.548651] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
EZH2, a core component of polycomb repressive complex 2 (PRC2), plays a role in transcriptional repression through histone H3 Lys-27 trimethylation and is involved in various biological processes, including hematopoiesis. It is well known that 3-deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase that targets the degradation of EZH2, preferentially induces apoptosis in various hematological malignancies, suggesting that EZH2 may be a new target for epigenetic treatment. Because PRC2 participates in epigenetic silencing of a subset of GATA-1 target genes during erythroid differentiation, inhibition of EZH2 may influence erythropoiesis. To explore this possibility, we evaluated the impact of DZNep on erythropoiesis. DZNep treatment significantly induced erythroid differentiation of K562 cells, as assessed by benzidine staining and quantitative RT-PCR analysis for representative erythroid-related genes, including globins. When we evaluated the effects of DZNep in human primary erythroblasts derived from cord blood CD34-positive cells, the treatment significantly induced erythroid-related genes, as observed in K562 cells, suggesting that DZNep induces erythroid differentiation. Unexpectedly, siRNA-mediated EZH2 knockdown had no significant effect on the expression of erythroid-related genes. Transcriptional profiling of DZNep-treated K562 cells revealed marked up-regulation of SLC4A1 and EPB42, previously reported as representative targets of the transcriptional corepressor ETO2. In addition, DZNep treatment reduced the protein level of ETO2. These data suggest that erythroid differentiation by DZNep may not be directly related to EZH2 inhibition but may be partly associated with reduced protein level of hematopoietic corepressor ETO2. These data provide a better understanding of the mechanism of action of DZNep, which may be exploited for therapeutic applications for hematological diseases, including anemia.
Collapse
|
25
|
Xu B, Abourbih S, Sircar K, Kassouf W, Mansure JJ, Aprikian A, Tanguay S, Brimo F. Enhancer of zeste homolog 2 expression is associated with metastasis and adverse clinical outcome in clear cell renal cell carcinoma: a comparative study and review of the literature. Arch Pathol Lab Med 2013; 137:1326-36. [PMID: 24079759 DOI: 10.5858/arpa.2012-0525-oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase mediating chromatin condensation and epigenetic modulation, is overexpressed in various human carcinomas and is associated with adverse clinicopathologic characteristics and biologic behavior. The expression of EZH2 in renal cell carcinomas (RCCs) has not been fully characterized yet. OBJECTIVE To evaluate the prognostic role of EZH2 in RCC by analyzing the immunohistochemical staining pattern of the marker in relation to pathologic features and clinical outcome. DESIGN We correlated the immunolabeling of EZH2 with multiple clinicopathologic features, including Fuhrman nuclear grade, pathologic stage, metastatic status, and clinical outcome in 223 clear cell RCCs (CRCCs) and 21 papillary RCCs, by using tissue microarrays of primary and metastatic cases. RESULTS Most CRCCs (75%) showed positive EZH2 staining, with most primary tumors showing focal staining in comparison to nonfocal staining in metastatic cases. In primary tumors, EZH2 expression was associated with higher nuclear grade and lower pathologic stage. Metastatic tumors showed a higher number of positive cases (81% versus 67%) and a more diffuse and more intense pattern of staining than primary CRCCs. For the 22 locally advanced primary tumors (T3/4) and 43 metastatic RCCs, patients who experienced RCC-related deaths significantly overexpressed the marker in comparison to patients who did not experience RCC-related mortality. CONCLUSIONS By showing that EZH2 expression is associated with increased metastatic potential and a worse clinical outcome, this study suggests that EZH2 can serve as a prognostic biomarker for RCC, thus confirming it as a key molecule driving oncogenesis and metastasis.
Collapse
Affiliation(s)
- Bin Xu
- From the Departments of Pathology (Drs Xu and Brimo) and Urology (Drs Abourbih, Kassouf, Mansure, Aprikian, and Tanguay), McGill University Health Centre, Montreal, Quebec, Canada; and the Department of Pathology (Dr Sircar), The University of Texas Maryland Anderson Cancer Center, Houston
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee JK, Kim KC. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells. Biochem Biophys Res Commun 2013; 438:647-52. [PMID: 23933322 DOI: 10.1016/j.bbrc.2013.07.128] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/02/2023]
Abstract
3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells.
Collapse
Affiliation(s)
- Ju-Kyung Lee
- Medical and Bio-Material Research Center, Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | |
Collapse
|
27
|
EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood 2013; 121:4512-20. [DOI: 10.1182/blood-2012-08-450494] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Key Points
This study has uncovered an oncogenic role of EZH2 independent of its methyltransferase activity in NKTL. This study suggests that targeting EZH2 may have therapeutic usefulness in NKTL.
Collapse
|
28
|
Abstract
In recent years, several genetic and epigenetic alterations have been identified and linked with deregulated signaling pathways that promote growth and survival of lymphoma cells. These discoveries have raised hopes that a new era of targeted therapy will eventually improve treatment outcome of lymphoma. In this focused review, we summarize emerging preclinical and clinical data supporting the development of novel agents targeting B cell receptor signaling, phosphoinositol-3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) oncogenic pathways. Furthermore, we discuss new data on targeting chromatin modulating mechanisms.
Collapse
Affiliation(s)
- Lori A Leslie
- Division of Cancer Medicine, M. D. Anderson Cancer Center , Houston, TX , USA
| | | |
Collapse
|
29
|
Caputo VS, Costa JR, Makarona K, Georgiou E, Layton DM, Roberts I, Karadimitris A. Mechanism of Polycomb recruitment to CpG islands revealed by inherited disease-associated mutation. Hum Mol Genet 2013; 22:3187-94. [PMID: 23591993 DOI: 10.1093/hmg/ddt171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How the transcription repressing complex Polycomb interacts with transcriptional regulators at housekeeping genes in somatic cells is not well understood. By exploiting a CpG island (CGI) point mutation causing a Mendelian disease, we show that DNA binding of activating transcription factor (TF) determines histone acetylation and nucleosomal depletion commensurate with Polycomb exclusion from the target promoter. Lack of TF binding leads to reversible transcriptional repression imposed by nucleosomal compaction and consolidated by Polycomb recruitment and establishment of bivalent chromatin status. Thus, within a functional hierarchy of transcriptional regulators, TF binding is the main determinant of Polycomb recruitment to the CGI of a housekeeping gene in somatic cells.
Collapse
Affiliation(s)
- Valentina S Caputo
- Centre for Haematology, Department of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|