1
|
Akula M, McNamee SM, Love Z, Nasraty N, Chan NPM, Whalen M, Avola MO, Olivares AM, Leehy BD, Jelcick AS, Singh P, Upadhyay AK, Chen DF, Haider NB. Retinoic acid related orphan receptor α is a genetic modifier that rescues retinal degeneration in a mouse model of Stargardt disease and Dry AMD. Gene Ther 2024; 31:413-421. [PMID: 38755404 PMCID: PMC11257945 DOI: 10.1038/s41434-024-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Degeneration of the macula is associated with several overlapping diseases including age-related macular degeneration (AMD) and Stargardt Disease (STGD). Mutations in ATP Binding Cassette Subfamily A Member 4 (ABCA4) are associated with late-onset dry AMD and early-onset STGD. Additionally, both forms of macular degeneration exhibit deposition of subretinal material and photoreceptor degeneration. Retinoic acid related orphan receptor α (RORA) regulates the AMD inflammation pathway that includes ABCA4, CD59, C3 and C5. In this translational study, we examined the efficacy of RORA at attenuating retinal degeneration and improving the inflammatory response in Abca4 knockout (Abca4-/-) mice. AAV5-hRORA-treated mice showed reduced deposits, restored CD59 expression and attenuated amyloid precursor protein (APP) expression compared with untreated eyes. This molecular rescue correlated with statistically significant improvement in photoreceptor function. This is the first study evaluating the impact of RORA modifier gene therapy on rescuing retinal degeneration. Our studies demonstrate efficacy of RORA in improving STGD and dry AMD-like disease.
Collapse
Affiliation(s)
- M Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - S M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Z Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N Nasraty
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N P M Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - B D Leehy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A S Jelcick
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - P Singh
- Ocugen, Inc., Malvern, PA, USA
| | | | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhou M, Liu Y, Ma C. Distinct Nuclear Architecture of Photoreceptors and Light-Induced Behaviors in Different Strains of Mice. Transl Vis Sci Technol 2021; 10:37. [PMID: 34003922 PMCID: PMC7910638 DOI: 10.1167/tvst.10.2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The mouse retina is considered a remarkable model for studying gene functions. However, variations in genetic background influence phenotypes in the mammalian retina. Therefore this study aimed to investigate the effects of the genetic background on the nuclear architecture of photoreceptor cells and the light-induced behavior in C57BL/6, 129 × 1/svj, and ICR mice. Methods The nuclear architecture of photoreceptor cells was investigated using various staining methods on postnatal day 21 (P21). Murine behavior was observed using a light-dark compartment test. Results The outer nuclear layer and retina were significantly thicker in C57BL/6 mice than in 129 × 1/svj mice. The percentage of photoreceptors with one chromocenter was significantly higher in C57BL/6 mice than in 129 × 1/svj and ICR mice on P21. The numbers of photoreceptor cells in C57BL/6 and ICR mice were significantly higher than those in 129 × 1/svj mice. The behavior test revealed that the walking distance and velocity in the light compartment were increased in C57BL/6 and ICR mice compared to 129 × 1/svj mice. Conclusions Different mouse strains had a distinct nuclear architecture of photoreceptors on P21, and C57BL/6 and ICR mice were more active than 129 × 1/svj mice in response to light-induced stress. Translational Relevance This study demonstrates a technique for assessing retinal structures and nuclear architecture in various strains of mice, which are often used to model human retinal disease. Hence, this study may help to elucidate the effect of genetic or disease-induced variance in retinal architecture and the organization of photoreceptor nuclear content on visual function in humans.
Collapse
Affiliation(s)
- Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yutong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Ma
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
5
|
Nadal-Nicolás FM, Kunze VP, Ball JM, Peng BT, Krishnan A, Zhou G, Dong L, Li W. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 2020; 9:e56840. [PMID: 32463363 PMCID: PMC7308094 DOI: 10.7554/elife.56840] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaptation to enhance color coding for the upper visual field suitable for mice's habitat and behavior.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Brian T Peng
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Akshay Krishnan
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Gaohui Zhou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
6
|
Gintant GA, George CH. Introduction to biological complexity as a missing link in drug discovery. Expert Opin Drug Discov 2018; 13:753-763. [PMID: 29871539 DOI: 10.1080/17460441.2018.1480608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Despite a burgeoning knowledge of the intricacies and mechanisms responsible for human disease, technological advances in medicinal chemistry, and more efficient assays used for drug screening, it remains difficult to discover novel and effective pharmacologic therapies. Areas covered: By reference to the primary literature and concepts emerging from academic and industrial drug screening landscapes, the authors propose that this disconnect arises from the inability to scale and integrate responses from simpler model systems to outcomes from more complex and human-based biological systems. Expert opinion: Further collaborative efforts combining target-based and phenotypic-based screening along with systems-based pharmacology and informatics will be necessary to harness the technological breakthroughs of today to derive the novel drug candidates of tomorrow. New questions must be asked of enabling technologies-while recognizing inherent limitations-in a way that moves drug development forward. Attempts to integrate mechanistic and observational information acquired across multiple scales frequently expose the gap between our knowledge and our understanding as the level of complexity increases. We hope that the thoughts and actionable items highlighted will help to inform the directed evolution of the drug discovery process.
Collapse
Affiliation(s)
- Gary A Gintant
- a AbbVie, Department of Integrative Pharmacology , Integrated Science and Technology , North Chicago , IL , USA
| | - Christopher H George
- b Molecular Cardiology, Institute of Life Sciences , Swansea University Medical School , Swansea , Wales , UK
| |
Collapse
|
7
|
Olivares AM, Jelcick AS, Reinecke J, Leehy B, Haider A, Morrison MA, Cheng L, Chen DF, DeAngelis MM, Haider NB. Multimodal Regulation Orchestrates Normal and Complex Disease States in the Retina. Sci Rep 2017; 7:690. [PMID: 28386079 PMCID: PMC5429617 DOI: 10.1038/s41598-017-00788-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Regulation of biological processes occurs through complex, synergistic mechanisms. In this study, we discovered the synergistic orchestration of multiple mechanisms regulating the normal and diseased state (age related macular degeneration, AMD) in the retina. We uncovered gene networks with overlapping feedback loops that are modulated by nuclear hormone receptors (NHR), miRNAs, and epigenetic factors. We utilized a comprehensive filtering and pathway analysis strategy comparing miRNA and microarray data between three mouse models and human donor eyes (normal and AMD). The mouse models lack key NHRS (Nr2e3, RORA) or epigenetic (Ezh2) factors. Fifty-four total miRNAs were differentially expressed, potentially targeting over 150 genes in 18 major representative networks including angiogenesis, metabolism, and immunity. We identified sixty-eight genes and 5 miRNAS directly regulated by NR2E3 and/or RORA. After a comprehensive analysis, we discovered multimodal regulation by miRNA, NHRs, and epigenetic factors of three miRNAs (miR-466, miR1187, and miR-710) and two genes (Ell2 and Entpd1) that are also associated with AMD. These studies provide insight into the complex, dynamic modulation of gene networks as well as their impact on human disease, and provide novel data for the development of innovative and more effective therapeutics.
Collapse
Affiliation(s)
- A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - A S Jelcick
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - J Reinecke
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - B Leehy
- Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - A Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M A Morrison
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - L Cheng
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America
| | - M M DeAngelis
- Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
8
|
Distribution differences of macular cones measured by AOSLO: Variation in slope from fovea to periphery more pronounced than differences in total cones. Vision Res 2016; 132:62-68. [PMID: 27793592 DOI: 10.1016/j.visres.2016.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 11/23/2022]
Abstract
Large individual differences in cone densities occur even in healthy, young adults with low refractive error. We investigated whether cone density follows a simple model that some individuals have more cones, or whether individuals differ in both number and distribution of cones. We quantified cones in the eyes of 36 healthy young adults with low refractive error using a custom adaptive optics scanning laser ophthalmoscope. The average cone density in the temporal meridian was, for the mean±SD, 43,216±6039, 27,466±3496, 14,996±1563, and 12,207±1278cones/mm2 for 270, 630, 1480, and 2070μm from the foveal center. Cone densities at 630μm retinal eccentricity were uncorrelated to those at 2070μm, ruling out models with a constant or proportional relation of cone density to eccentricity. Subjects with high central macula cone densities had low peripheral cone densities. The cone density ratio (2070:630μm) was negatively correlated with cone density at 630μm, consistent with variations in the proportion of peripheral cones migrating towards the center. We modelled the total cones within a central radius of 7deg, using the temporal data and our published cone densities for temporal, nasal, superior, and inferior meridians. We computed an average of 221,000 cones. The coefficient of variation was 0.0767 for total cones, but higher for samples near the fovea. Individual differences occur both in total cones and other developmental factors related to cone distribution.
Collapse
|
9
|
Grishchuk Y, Stember KG, Matsunaga A, Olivares AM, Cruz NM, King VE, Humphrey DM, Wang SL, Muzikansky A, Betensky RA, Thoreson WB, Haider N, Slaugenhaupt SA. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:199-209. [PMID: 26608452 DOI: 10.1016/j.ajpath.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts.
| | - Katherine G Stember
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsunaga
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Ana M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Nelly M Cruz
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Victoria E King
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Humphrey
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Shirley L Wang
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neena Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
van Wyk M, Schneider S, Kleinlogel S. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice. Mol Vis 2015; 21:811-27. [PMID: 26283863 PMCID: PMC4522243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/29/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Collapse
|
11
|
Orhan E, Dalkara D, Neuillé M, Lechauve C, Michiels C, Picaud S, Léveillard T, Sahel JA, Naash MI, Lavail MM, Zeitz C, Audo I. Genotypic and phenotypic characterization of P23H line 1 rat model. PLoS One 2015; 10:e0127319. [PMID: 26009893 PMCID: PMC4444340 DOI: 10.1371/journal.pone.0127319] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 01/26/2023] Open
Abstract
Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3’ UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.
Collapse
Affiliation(s)
- Elise Orhan
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Marion Neuillé
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Christophe Lechauve
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Christelle Michiels
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Serge Picaud
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Thierry Léveillard
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Academie des Sciences, Institut de France, Paris, France
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew M. Lavail
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California United States of America
| | - Christina Zeitz
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Isabelle Audo
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Mansergh FC, Carrigan M, Hokamp K, Farrar GJ. Gene expression changes during retinal development and rod specification. Mol Vis 2015; 21:61-87. [PMID: 25678762 PMCID: PMC4301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/16/2015] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3-5 (P3-5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. METHODS Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). RESULTS Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these genes when mutated have previously been found to cause retinal disease. Although gene function in other tissues may be known, the retinal function of approximately 61% of the gene list is as yet undetermined. Many of these genes' promoters contain binding sites for the key photoreceptor transcription factors Crx and Nr2e3; moreover, the genomic clustering of differentially regulated genes appears to be non-random. CONCLUSIONS This study aids in understanding gene expression differences between rod photoreceptor progenitors versus cultured RPCs that have lost photoreceptor potential. The results provide insights into rod photoreceptor development and should expedite the development of cell-based treatments for RP. Furthermore, the data set includes a large number of retinopathy genes; less-well-characterized genes within this data set are a resource for those seeking to identify novel retinopathy genes in patients with RP (GEO accession: GSE59201).
Collapse
Affiliation(s)
- Fiona C Mansergh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Carrigan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Shen SQ, Turro E, Corbo JC. Hybrid mice reveal parent-of-origin and Cis- and trans-regulatory effects in the retina. PLoS One 2014; 9:e109382. [PMID: 25340786 PMCID: PMC4207689 DOI: 10.1371/journal.pone.0109382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022] Open
Abstract
A fundamental challenge in genomics is to map DNA sequence variants onto changes in gene expression. Gene expression is regulated by cis-regulatory elements (CREs, i.e., enhancers, promoters, and silencers) and the trans factors (e.g., transcription factors) that act upon them. A powerful approach to dissecting cis and trans effects is to compare F1 hybrids with F0 homozygotes. Using this approach and taking advantage of the high frequency of polymorphisms in wild-derived inbred Cast/EiJ mice relative to the reference strain C57BL/6J, we conducted allele-specific mRNA-seq analysis in the adult mouse retina, a disease-relevant neural tissue. We found that cis effects account for the bulk of gene regulatory divergence in the retina. Many CREs contained functional (i.e., activating or silencing) cis-regulatory variants mapping onto altered expression of genes, including genes associated with retinal disease. By comparing our retinal data with previously published liver data, we found that most of the cis effects identified were tissue-specific. Lastly, by comparing reciprocal F1 hybrids, we identified evidence of imprinting in the retina for the first time. Our study provides a framework and resource for mapping cis-regulatory variants onto changes in gene expression, and underscores the importance of studying cis-regulatory variants in the context of retinal disease.
Collapse
Affiliation(s)
- Susan Q. Shen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ernest Turro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, National Health Service Blood and Transplant, Cambridge, United Kingdom
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. Displaced retinal ganglion cells in albino and pigmented rats. Front Neuroanat 2014; 8:99. [PMID: 25339868 PMCID: PMC4186482 DOI: 10.3389/fnana.2014.00099] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/04/2014] [Indexed: 01/30/2023] Open
Abstract
We have studied in parallel the population of displaced retinal ganglion cells (dRGCs) and normally placed (orthotopic RGCs, oRGCs) in albino and pigmented rats. Using retrograde tracing from the optic nerve, from both superior colliculi (SC) or from the ipsilateral SC in conjunction with Brn3 and melanopsin immunodetection, we report for the first time their total number and topography as well as the number and distribution of those dRGCs and oRGCs that project ipsi- or contralaterally and/or that express any of the three Brn3 isoforms or melanopsin. The total number of RGCs (oRGCs+dRGCs) is 84,706 ± 1249 in albino and 90,440 ± 2236 in pigmented, out of which 2383 and 2428 are melanopsin positive (m-RGCs), respectively. Regarding dRGCs: i/ albino rats have a significantly lower number of dRGCs than pigmented animals (0.5% of the total number of RGCs vs. 2.5%, respectively), ii/ dRGCs project massively to the contralateral SC, iii/ the percentage of ipsilaterality is higher for dRGCs than for oRGCs, iv/ a higher proportion of ipsilateral dRGCs is observed in albino than pigmented animals, v/ dRGC topography is very specific, they predominate in the equatorial temporal retina, being densest where the oRGCs are densest, vi/ Brn3a detects all dRGCs except half of the ipsilateral ones and those that express melanopsin, vii/ the proportion of dRGCs that express Brn3b or Brn3c is slightly lower than in the oRGC population, viii/ a higher percentage of dRGCs (13% albino, 9% pigmented) than oRGCs (2.6%) express melanopsin, ix/ few m-RGCs (displaced and orthotopic) project to the ipsilateral SC, x/ the topography of m-dRGCs does not resemble the general distribution of dRGCs, xi/ The soma size in m-oRGCs ranges from 10 to 21 μm and in m-dRGCs from 8 to 15 μm, xii/ oRGCs and dRGCs have the same susceptibility to axonal injury and ocular hypertension. Although the role of mammalian dRGCs remains to be determined, our data suggest that they are not misplaced by an ontogenic mistake.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| | - Manuel Salinas-Navarro
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Paloma Sobrado-Calvo
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - María P Villegas-Pérez
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca Murcia, Spain ; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia Murcia, Spain ; Hospital Clínico Universitario Virgen de la Arrixaca Murcia, Spain
| |
Collapse
|
15
|
Ortín-Martínez A, Nadal-Nicolás FM, Jiménez-López M, Alburquerque-Béjar JJ, Nieto-López L, García-Ayuso D, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M. Number and distribution of mouse retinal cone photoreceptors: differences between an albino (Swiss) and a pigmented (C57/BL6) strain. PLoS One 2014; 9:e102392. [PMID: 25029531 PMCID: PMC4100816 DOI: 10.1371/journal.pone.0102392] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | | | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | | | - Leticia Nieto-López
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | - Diego García-Ayuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | - Maria P Villegas-Pérez
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain; Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Espinardo, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca, El Palmar, Murcia, Spain
| |
Collapse
|
16
|
Owen LA, Morrison MA, Ahn J, Woo SJ, Sato H, Robinson R, Morgan DJ, Zacharaki F, Simeonova M, Uehara H, Chakravarthy U, Hogg RE, Ambati BK, Kotoula M, Baehr W, Haider NB, Silvestri G, Miller JW, Tsironi EE, Farrer LA, Kim IK, Park KH, DeAngelis MM. FLT1 genetic variation predisposes to neovascular AMD in ethnically diverse populations and alters systemic FLT1 expression. Invest Ophthalmol Vis Sci 2014; 55:3543-54. [PMID: 24812550 DOI: 10.1167/iovs.14-14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Current understanding of the genetic risk factors for age-related macular degeneration (AMD) is not sufficiently predictive of the clinical course. The VEGF pathway is a key therapeutic target for treatment of neovascular AMD; however, risk attributable to genetic variation within pathway genes is unclear. We sought to identify single nucleotide polymorphisms (SNPs) associated with AMD within the VEGF pathway. METHODS Using a tagSNP, direct sequencing and meta-analysis approach within four ethnically diverse cohorts, we identified genetic risk present in FLT1, though not within other VEGF pathway genes KDR, VEGFA, or VASH1. We used ChIP and ELISA in functional analysis. RESULTS The FLT1 SNPs rs9943922, rs9508034, rs2281827, rs7324510, and rs9513115 were significantly associated with increased risk of neovascular AMD. Each association was more significant after meta-analysis than in any one of the four cohorts. All associations were novel, within noncoding regions of FLT1 that do not tag for coding variants in linkage disequilibrium. Analysis of soluble FLT1 demonstrated higher expression in unaffected individuals homozygous for the FLT1 risk alleles rs9943922 (P = 0.0086) and rs7324510 (P = 0.0057). In silico analysis suggests that these variants change predicted splice sites and RNA secondary structure, and have been identified in other neovascular pathologies. These data were supported further by murine chromatin immunoprecipitation demonstrating that FLT1 is a target of Nr2e3, a nuclear receptor gene implicated in regulating an AMD pathway. CONCLUSIONS Although exact variant functions are not known, these data demonstrate relevancy across ethnically diverse genetic backgrounds within our study and, therefore, hold potential for global efficacy.
Collapse
Affiliation(s)
- Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Margaux A Morrison
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoungnam, Republic of Korea
| | - Hajime Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Rosann Robinson
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Fani Zacharaki
- Department of Ophthalmology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Marina Simeonova
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hironori Uehara
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Usha Chakravarthy
- Centre for Experimental Medicine, Queen's University, Belfast, United Kingdom
| | - Ruth E Hogg
- Centre for Experimental Medicine, Queen's University, Belfast, United Kingdom
| | - Balamurali K Ambati
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Maria Kotoula
- Department of Ophthalmology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Neena B Haider
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University, Belfast, United Kingdom
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Evangelia E Tsironi
- Department of Ophthalmology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Ophthalmology, Neurology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, United States
| | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
17
|
Nivison-Smith L, Chua J, Tan SS, Kalloniatis M. Amino acid signatures in the developing mouse retina. Int J Dev Neurosci 2013; 33:62-80. [PMID: 24368173 DOI: 10.1016/j.ijdevneu.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
This study characterizes the developmental patterns of seven key amino acids: glutamate, γ-amino-butyric acid (GABA), glycine, glutamine, aspartate, alanine and taurine in the mouse retina. We analyze amino acids in specific bipolar, amacrine and ganglion cell sub-populations (i.e. GABAergic vs. glycinergic amacrine cells) and anatomically distinct regions of photoreceptors and Müller cells (i.e. cell bodies vs. endfeet) by extracting data from previously described pattern recognition analysis. Pattern recognition statistically classifies all cells in the retina based on their neurochemical profile and surpasses the previous limitations of anatomical and morphological identification of cells in the immature retina. We found that the GABA and glycine cellular content reached adult-like levels in most neurons before glutamate. The metabolic amino acids glutamine, aspartate and alanine also reached maturity in most retinal cells before eye opening. When the overall amino acid profiles were considered for each cell group, ganglion cells and GABAergic amacrine cells matured first, followed by glycinergic amacrine cells and finally bipolar cells. Photoreceptor cell bodies reached adult-like amino acid profiles at P7 whilst Müller cells acquired typical amino acid profiles in their cell bodies at P7 and in their endfeet by P14. We further compared the amino acid profiles of the C57Bl/6J mouse with the transgenic X-inactivation mouse carrying the lacZ gene on the X chromosome and validated this animal model for the study of normal retinal development. This study provides valuable insight into normal retinal neurochemical maturation and metabolism and benchmark amino acid values for comparison with retinal disease, particularly those which occur during development.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Centre for Eye Health, Sydney, Australia.
| |
Collapse
|
18
|
Won J, Charette JR, Philip VM, Stearns TM, Zhang W, Naggert JK, Krebs MP, Nishina PM. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis. Exp Eye Res 2013; 118:30-5. [PMID: 24200520 DOI: 10.1016/j.exer.2013.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/25/2022]
Abstract
The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Vivek M Philip
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Weidong Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jürgen K Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
19
|
Generation of mice with conditional ablation of the Cd40lg gene: new insights on the role of CD40L. Transgenic Res 2013; 23:53-66. [PMID: 24030045 DOI: 10.1007/s11248-013-9743-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
CD40 ligand (CD40L) acts as an immune modulator in activated T cells, and mutations in the extracellular domain are associated to X-linked hyper IgM syndrome. A role for platelet CD40L in mediating thrombotic and inflammatory processes in atherosclerosis has also been reported. Using the Cre/loxP recombination technology we generated four knockout lines of mice with deletion of the Cd40lg gene restricted to the hematopoietic system. Mouse lines with expression of Cre recombinase driven by the Tie2, Vav1, or CD4 promoters showed in vivo ablation of CD40L in leukocytes and platelets. In contrast, in mice with Cre expression driven by the megakaryocyte lineage-restricted Pf4 promoter, abolition of CD40L expression was observed in megakaryocytes cultured in vitro, but not in circulating platelets. Characterization of these animals revealed reduced in vivo thrombogenesis and defective activation of washed CD40L-deficient platelets, suggesting that membrane-bound CD40L is involved in the control of haemostasis acting as a platelet co-activator. In addition, we report the practically absence of CD40L in mouse and human endothelial cells, as well as the detection of an exon 3-deleted CD40L transcript in both platelets and leukocytes of mouse and human origin. Finally, compared with their corresponding littermate floxed controls, Cre+ mice carrying CD40-deficient leukocytes did not exhibit increased IgM levels, and reduction of IgA and IgG levels was statistically significant only in Tie2-Cre+ mice, suggesting that expression of CD40L in an earlier developmental step may be determinant in the regulation of the class switch recombination process.
Collapse
|
20
|
Ait-Hmyed O, Felder-Schmittbuhl MP, Garcia-Garrido M, Beck S, Seide C, Sothilingam V, Tanimoto N, Seeliger M, Bennis M, Hicks D. Mice lacking Period 1 and Period 2 circadian clock genes exhibit blue cone photoreceptor defects. Eur J Neurosci 2013; 37:1048-60. [PMID: 23351077 DOI: 10.1111/ejn.12103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/08/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
Many aspects of retinal physiology are modulated by circadian clocks, but it is unclear whether clock malfunction impinges directly on photoreceptor survival, differentiation or function. Eyes from wild-type (WT) and Period1 (Per1) and Period2 (Per2) mutant mice (Per1(Brdm1) Per2(Brdm1) ) were examined for structural (histology, in vivo imaging), phenotypical (RNA expression, immunohistochemistry) and functional characteristics. Transcriptional levels of selected cone genes [red/green opsin (Opn1mw), blue cone opsin (Opn1sw) and cone arrestin (Arr3)] and one circadian clock gene (RORb) were quantified by real-time polymerase chain reaction. Although there were no changes in general retinal histology or visual responses (electroretinograms) between WT and Per1(Brdm1) Per2(Brdm1) mice, compared with age-matched controls, Per1(Brdm1) Per2(Brdm1) mice showed scattered retinal deformations by fundus inspection. Also, mRNA expression levels and immunostaining of blue cone opsin were significantly reduced in mutant mice. Especially, there was an alteration in the dorsal-ventral patterning of blue cones. Decreased blue cone opsin immunoreactivity was present by early postnatal stages, and remained throughout maturation. General photoreceptor differentiation was retarded in young mutant mice. In conclusion, deletion of both Per1 and Per2 clock genes leads to multiple discrete changes in retina, notably patchy tissue disorganization, reductions in cone opsin mRNA and protein levels, and altered distribution. These data represent the first direct link between Per1 and Per2 clock genes, and cone photoreceptor differentiation and function.
Collapse
Affiliation(s)
- Ouafa Ait-Hmyed
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Orr SL, Le D, Long JM, Sobieszczuk P, Ma B, Tian H, Fang X, Paulson JC, Marth JD, Varki N. A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins. Glycobiology 2012; 23:363-80. [PMID: 23118208 DOI: 10.1093/glycob/cws150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease.
Collapse
Affiliation(s)
- Sally L Orr
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jirouskova M, Zbodakova O, Gregor M, Chalupsky K, Sarnova L, Hajduch M, Ehrmann J, Jirkovska M, Sedlacek R. Hepatoprotective effect of MMP-19 deficiency in a mouse model of chronic liver fibrosis. PLoS One 2012; 7:e46271. [PMID: 23056273 PMCID: PMC3467204 DOI: 10.1371/journal.pone.0046271] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Liver fibrosis is characterized by the deposition and increased turnover of extracellular matrix. This process is controlled by matrix metalloproteinases (MMPs), whose expression and activity dynamically change during injury progression. MMP-19, one of the most widely expressed MMPs, is highly expressed in liver; however, its contribution to liver pathology is unknown. The aim of this study was to elucidate the role of MMP-19 during the development and resolution of fibrosis by comparing the response of MMP-19-deficient (MMP19KO) and wild-type mice upon chronic liver CCl(4)-intoxication. We show that loss of MMP-19 was beneficial during liver injury, as plasma ALT and AST levels, deposition of fibrillar collagen, and phosphorylation of SMAD3, a TGF-ß1 signaling molecule, were all significantly lower in MMP19KO mice. The ameliorated course of the disease in MMP19KO mice likely results from a slower rate of basement membrane destruction and ECM remodeling as the knockout mice maintained significantly higher levels of type IV collagen and lower expression and activation of MMP-2 after 4 weeks of CCl(4)-intoxication. Hastened liver regeneration in MMP19KO mice was associated with slightly higher IGF-1 mRNA expression, slightly increased phosphorylation of Akt kinase, decreased TGF-ß1 mRNA levels and significantly reduced SMAD3 phosphorylation. In addition, primary hepatocytes isolated from MMP19KO mice showed impaired responsiveness towards TGF-ß1 stimulation, resulting in lower expression of Snail1 and vimentin mRNA. Thus, MMP-19-deficiency improves the development of hepatic fibrosis through the diminished replacement of physiological extracellular matrix with fibrotic deposits in the beginning of the injury, leading to subsequent changes in TGF-ß and IGF-1 signaling pathways.
Collapse
Affiliation(s)
| | - Olga Zbodakova
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Martin Gregor
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Karel Chalupsky
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Lenka Sarnova
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Marie Jirkovska
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
23
|
Mustafi D, Maeda T, Kohno H, Nadeau JH, Palczewski K. Inflammatory priming predisposes mice to age-related retinal degeneration. J Clin Invest 2012; 122:2989-3001. [PMID: 22797304 DOI: 10.1172/jci64427] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/07/2012] [Indexed: 12/22/2022] Open
Abstract
Disruption of cellular processes affected by multiple genes and accumulation of numerous insults throughout life dictate the progression of age-related disorders, but their complex etiology is poorly understood. Postmitotic neurons, such as photoreceptor cells in the retina and epithelial cells in the adjacent retinal pigmented epithelium, are especially susceptible to cellular senescence, which contributes to age-related retinal degeneration (ARD). The multigenic and complex etiology of ARD in humans is reflected by the relative paucity of effective compounds for its early prevention and treatment. To understand the genetic differences that drive ARD pathogenesis, we studied A/J mice, which develop ARD more pronounced than that in other inbred mouse models. Although our investigation of consomic strains failed to identify a chromosome associated with the observed retinal deterioration, pathway analysis of RNA-Seq data from young mice prior to retinal pathological changes revealed that increased vulnerability to ARD in A/J mice was due to initially high levels of inflammatory factors and low levels of homeostatic neuroprotective factors. The genetic signatures of an uncompensated preinflammatory state and ARD progression identified here aid in understanding the susceptible genetic loci that underlie pathogenic mechanisms of age-associated disorders, including several human blinding diseases.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
24
|
Chui TYP, Song H, Clark CA, Papay JA, Burns SA, Elsner AE. Cone photoreceptor packing density and the outer nuclear layer thickness in healthy subjects. Invest Ophthalmol Vis Sci 2012; 53:3545-53. [PMID: 22570340 DOI: 10.1167/iovs.11-8694] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We evaluated the relationship between cone photoreceptor packing density and outer nuclear layer (ONL) thickness within the central 15 degrees. METHODS Individual differences for healthy subjects in cone packing density and ONL thickness were examined in 8 younger and 8 older subjects, mean age 27.2 versus 56.2 years. Cone packing density was obtained using an adaptive optics scanning laser ophthalmoscope (AOSLO). The ONL thickness measurements included the ONL and the Henle fiber layer (ONL + HFL), and were obtained using spectral domain optical coherence tomography (SDOCT) and custom segmentation software. RESULTS There were sizeable individual differences in cone packing density and ONL + HFL thickness. Older subjects had on average lower cone packing densities, but thicker ONL + HFL measurements. Cone packing density and ONL + HFL thickness decreased with increasing retinal eccentricity. The ratio of the cone packing density-to-ONL2 was larger for the younger subjects group, and decreased with retinal eccentricity. CONCLUSIONS The individual differences in cone packing density and ONL + HFL thickness are consistent with aging changes, indicating that normative aging data are necessary for fine comparisons in the early stages of disease or response to treatment. Our finding of ONL + HFL thickness increasing with aging is inconsistent with the hypothesis that ONL measurements with SDOCT depend only on the number of functioning cones, since in our older group cones were fewer, but thickness was greater.
Collapse
Affiliation(s)
- Toco Y P Chui
- School of Optometry, Indiana University, Bloomington, Indiana 47405-3860, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kraus P, Xing X, Lim SL, Fun ME, Sivakamasundari V, Yap SP, Lee H, Karuturi RKM, Lufkin T. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos. BMC Res Notes 2012; 5:232. [PMID: 22583621 PMCID: PMC3497855 DOI: 10.1186/1756-0500-5-232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/05/2012] [Indexed: 11/14/2022] Open
Abstract
Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mukhopadhyay P, Brock G, Webb C, Pisano MM, Greene RM. Strain-specific modifier genes governing craniofacial phenotypes. ACTA ACUST UNITED AC 2012; 94:162-75. [PMID: 22371338 DOI: 10.1002/bdra.22890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski(-/-) mice on a C57BL6J (B6) background exhibit facial clefting, while Ski(-/-) mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was used to identify potential strain-specific modifier gene candidates present in wild type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from embryonic day (E) 8.5, B6 embryos when compared to expression levels in neural tubes derived from E 8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|