1
|
Sarma A, Gunasekaran D, Phukan H, Baby A, Hariharan S, De AK, Bhattacharya D, Natesan S, Tennyson J, Madanan MG. Leptospiral imelysin (LIC_10713) is secretory, immunogenic and binds to laminin, fibronectin, and collagen IV. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12573-6. [PMID: 37227474 DOI: 10.1007/s00253-023-12573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira. Early and accurate diagnosis is the prime step in managing the disease. Secretory proteins of Leptospira remain distinguished for diagnosis due to their availability as soluble proteins in the serum and their interaction with the host immune response due to their extracellular presence. This study presents the cloning, expression, purification, and characterization of imelysin or LruB (LIC_10713), a putative leptospiral protein. We report that the localization of imelysin showed its presence in the inner membrane and in the culture supernatant. The imelysin was upregulated under in vitro physiological conditions of infection. The LIC_10713 interacted significantly with laminin, fibronectin, collagen type I, and collagen type IV in a dose-dependent manner. Phylogenetic analysis showed that LIC_10713 is predominately found in the pathogenic species of Leptospira, and the GxHxxE motif of imelysin-like proteins is represented as the amino acid sequence GWHAIE. Also, immunoglobulins in leptospirosis-infected patients recognize recombinant-LIC_10713 with 100% specificity and 90.9% sensitivity. The secretion nature, abundance, upregulation, binding to ECM components, and immunogenicity determine LIC_10713 as an important molecule that can be used as an anti-leptospirosis measure. KEY POINTS: • The imelysin-like protein (LIC_10713) of Leptospira is a secretory protein • The protein LIC_10713 can bind ECM molecules • The LIC_10713 is mainly found in pathogenic leptospires • The anti-LIC_10713 antibody from human serum can detect the r-LIC_10713.
Collapse
Affiliation(s)
- Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Dhandapani Gunasekaran
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Akhil Baby
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Arun Kumar De
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Debasis Bhattacharya
- Division of Animal Science, ICAR- Central Island Agricultural Research Institute, Port Blair, 744105, Andaman and Nicobar Islands, India
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | - Jebasingh Tennyson
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamraj University, Madurai, Tamil Nadu, 625021, India
| | | |
Collapse
|
2
|
Rajasekaran MB, Hussain R, Siligardi G, Andrews SC, Watson KA. Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. Biometals 2022; 35:573-589. [PMID: 35348940 PMCID: PMC9174327 DOI: 10.1007/s10534-022-00389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
EfeUOB/M has been characterised in Pseudomonas syringae pathovar. syringae as a novel type of ferrous-iron transporter, consisting of an inner-membrane protein (EfeUPsy) and three periplasmic proteins (EfeOPsy, EfeMPsy and EfeBPsy). The role of an iron permease and peroxidase function has been identified for the EfeU and EfeB proteins, respectively, but the role of EfeO/M remains unclear. EfeMPsy is an 'M75-only' EfeO-like protein with a C-terminal peptidase-M75 domain (EfeOII/EfeM family). Herein, we report the 1.6 Å resolution crystal structure of EfeMPsy, the first structural report for an EfeM component of P. syringae pv. syringae. The structure possesses the bi-lobate architecture found in other bacterial periplasmic substrate/solute binding proteins. Metal binding studies, using SRCD and ICP-OES, reveal a preference of EfeMPsy for copper, iron and zinc. This work provides detailed knowledge of the structural scaffold, the metal site geometry, and the divalent metal binding potential of EfeM. This work provides crucial underpinning for a more detailed understanding of the role of EfeM/EfeO proteins and the peptidase-M75 domains in EfeUOB/M iron uptake systems in bacteria.
Collapse
Affiliation(s)
- Mohan B Rajasekaran
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN19QJ, UK
| | - Rohanah Hussain
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source, Harwell Science Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - Simon C Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK
| | - Kimberly A Watson
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights Campus, Reading, RG6 6EX, UK.
| |
Collapse
|
3
|
Extracellular Proteome Analysis Shows the Abundance of Histidine Kinase Sensor Protein, DNA Helicase, Putative Lipoprotein Containing Peptidase M75 Domain and Peptidase C39 Domain Protein in Leptospira interrogans Grown in EMJH Medium. Pathogens 2021; 10:pathogens10070852. [PMID: 34358002 PMCID: PMC8308593 DOI: 10.3390/pathogens10070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a re-emerging form of zoonosis that is caused by the spirochete pathogen Leptospira. Extracellular proteins play critical roles in the pathogenicity and survival of this pathogen in the host and environment. Extraction and analysis of extracellular proteins is a difficult task due to the abundance of enrichments like serum and bovine serum albumin in the culture medium, as is distinguishing them from the cellular proteins that may reach the analyte during extraction. In this study, extracellular proteins were separated as secretory proteins from the culture supernatant and surface proteins were separated during the washing of the cell pellet. The proteins identified were sorted based on the proportion of the cellular fractions and the extracellular fractions. The results showed the identification of 56 extracellular proteins, out of which 19 were exclusively extracellular. For those proteins, the difference in quantity with respect to their presence within the cell was found to be up to 1770-fold. Further, bioinformatics analysis elucidated characteristics and functions of the identified proteins. Orthologs of extracellular proteins in various Leptospira species were found to be closely related among different pathogenic forms. In addition to the identification of extracellular proteins, this study put forward a method for the extraction and identification of extracellular proteins.
Collapse
|
4
|
Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif. mSystems 2021; 6:6/1/e00693-20. [PMID: 33436507 PMCID: PMC7901474 DOI: 10.1128/msystems.00693-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions. IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
Collapse
|
5
|
Temtrirath K, Okumura K, Maruyama Y, Mikami B, Murata K, Hashimoto W. Binding mode of metal ions to the bacterial iron import protein EfeO. Biochem Biophys Res Commun 2017; 493:1095-1101. [PMID: 28919419 DOI: 10.1016/j.bbrc.2017.09.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
Abstract
The tripartite EfeUOB system functions as a low pH iron importer in Gram-negative bacteria. In the alginate-assimilating bacterium Sphingomonas sp. strain A1, an additional EfeO-like protein (Algp7) is encoded downstream of the efeUOB operon. Here we show the metal binding mode of Algp7, which carries a M_75 metallopeptidase motif. The Algp7 protein was purified from recombinant E. coli cells and was subsequently characterized using differential scanning fluorimetry, fluorescence spectrometry, atomic absorption spectroscopy, and X-ray crystallography. The fluorescence of a dye, SYPRO Orange, bound to denatured Algp7 in the absence and presence of metal ions was measured during heat treatment. The fluorescence profile of Algp7 in the presence of metals such as ferric, ferrous, and zinc ions, shifted to a higher temperature, suggesting that Algp7 binds these metal ions and that metal ion-bound Algp7 is more thermally stable than the ligand-free form. Algp7 was directly demonstrated to show an ability to bind copper ion by atomic absorption spectroscopy. Crystal structure of metal ion-bound Algp7 revealed that the metal ion is bound to the cleft surrounded by several acidic residues. Four residues, Glu79, Glu82, Asp96, and Glu178, distinct from the M_75 motif (His115xxGlu118), are coordinated to the metal ion. This is the first report to provide structural insights into metal binding by the bacterial EfeO element.
Collapse
Affiliation(s)
- Kanate Temtrirath
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
6
|
Pérez-Pascual D, Lunazzi A, Magdelenat G, Rouy Z, Roulet A, Lopez-Roques C, Larocque R, Barbeyron T, Gobet A, Michel G, Bernardet JF, Duchaud E. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms. Front Microbiol 2017; 8:1542. [PMID: 28861057 PMCID: PMC5561996 DOI: 10.3389/fmicb.2017.01542] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.
Collapse
Affiliation(s)
- David Pérez-Pascual
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Aurelie Lunazzi
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Ghislaine Magdelenat
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Zoe Rouy
- Laboratoire d'Analyses Bioinformatiques en Génomique et Métabolisme, Centre National de la Recherche Scientifique (UMR-8030), Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Alain Roulet
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Celine Lopez-Roques
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Robert Larocque
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Tristan Barbeyron
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Angélique Gobet
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Gurvan Michel
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Jean-François Bernardet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
7
|
Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G, Picardeau M. Pathogenic Leptospira interrogans exoproteins are primarily involved in heterotrophic processes. Infect Immun 2015; 83:3061-73. [PMID: 25987703 PMCID: PMC4496612 DOI: 10.1128/iai.00427-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Leptospirosis is a life-threatening and emerging zoonotic disease with a worldwide annual occurrence of more than 1 million cases. Leptospirosis is caused by spirochetes belonging to the genus Leptospira. The mechanisms of disease manifestation in the host remain elusive, and the roles of leptospiral exoproteins in these processes have yet to be determined. Our aim in this study was to assess the composition and quantity of exoproteins of pathogenic Leptospira interrogans and to construe how these proteins contribute to disease pathogenesis. Label-free quantitative mass spectrometry of proteins obtained from Leptospira spirochetes cultured in vitro under conditions mimicking infection identified 325 exoproteins. The majority of these proteins are conserved in the nonpathogenic species Leptospira biflexa, and proteins involved in metabolism and energy-generating functions were overrepresented and displayed the highest relative abundance in culture supernatants. Conversely, proteins of unknown function, which represent the majority of pathogen-specific proteins (presumably involved in virulence mechanisms), were underrepresented. Characterization of various L. interrogans exoprotein mutants in the animal infection model revealed host mortality rates similar to those of hosts infected with wild-type L. interrogans. Collectively, these results indicate that pathogenic Leptospira exoproteins primarily function in heterotrophic processes (the processes by which organisms utilize organic substances as nutrient sources) to maintain the saprophytic lifestyle rather than the virulence of the bacteria. The underrepresentation of proteins homologous to known virulence factors, such as toxins and effectors in the exoproteome, also suggests that disease manifesting from Leptospira infection is likely caused by a combination of the primary and potentially moonlight functioning of exoproteins.
Collapse
Affiliation(s)
- Azad Eshghi
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Elisa Pappalardo
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Svenja Hester
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Benjamin Thomas
- University of Oxford, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Gabriela Pretre
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | | |
Collapse
|
8
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards New Drug Targets? Function Prediction of Putative Proteins of Neisseria meningitidis MC58 and Their Virulence Characterization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:416-34. [PMID: 26076386 DOI: 10.1089/omi.2015.0032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neisseria meningitidis is a Gram-negative aerobic diplococcus, responsible for a variety of meningococcal diseases. The genome of N. meningitidis MC58 is comprised of 2114 genes that are translated into 1953 proteins. The 698 genes (∼35%) encode hypothetical proteins (HPs), because no experimental evidence of their biological functions are available. Analyses of these proteins are important to understand their functions in the metabolic networks and may lead to the discovery of novel drug targets against the infections caused by N. meningitidis. This study aimed at the identification and categorization of each HP present in the genome of N. meningitidis MC58 using computational tools. Functions of 363 proteins were predicted with high accuracy among the annotated set of HPs investigated. The reliably predicted 363 HPs were further grouped into 41 different classes of proteins, based on their possible roles in cellular processes such as metabolism, transport, and replication. Our studies revealed that 22 HPs may be involved in the pathogenesis caused by this microorganism. The top two HPs with highest virulence scores were subjected to molecular dynamics (MD) simulations to better understand their conformational behavior in a water environment. We also compared the MD simulation results with other virulent proteins present in N. meningitidis. This study broadens our understanding of the mechanistic pathways of pathogenesis, drug resistance, tolerance, and adaptability for host immune responses to N. meningitidis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Krishna Bisetty
- 1 Department of Chemistry, Durban University of Technology , Durban, South Africa
| | - Faizan Ahmad
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- 2 Center for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
9
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
10
|
Potential impact on kidney infection: a whole-genome analysis of Leptospira santarosai serovar Shermani. Emerg Microbes Infect 2014; 3:e82. [PMID: 26038504 PMCID: PMC4274889 DOI: 10.1038/emi.2014.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/21/2022]
Abstract
Leptospira santarosai serovar Shermani is the most frequently encountered
serovar, and it causes leptospirosis and tubulointerstitial nephritis in Taiwan. This
study aims to complete the genome sequence of L. santarosai serovar Shermani
and analyze the transcriptional responses of L. santarosai serovar Shermani
to renal tubular cells. To assemble this highly repetitive genome, we combined reads
that were generated from four next-generation sequencing platforms by using hybrid
assembly approaches to finish two-chromosome contiguous sequences without gaps by
validating the data with optical restriction maps and Sanger sequencing. Whole-genome
comparison studies revealed a 28-kb region containing genes that encode transposases
and hypothetical proteins in L. santarosai serovar Shermani, but this region
is absent in other pathogenic Leptospira spp. We found that lipoprotein gene
expression in both L. santarosai serovar Shermani and L.
interrogans serovar Copenhageni were upregulated upon interaction with renal
tubular cells, and LSS19962, a L. santarosai serovar Shermani-specific gene
within a 28-kb region that encodes hypothetical proteins, was upregulated in L.
santarosai serovar Shermani-infected renal tubular cells. Lipoprotein
expression during leptospiral infection might facilitate the interactions of
leptospires within kidneys. The availability of the whole-genome sequence of L.
santarosai serovar Shermani would make it the first completed sequence of
this species, and its comparison with that of other Leptospira spp. may
provide invaluable information for further studies in leptospiral pathogenesis.
Collapse
|
11
|
Miethke M, Monteferrante CG, Marahiel MA, van Dijl JM. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2267-78. [PMID: 23764491 DOI: 10.1016/j.bbamcr.2013.05.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/09/2023]
Abstract
Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states.
Collapse
Affiliation(s)
- Marcus Miethke
- Department of Chemistry/Biochemistry, Philipps University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
12
|
Yan Q, Sreedharan A, Wei S, Wang J, Pelz-Stelinski K, Folimonova S, Wang N. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. MOLECULAR PLANT PATHOLOGY 2013; 14:391-404. [PMID: 23336388 PMCID: PMC6638839 DOI: 10.1111/mpp.12015] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Huanglongbing (HLB) or citrus greening disease is a destructive disease of citrus worldwide, which is associated with Candidatus Liberibacter asiaticus. This phloem-limited fastidious pathogen is transmitted by the Asian citrus psyllid, Diaphorina citri, and appears to be an intracellular pathogen that maintains an intimate association with the psyllid or the plant throughout its life cycle. The molecular basis of the interaction of this pathogen with its hosts is not well understood. We hypothesized that, during infection, Ca. L. asiaticus differentially expresses the genes critical for its survival and/or pathogenicity in either host. To test this hypothesis, quantitative reverse transcription-polymerase chain reaction was performed to compare the gene expression of Ca. L. asiaticus in planta and in psyllid. Overall, 381 genes were analysed for their gene expression in planta and in psyllid. Among them, 182 genes were up-regulated in planta compared with in psyllid (P < 0.05), 16 genes were up-regulated in psyllid (P < 0.05) and 183 genes showed no statistically significant difference (P ≥ 0.05) in expression between in planta and in psyllid. Our study indicates that the expression of the Ca. L. asiaticus genes involved in transcriptional regulation, transport system, secretion system, flagella assembly, metabolic pathway and stress resistance are changed significantly in a host-specific manner to adapt to the distinct environments of plant and insect. To our knowledge, this is the first large-scale study to evaluate the differential expression of Ca. L. asiaticus genes in a plant host and its insect vector.
Collapse
Affiliation(s)
- Qing Yan
- Department of Microbiology and Cell Science, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Turlin E, Débarbouillé M, Augustyniak K, Gilles AM, Wandersman C. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli. PLoS One 2013; 8:e56529. [PMID: 23437157 PMCID: PMC3577903 DOI: 10.1371/journal.pone.0056529] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/10/2013] [Indexed: 11/26/2022] Open
Abstract
EfeUOB-like tripartite systems are widespread in bacteria and in many cases they are encoded by genes organized into iron-regulated operons. They consist of: EfeU, a protein similar to the yeast iron permease Ftrp1; EfeO, an extracytoplasmic protein of unknown function and EfeB, also an extracytoplasmic protein with heme peroxidase activity, belonging to the DyP family. Many bacterial EfeUOB systems have been implicated in iron uptake, but a prefential iron source remains undetermined. Nevertheless, in the case of Escherichia coli, the EfeUOB system has been shown to recognize heme and to allow extracytoplasmic heme iron extraction via a deferrochelation reaction. Given the high level of sequence conservations between EfeUOB orthologs, we hypothesized that heme might be the physiological iron substrate for the other orthologous systems. To test this hypothesis, we undertook characterization of the Staphylococcus aureus FepABC system. Results presented here indicate: i) that the S. aureus FepB protein binds both heme and PPIX with high affinity, like EfeB, the E. coli ortholog; ii) that it has low peroxidase activity, comparable to that of EfeB; iii) that both FepA and FepB drive heme iron utilization, and both are required for this activity and iv) that the E. coli FepA ortholog (EfeO) cannot replace FepA in FepB-driven iron release from heme indicating protein specificity in these activities. Our results show that the function in heme iron extraction is conserved in the two orthologous systems.
Collapse
Affiliation(s)
- Evelyne Turlin
- Unité des Membranes Bactériennes, Département de Microbiologie, Institut Pasteur, CNRS ERL3526, Paris, France
| | - Michel Débarbouillé
- Unité de Biologie des Bactéries Pathogènes à Gram-positif, Département de Microbiologie, Institut Pasteur, CNRS ERL3526, Paris, France
| | - Katarzyna Augustyniak
- Unité des Membranes Bactériennes, Département de Microbiologie, Institut Pasteur, CNRS ERL3526, Paris, France
| | - Anne-Marie Gilles
- Unité des Membranes Bactériennes, Département de Microbiologie, Institut Pasteur, CNRS ERL3526, Paris, France
| | - Cécile Wandersman
- Unité des Membranes Bactériennes, Département de Microbiologie, Institut Pasteur, CNRS ERL3526, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Sheldon JR, Heinrichs DE. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol 2012; 2:41. [PMID: 22919632 PMCID: PMC3417571 DOI: 10.3389/fcimb.2012.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023] Open
Abstract
Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response.
Collapse
Affiliation(s)
- Jessica R Sheldon
- Department of Microbiology and Immunology, Western University, London ON, Canada
| | | |
Collapse
|