1
|
Zhao X, Zhang Y, Ju M, Yang Y, Liu H, Qin X, Xu Q, Hao M. RamA upregulates the ATP-binding cassette transporter mlaFEDCB to mediate resistance to tetracycline-class antibiotics and the stability of membranes in Klebsiella pneumoniae. Microbiol Spectr 2025; 13:e0172824. [PMID: 39745369 PMCID: PMC11792452 DOI: 10.1128/spectrum.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
RamA is an intrinsic regulator in Klebsiella pneumoniae, belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of ramA resulted in a fivefold decrease in the transcriptional levels of the mlaFEDCB operon. After complementation with ramA, the transcriptional levels were comparable to those of wild-type strain. Furthermore, an electrophoretic mobility shift assay showed that RamA could bind to the promoter region of mlaEFDCB operon, which confirmed RamA is an activator of mlaEFDCB operon. The mlaEFDCB operon could mildly mediate resistance to the tetracycline family of antibiotics under RamA regulation. The MIC (minimum inhibitory concentration) of tigecycline decreased fourfold, and the MIC of doxycycline, minocycline, and eravacycline decreased twofold after mlaE-knockout. The ramA- and mlaE-knockout strains exhibited greater sensitivity to sodium dodecyl sulfate (SDS)-EDTA than the wild-type. Growth of ΔramA cells was severely compromised in 0.25/0.5% SDS and 0.55 mM EDTA, and this sensitivity was restored by complementation with ramA and mlaE. This study demonstrates that RamA can directly regulate the malEFEDCB operon, thereby mediating resistance to tetracycline-class antibiotics, contributing to the stability of bacterial membranes in K. pneumoniae. We identified a novel signal pathway in which RamA mediates multidrug resistance of K. pneumoniae, leading to new ideas for the development of novel antimicrobial therapeutics, therefore deserving further comprehensive study. IMPORTANCE Multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae have emerged as significant global health concerns resulting in high mortality rates. Although previous research has investigated the maintenance of lipid asymmetry (Mla) pathway, the extent to which it mediates antimicrobial resistance in K. pneumoniae and the underlying upstream regulatory mechanisms remain unclear. In this study, we sought to determine at the molecular level how the AraC-type global regulator RamA directly regulates mlaFEDCB, which mediates resistance to tetracycline-class antibiotics and the stability of bacterial membranes in K. pneumoniae.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Yixin Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Mohan Ju
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Haoqi Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
- Institute of Microbes and Infections, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohua Qin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| | - Min Hao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission, Shanghai, China
| |
Collapse
|
2
|
Chen Q, Yu Y, Xu Y, Quan H, Liu D, Li C, Liu M, Gong X. Salmonella Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence. J Bacteriol 2024; 206:e0017824. [PMID: 39082861 PMCID: PMC11340313 DOI: 10.1128/jb.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models. IMPORTANCE Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.
Collapse
Affiliation(s)
- Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongfeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Heng Quan
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Donghui Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Caiyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mengyao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Phenotypic and genotypic characterization of multi-drug resistant, biofilm forming, human invasive strain of Salmonella Typhimurium SMC25 isolated from poultry meat in India. Microb Pathog 2022; 173:105830. [DOI: 10.1016/j.micpath.2022.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
4
|
Dawan J, Ahn J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10071385. [PMID: 35889104 PMCID: PMC9322497 DOI: 10.3390/microorganisms10071385] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
- Correspondence: ; Tel.: +82-33-250-6564
| |
Collapse
|
5
|
Hao M, Ye F, Jovanovic M, Kotta‐Loizou I, Xu Q, Qin X, Buck M, Zhang X, Wang M. Structures of Class I and Class II Transcription Complexes Reveal the Molecular Basis of RamA-Dependent Transcription Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103669. [PMID: 34761556 PMCID: PMC8811837 DOI: 10.1002/advs.202103669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator RamA is linked to multidrug resistance of Klebsiella pneumoniae through controlling genes that encode efflux pumps (acrA) and porin-regulating antisense RNA (micF). In bacteria, σ70 , together with activators, controls the majority of genes by recruiting RNA polymerase (RNAP) to the promoter regions. RNAP and σ70 form a holoenzyme that recognizes -35 and -10 promoter DNA consensus sites. Many activators bind upstream from the holoenzyme and can be broadly divided into two classes. RamA acts as a class I activator on acrA and class II activator on micF, respectively. The authors present biochemical and structural data on RamA in complex with RNAP-σ70 at the two promoters and the data reveal the molecular basis for how RamA assembles and interacts with core RNAP and activates transcription that contributes to antibiotic resistance. Further, comparing with CAP/TAP complexes reveals common and activator-specific features in activator binding and uncovers distinct roles of the two C-terminal domains of RNAP α subunit.
Collapse
Affiliation(s)
- Min Hao
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Fuzhou Ye
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Milija Jovanovic
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Qingqing Xu
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Xiaohua Qin
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| | - Martin Buck
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Xiaodong Zhang
- Section of Structural BiologyDepartment of Infectious DiseasesImperial College LondonLondonSW7 2AZUK
| | - Minggui Wang
- Institute of AntibioticsHuashan HospitalFudan UniversityShanghai200040China
- Key Laboratory of Clinical Pharmacology of AntibioticsNational Health Commission of the People's Republic of ChinaShanghai200040China
| |
Collapse
|
6
|
Antidiarrheal and Antibacterial Activities of Monterey Cypress Phytochemicals: In Vivo and In Vitro Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020346. [PMID: 35056664 PMCID: PMC8780600 DOI: 10.3390/molecules27020346] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Monterey cypress (Cupressus macrocarpa) is a decorative plant; however, it possesses various pharmacological activities. Therefore, we explored the phytochemical profile of C. macrocarpa root methanol extract (CRME) for the first time. Moreover, we investigated its antidiarrheal (in vivo), antibacterial, and antibiofilm (in vitro) activities against Salmonella enterica clinical isolates. The LC-ESI-MS/MS analysis of CRME detected the presence of 39 compounds, besides isolation of 2,3,2″,3″-tetrahydro-4'-O-methyl amentoflavone, amentoflavone, and dihydrokaempferol-3-O-α-l-rhamnoside for the first time. Dihydrokaempferol-3-O-α-l-rhamnoside presented the highest antimicrobial activity and the range of values of MICs against S. enterica isolates was from 64 to 256 µg/mL. The antidiarrheal activity of CRME was investigated by induction of diarrhea using castor oil, and exhibited a significant reduction in diarrhea and defecation frequency at all doses, enteropooling (at 400 mg/kg), and gastrointestinal motility (at 200, 400 mg/kg) in mice. The antidiarrheal index of CRME increased in a dose-dependent manner. The effect of CRME on various membrane characters of S. enterica was studied after typing the isolates by ERIC-PCR. Its impact on efflux and its antibiofilm activity were inspected. The biofilm morphology was observed using light and scanning electron microscopes. The effect on efflux activity and biofilm formation was further elucidated using qRT-PCR. A significant increase in inner and outer membrane permeability and a significant decrease in integrity and depolarization (using flow cytometry) were detected with variable percentages. Furthermore, a significant reduction in efflux and biofilm formation was observed. Therefore, CRME could be a promising source for treatment of gastrointestinal tract diseases.
Collapse
|
7
|
Attallah NGM, Negm WA, Elekhnawy E, Elmongy EI, Altwaijry N, El-Haroun H, El-Masry TA, El-Sherbeni SA. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2021; 10:antibiotics10080890. [PMID: 34438940 PMCID: PMC8388636 DOI: 10.3390/antibiotics10080890] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that causes various infections. The increasing resistance of MRSA to different antibiotics is widely spreading; therefore, plant extracts may be novel therapeutic alternatives. The phytochemical profiling of Cupressus macrocarpa Hartw. ex Gordon leaves in vitro, and in vivo, antimicrobial potential of its extracts against MRSA clinical isolates were explored. A phytochemical tentative identification of 49 compounds was performed in the leaves using LC-ESI-MS/MS; in addition, isolation, and structure elucidation of hesperidin and eriocitrin were achieved for the first time. The diethyl ether extract (DEEL) exhibited the best antibacterial effect with MIC values ranging from 2 to 8 µg/mL, which significantly reduced the growth and efflux activity in 48.78% and 29.26% of isolates, respectively. qRT-PCR showed a significant down expression of norA and norB genes, which significantly affected the bacterial cell morphology and had a non-significant effect on membrane depolarization (using flow cytometry). In a rat model, four groups were wounded and treated with normal saline or DEEL, or infected with MRSA, or infected and treated with DEEL. The regeneration of the epidermis, maturation of granulation tissue, and reduction of inflammatory cell infiltration were observed after treatment with DEEL. Thus, C. macrocarpa leaves may be a promising source for new antimicrobials against MRSA.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
- Egyptian Drug Authority (EDA), Giza 8655, Egypt (previously NODCAR)
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt; (W.A.N.); (S.A.E.-S.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
- Correspondence: (E.E.); or (E.I.E.)
| | - Elshaymaa I. Elmongy
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
- Correspondence: (E.E.); or (E.I.E.)
| | - Najla Altwaijry
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia; (N.G.M.A.); (N.A.)
| | - Hala El-Haroun
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Thanaa A. El-Masry
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Suzy A. El-Sherbeni
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt; (W.A.N.); (S.A.E.-S.)
| |
Collapse
|
8
|
Antibacterial Activity of Boswellia sacra Flueck. Oleoresin Extract against Porphyromonas gingivalis Periodontal Pathogen. Antibiotics (Basel) 2021; 10:antibiotics10070859. [PMID: 34356781 PMCID: PMC8300764 DOI: 10.3390/antibiotics10070859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Boswellia sacra Flueck. oleoresin extract (frankincense) has traditionally been used in the treatment of different diseases, but there are no sufficient studies on its potential activity against periodontal pathogens. Therefore, antibacterial and antibiofilm activity of frankincense extract against Porphyromonas gingivalis clinical isolates were studied. The phytochemical composition of the volatile components of the extract was identified by GC-MS analysis revealing 49 compounds as trans-nerolidyl formate, cycloartenol acetate, ursenoic acid 3-oxomethyl ester, bisabolene epoxide, and kaur-16-ene. It decreased the growth and increased the leakage of nucleotides in 58.3% and 33.3% of isolates, respectively. Additionally, it reduced the extracellular polysaccharide production and the cell surface hydrophobicity in 41.67% and 50% of the isolates, respectively. Crystal violet assay revealed inhibition of biofilm formation by the tested isolates. Light microscope and scanning electron microscope were used to examine the biofilms and they confirmed the reduction of biofilm formation by frankincense extract. Downregulation of the genes linked to biofilm formation (fimA, hagA, and hagB) was observed using qRT-PCR after treatment with the frankincense extract. This study suggested that the frankincense extract could exhibit antibacterial and antibiofilm activity against P. gingivalis isolates. Thus, the frankincense extract could be used as a treatment approach for periodontitis.
Collapse
|
9
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
10
|
ramR Deletion in an Enterobacter hormaechei Isolate as a Consequence of Therapeutic Failure of Key Antibiotics in a Long-Term Hospitalized Patient. Antimicrob Agents Chemother 2020; 64:AAC.00962-20. [PMID: 32778545 DOI: 10.1128/aac.00962-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/22/2020] [Indexed: 11/20/2022] Open
Abstract
Genome changes are central to the adaptation of bacteria, especially under antibiotic pressure. The aim of this study was to report phenotypic and genomic adaptations undergone by an Enterobacter hormaechei clinical strain that became highly resistant to key antimicrobials during a 4-month period in a patient hospitalized in an intensive care unit (ICU). All six clinical E. hormaechei strains isolated in one ICU-hospitalized patient have been studied. MICs regarding 17 antimicrobial molecules have been measured. Single nucleotide polymorphisms (SNPs) were determined on the sequenced genomes. The expression of genes involved in antibiotic resistance among Enterobacter cloacae complex strains were determined by reverse transcription-quantitative PCR (qRT-PCR). All the strains belonged to sequence type 66 and were distant by a maximum of nine SNPs. After 3 months of hospitalization, three strains presented a significant increase in MICs for ceftazidime, cefepime, temocillin, ertapenem, tigecycline, ciprofloxacin, and chloramphenicol. Those resistant strains did not acquire additional antibiotic resistance genes but harbored a 16-bp deletion in the ramR gene. This deletion led to upregulated expression of RamA, AcrA, AcrB, and TolC and downregulated expression of OmpF. The ΔramR mutant harbored the same phenotype as the resistant clinical strains regarding tigecycline, chloramphenicol, and ciprofloxacin. The increased expression of RamA due to partial deletion in the ramR gene led to a cross-resistance phenotype by an increase of antibiotic efflux through the AcrAB-TolC pump and a decrease of antibiotic permeability by porin OmpF. ramR appears to be an important adaptative trait for E. hormaechei strains.
Collapse
|
11
|
Shaheen A, Tariq A, Shehzad A, Iqbal M, Mirza O, Maslov DA, Rahman M. Transcriptional regulation of drug resistance mechanisms in Salmonella: where we stand and what we need to know. World J Microbiol Biotechnol 2020; 36:85. [PMID: 32468234 DOI: 10.1007/s11274-020-02862-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023]
Abstract
Salmonellae have evolved a wide range of molecular mechanisms to neutralize the effect of antibiotics and evade the host immune system response. These mechanisms are exquisitely controlled by global and local regulators and enable the pathogens to use its energy as per need and hence allow the pathogen to economize the consumption of energy by its cellular machinery. Several families that regulate the expression of different drug resistance genes are known; some of these are: the TetR family (which affects tetracycline resistance genes), the AraC/XylS family (regulators that can act as both transcriptional activators and repressors), two-component signal transduction systems (e.g. PhoPQ, a key regulator for virulence), mercury resistance Mer-R and multiple antibiotic resistance Mar-R regulators, LysR-type global regulators (e.g. LeuO) and histone-like protein regulators (involved in the repression of newly transferred resistance genes). This minireview focuses on the role of different regulators harbored by the Salmonella genome and characterized for mediating the drug resistance mechanisms particularly via efflux and influx systems. Understanding of such transcriptional regulation mechanisms is imperative to address drug resistance issues in Salmonella and other bacterial pathogens.
Collapse
Affiliation(s)
- Aqsa Shaheen
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Anam Tariq
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Aamir Shehzad
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 119333
| | - Moazur Rahman
- Health Biotechnology Division, Drug Discovery and Structural Biology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
12
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020. [PMID: 32431683 DOI: 10.3389/fmicb.2020.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
13
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020; 11:828. [PMID: 32431683 PMCID: PMC7216687 DOI: 10.3389/fmicb.2020.00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Overexpression of RamA, Which Regulates Production of the Multidrug Resistance Efflux Pump AcrAB-TolC, Increases Mutation Rate and Influences Drug Resistance Phenotype. Antimicrob Agents Chemother 2020; 64:AAC.02460-19. [PMID: 31988103 DOI: 10.1128/aac.02460-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/29/2023] Open
Abstract
In Enterobacteriales, the AcrAB-TolC efflux pump exports substrates, including antimicrobials, from the cell. Overexpression of AcrAB-TolC can occur after exposure to fluoroquinolones, leading to multidrug resistance. The expression of AcrAB-TolC in Salmonella is primarily regulated by the transcriptional activator RamA. However, other transcriptional activators, such as MarA, SoxRS, and Rob, can influence AcrAB-TolC expression. This study determined whether the overproduction or absence of RamA influences the mutation rate or the phenotype of mutants selected in Salmonella enterica serovar Typhimurium SL1344 after ciprofloxacin exposure. The absence of RamA (SL1344 ramA::aph) resulted in mutation frequencies/rates similar to those of wild-type Salmonella Typhimurium SL1344. However, the overproduction of RamA (SL1344 ramR::aph) and, consequently, AcrB resulted in a significantly higher mutation frequency and rate than for wild-type Salmonella Typhimurium SL1344. Whole-genome sequencing revealed that in addition to selecting gyrA mutants resistant to quinolones, SL1344 and SL1344 ramA::aph also produced multidrug-resistant (MDR) mutants, associated with mutations in soxR Conversely, mutations in SL1344 ramR::aph occurred in gyrA only. Although transcriptional regulators such as SoxRS are believed to play a minor role in AcrAB-TolC regulation under antibiotic selective pressure, we show that soxR mutants can be selected after exposure to ciprofloxacin, including when RamA is absent. This demonstrates that under selective pressure, Salmonella can respond to increased efflux pump expression by mutating other AcrAB-TolC regulatory genes, allowing for the evolution of MDR. Understanding how Salmonella responds to antibiotic pressure in the absence/overproduction of RamA is important if targeting transcriptional regulators to alter efflux is to be considered an avenue for future drug discovery.
Collapse
|
15
|
Wang C, Nie T, Lin F, Connerton IF, Lu Z, Zhou S, Hang H. Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus Res 2019; 273:197759. [PMID: 31539557 DOI: 10.1016/j.virusres.2019.197759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have key roles in regulating bacterial populations in most habitats. A Salmonella Typhimurium mutant (N18) with impaired sensitivity to phage fmb-p1 was obtained and examined, the adsorption efficiency of fmb-p1 to N18 was reduced to 6%, compared to more than 97% for wild type S. Typhimurium CMCC50115. Reduced adsorption was accompanied by a reduction of 90% in the LPS content compared to wild type. Electron microscopy showed phage scattered around N18 with minimal engagement, while the phage were efficiently adsorbed to the wild type with tails oriented towards the bacterial surface. Evidence suggests fmb-p1 can slightly infect N18 and this does not give rise to an increase of phage titer. RT-qPCR data show that several Salmonella genes involved in lipopolysaccharide synthesis and five virulence related genes were down-regulated upon exposure of N18 to phage fmb-p1. In contrast, phage resistance related genes such as the SOS response, restriction-modification (RM), and Cas1 gene were up-regulated in N18. These data suggest that although inefficient adsorption and entry is the primary mechanism of resistance, transcriptional responses to phage exposure indicate that alternative resistance mechanisms against phage infection are also brought to bear, including digestion of phage nucleic acids and activation of the SOS. These findings may help develop strategies for biocontrol of Salmonella where multi-resistant bacteria are encountered or emerge in applications for food production, bioremediation or wastewater treatment.
Collapse
Affiliation(s)
- Changbao Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| | - Hua Hang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
16
|
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob Agents Chemother 2018; 62:AAC.01263-18. [PMID: 30126958 DOI: 10.1128/aac.01263-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.
Collapse
|
17
|
Uddin MJ, Ahn J. Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella Typhimurium. Food Sci Biotechnol 2018; 27:921-928. [PMID: 30263820 DOI: 10.1007/s10068-018-0317-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022] Open
Abstract
This study aimed to assess the β-lactamase- and efflux pump-mediated antibiotic resistance in Salmonella Typhimurium (WT-ST), ciprofloxacin-induced antibiotic-resistant S. Typhimurium (CI-ST), and clinically-acquired antibiotic-resistant S. Typhimurium (CA-ST). The β-lactamase activities were significantly increased up to 63 μmol/min/mL in CA-ST and 24 μmol/min/mL in CI-ST when compared to WT-ST (13 μmol/min/mL). The highest efflux pump activity was observed in CI-ST and CA-ST, showing more than 45%. The antibiotic susceptibilities of WT-ST, CI-ST, and CA-ST were increased in the presence of β-lactamase and efflux pump inhibitors. CA-ST showed the highest activity in AcrD, MdtABC, EmrAB, MdtK, and MacAB efflux pumps. The repressed ompF were responsible for the decreased susceptibility of CA-ST to ampicillin (MIC > 512 μg/mL). This study would provide useful information for better understating of the development of multidrug resistance in association with β-lactamase and efflux pump activities and designing new antibiotic chemotherapy in combination with inhibitors.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
18
|
Cao TT, Deng GH, Fang LX, Yang RS, Sun J, Liu YH, Liao XP. Characterization of Quinolone Resistance in Salmonella enterica from Farm Animals in China. J Food Prot 2017; 80:1742-1748. [PMID: 28922026 DOI: 10.4315/0362-028x.jfp-17-068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was focused on the prevalence and antimicrobial susceptibilities of Salmonella directly isolated at animal clinics in Guangdong, People's Republic of China. The isolation rates from chickens, ducks, and pigs were 11.3% (11 of 97 samples), 15.4% (53 of 344 samples), and 3.0% (13 of 434 samples), respectively. Among the 77 Salmonella enterica isolates, the most predominant serovar was Typhimurium (81.8%, 63 isolates), followed by serovars Meleagridis (2.6%, 2 isolates) and Abaetetuba (1.3%, 1 isolate). Salmonella isolates were resistant to ciprofloxacin (16.9% of isolates) and nalidixic acid (66.2% of isolates), and 68 isolates (88.3%) were multidrug resistant, displaying resistance to three or more classes of antimicrobial agents. Eighteen isolates (23.4%) had at least one plasmid-mediated quinolone resistance gene, which was identified using PCR and DNA sequencing. The most prevalent plasmid-mediated quinolone resistance gene was aac(6')-Ib-cr, found in 14 isolates (18.2%), followed by oqxAB (9.1%) and qnrS (7.8%). Alterations in the gyrA gene were detected in 24 (57.1%) of 42 strains with a ciprofloxacin MIC of ≥0.25 μg/mL; the same level of susceptibility was found for enrofloxacin. Six types of mutations were found in the quinolone resistance determining regions of gyrA, and the predominant one (S83Y) was found singly in 15 (62.5%) of 24 isolates. We also found 22 different pulsed-field gel electrophoresis types among the Salmonella isolates. The Salmonella serovars and MICs of ciprofloxacin were similar within clusters, although individual differences were noted. This finding suggests that resistance plasmids were horizontally transmitted but also clonally spread.
Collapse
Affiliation(s)
- Ting-Ting Cao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Guo-Hui Deng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Run-Shi Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China (ORCID: http://orcid.org/0000-0002-4654-5837 [X.-p.L.])
| |
Collapse
|
19
|
Molecular characterization of antimicrobial susceptibility of Salmonella isolates: First identification of a plasmid carrying qnrD or oqxAB in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:214-223. [DOI: 10.1016/j.jmii.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
|
20
|
Chen Y, Hu D, Zhang Q, Liao XP, Liu YH, Sun J. Efflux Pump Overexpression Contributes to Tigecycline Heteroresistance in Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2017; 7:37. [PMID: 28261566 PMCID: PMC5313504 DOI: 10.3389/fcimb.2017.00037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Bacterial heteroresistance has been identified in several combinations of bacteria and antibiotics, and it complicated the therapeutic strategies. Tigecycline is being used as one of the optimal options for the treatment of infections caused by multidrug-resistant Salmonella. This study investigated whether heterorresistance to tigecycline exists in a Salmonella enterica serovar Typhimurium strain harboring the oqxAB-bearing IncHI2 plasmid pHXY0908. MIC and population analyses were performed to evaluate population-wide susceptibility to tigecycline. The effects of efflux pumps on MIC levels were assessed using the efflux pump inhibitor Phe-Arg-β-naphthylamide, measuring intracellular tigecycline accumulation as well as mRNA levels of regulatory and efflux pump genes. DNA sequencing of regulatory regions were performed and plasmid curing from a resistant strain provided an appropriate control. Results showed that MICs of a parental strain with and without pHXY0908 as well as a plasmid-cured strain 14028/Δp52 were 0.5, 1, and 1 μg/mL, respectively. Population analysis profiling (PAP) illustrated that only the pHXY0908-containg strain was heteroresistant to tigecycline. A fraction of colonies exhibited stable profiles with 4- to 8-fold increases in MIC. The frequencies of emergence of these isolates were higher in the plasmid-containing strain pHXY0908 than either the parental or the 14028/Δp52 strain. Phe-Arg-β-naphthylamide addition restored tigecycline susceptibility of these isolates and intracellular tigecycline accumulation was reduced. Heteroresistant isolates of the strain containing pHXY0908 also had elevated expression of acrB, ramA, and oqxB. DNA sequencing identified numerous mutations in RamR that have been shown to lead to ramA overexpression. In conclusions, heteroresistance to tigecycline in Salmonella enterica serovar Typhimurium was manifested in a plasmid-bearing strain. Our results suggest that this phenotype was associated with overexpression of the AcrAB-TolC and OqxAB efflux pumps.
Collapse
Affiliation(s)
- Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Daxing Hu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University Ames, IA, USA
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
21
|
Reales-Calderon JA, Blanco P, Alcalde-Rico M, Corona F, Lira F, Hernando-Amado S, Bernardini A, Sánchez MB, Martínez JL. Use of phenotype microarrays to study the effect of acquisition of resistance to antimicrobials in bacterial physiology. Res Microbiol 2016; 167:723-730. [PMID: 27106258 DOI: 10.1016/j.resmic.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/03/2016] [Accepted: 04/07/2016] [Indexed: 01/17/2023]
Abstract
It is widely accepted that the acquisition of resistance to antimicrobials confers a fitness cost. Different works have shown that the effect of acquiring resistance in bacterial physiology may be more specific than previously thought. Study of these specific changes may help to predict the outcome of resistant organisms in different ecosystems. In addition to changing bacterial physiology, acquisition of resistance either increases or reduces susceptibility to other antimicrobials. In the current article, we review recent information on the effect of acquiring resistance upon bacterial physiology, with a specific focus on studies using phenotype microarray technology.
Collapse
Affiliation(s)
- Jose A Reales-Calderon
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Felipe Lira
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Alejandra Bernardini
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Doulgeraki AI, Papaioannou M, Nychas GJE. Targeted gene expression study of Salmonella enterica during biofilm formation on rocket leaves. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ballesté-Delpierre C, Fàbrega A, Ferrer-Navarro M, Mathur R, Ghosh S, Vila J. Attenuation of in vitro host-pathogen interactions in quinolone-resistant Salmonella Typhi mutants. J Antimicrob Chemother 2015; 71:111-22. [PMID: 26446080 DOI: 10.1093/jac/dkv299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The relationship between quinolone resistance acquisition and invasion impairment has been studied in some Salmonella enterica serovars. However, little information has been reported regarding the invasive human-restricted pathogen Salmonella Typhi. The aim of this study was to investigate the molecular mechanisms of quinolone resistance acquisition and its impact on virulence in this serovar. METHODS Two antibiotic-resistant mutants (Ty_c1 and Ty_c2) were generated from a Salmonella Typhi clinical isolate (Ty_wt). The three strains were compared in terms of antimicrobial susceptibility, molecular mechanisms of resistance, gene expression of virulence-related factors, ability to invade eukaryotic cells (human epithelial cells and macrophages) and cytokine production. RESULTS Multidrug resistance in Ty_c2 was attributed to AcrAB/TolC overproduction, decreased OmpF (both mediated by the mar regulon) and decreased OmpC. The two mutants showed a gradually reduced expression of virulence-related genes (invA, hilA, hilD, fliC and fimA), correlating with decreased motility, reduced infection of HeLa cells and impaired uptake by and intracellular survival in human macrophages. Moreover, Ty_c2 also showed reduced tviA expression. Additionally, we revealed a significant reduction in TNF-α and IL-1β production and decreased NF-κB activation. CONCLUSIONS In this study, we provide an in-depth characterization of the molecular mechanisms of antibiotic resistance in the Salmonella Typhi serovar and evidence that acquisition of antimicrobial resistance is concomitantly detected with a loss of virulence (epithelial cell invasion, macrophage phagocytosis and cytokine production). We suggest that the low prevalence of clinical isolates of Salmonella Typhi highly resistant to ciprofloxacin is due to poor immunogenicity and impaired dissemination ability of these isolates.
Collapse
Affiliation(s)
- Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| | - Ramkumar Mathur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York City, NY 10032, USA
| | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Rosselló 149-153 Barcelona, 08036, Spain
| |
Collapse
|
24
|
Finn S, Rogers L, Händler K, McClure P, Amézquita A, Hinton JCD, Fanning S. Exposure of Salmonella enterica Serovar Typhimurium to Three Humectants Used in the Food Industry Induces Different Osmoadaptation Systems. Appl Environ Microbiol 2015; 81:6800-11. [PMID: 26209672 PMCID: PMC4561688 DOI: 10.1128/aem.01379-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 11/22/2022] Open
Abstract
Common salt (NaCl) is frequently used by the food industry to add flavor and to act as a humectant in order to reduce the water content of a food product. The improved health awareness of consumers is leading to a demand for food products with reduced salt content; thus, manufacturers require alternative water activity-reducing agents which elicit the same general effects as NaCl. Two examples include KCl and glycerol. These agents lower the water activity of a food matrix and also contribute to limit the growth of the microbiota, including foodborne pathogens. Little is currently known about how foodborne pathogens respond to these water activity-lowering agents. Here we examined the response of Salmonella enterica serovar Typhimurium 4/74 to NaCl, KCl, and glycerol at three time points, using a constant water activity level, compared with the response of a control inoculum. All conditions induced the upregulation of gluconate metabolic genes after 6 h of exposure. Bacteria exposed to NaCl and KCl demonstrated the upregulation of the osmoprotective transporter mechanisms encoded by the proP, proU, and osmU (STM1491 to STM1494) genes. Glycerol exposure elicited the downregulation of these osmoadaptive mechanisms but stimulated an increase in lipopolysaccharide and membrane protein-associated genes after 1 h. The most extensive changes in gene expression occurred following exposure to KCl. Because many of these genes were of unknown function, further characterization may identify KCl-specific adaptive processes that are not stimulated by NaCl. This study shows that the response of S. Typhimurium to different humectants does not simply reflect reduced water activity and likely involves systems that are linked to specific humectants.
Collapse
Affiliation(s)
- Sarah Finn
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland
| | - Lisa Rogers
- Conway Institute, UCD School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Kristian Händler
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Peter McClure
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Alejandro Amézquita
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, United Kingdom
| | - Jay C D Hinton
- Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy & Population Science, University College Dublin, Belfield, Dublin, Ireland Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
25
|
De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, Spence S, Monaghan A, Kissenpfennig A, Ingram RJ, Bengoechea J, Gally DL, Fanning S, Elborn JS, Schneiders T. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog 2015; 11:e1004627. [PMID: 25633080 PMCID: PMC4310594 DOI: 10.1371/journal.ppat.1004627] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins. Bacteria can rapidly evolve under antibiotic pressure to develop resistance, which occurs when target genes mutate, or when resistance-encoding genes are transferred. Alternatively, microbes can simply alter the levels of intrinsic proteins that allow the organism to “buy” time to resist antibiotic pressure. Klebsiella pneumoniae is a pathogen that causes significant blood stream or respiratory infections, but more importantly is a bacterium that is increasingly being reported as multidrug resistant. Our data demonstrate that RamA can trigger changes on the bacterial surface that allow Klebsiella to survive both antibiotic challenge, degradation by host immune peptides and resist phagocytosis. We demonstrate that the molecular basis of increased survival of ramA overexpressing K. pneumoniae, against host-derived factors is associated with RamA-driven alterations of the lipid A moiety of Klebsiella LPS. This modification is likely to be linked to Klebsiella’s ability to resist the host response so that it remains undetected by the immune system. The relevance of our work extends beyond RamA in Klebsiella as other pathogens such as Enterobacter spp and Salmonella spp. also produce this protein. Thus our overarching conclusion is that the intrinsic regulator, RamA perturbs host-microbe and microbe-drug interactions.
Collapse
Affiliation(s)
- Shyamasree De Majumdar
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
| | - Jing Yu
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - Sarah Finn
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | - Shaun Spence
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Avril Monaghan
- Centre for Infection and Immunity, Belfast, United Kingdom
| | | | | | - José Bengoechea
- Centre for Infection and Immunity, Belfast, United Kingdom
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Séamus Fanning
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | | | - Thamarai Schneiders
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Guo W, Cui S, Xu X, Wang H. Resistant mechanism study of benzalkonium chloride selected Salmonella Typhimurium mutants. Microb Drug Resist 2013; 20:11-6. [PMID: 23987991 DOI: 10.1089/mdr.2012.0225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Benzalkonium chloride is one of the invaluable biocides that is extensively used in healthcare settings as well as in the food processing industry. After exposing wild-type Salmonella Typhimurium 14028s or its AcrAB inactivation mutant to gradually increasing levels of benzalkonium chloride, resistance mutants S-41, S-150, S-AB-23, S-AB-38, and S-AB-73 were selected and these mutants also showed a 2-64-fold stable minimum inhibitory concentration (MIC) increase to chloramphenicol, ciprofloxacin, nalidixic acid, and tetracycline. In S-41 and S-150, the expression of acrB was increased 2.7- and 7.6-fold, and ΔtolC or ΔacrAB mutants of S-41 and S-150 showed the same MICs to all tested antimicrobials as the equivalent Salmonella Typhimurium 14028s mutants. However, in S-AB-23, S-AB-38, and S-AB-73, the expression of acrF was increased 96-, 230-, and 267-fold, respectively, and ΔtolC or ΔacrEF mutants of S-AB-23, S-AB-38, and S-AB-73 showed the similar MICs to all tested antimicrobials as the ΔtolC mutant of Salmonella Typhimurium 14028s. Our data showed that constitutively over-expressed AcrAB working through TolC was the main resistance mechanism in ST14028s benzalkonium chloride resistance mutants. However, after AcrAB had been inactivated, benzalkonium chloride-resistant mutants could still be selected and constitutively over-expressed, AcrEF became the dominant efflux pump working through TolC and being responsible for the increasing antimicrobial resistance. These data indicated that different mechanisms existed for acrB and acrF constitutive over-expression. Since exposure to benzalkonium chloride may lead to Salmonella mutants with a decreased susceptibility to quinolones, which is currently one of the drugs of choice for the treatment of life-threatening salmonelosis, research into the pathogenesis and epidemiology of the benzalkonium chloride resistance mutants will be of increasing importance.
Collapse
Affiliation(s)
- Wei Guo
- 1 Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | | | | | | |
Collapse
|
27
|
Elucidating the regulon of multidrug resistance regulator RarA in Klebsiella pneumoniae. Antimicrob Agents Chemother 2013; 57:1603-9. [PMID: 23318802 DOI: 10.1128/aac.01998-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RarA is an AraC-type regulator in Klebsiella pneumoniae, which, when overexpressed, confers a low-level multidrug-resistant (MDR) phenotype linked to the upregulation of both the acrAB and oqxAB efflux genes. Increased rarA expression has also been shown to be integral in the development of tigecycline resistance in the absence of ramA in K. pneumoniae. Given its phenotypic role in MDR, microarray analyses were performed to determine the RarA regulon. Transcriptome analysis was undertaken using strains Ecl8ΔrarA/pACrarA-2 (rarA-expressing construct) and Ecl8ΔrarA/pACYC184 (vector-only control) using bespoke microarray slides consisting of probes derived from the genomic sequences of K. pneumoniae MGH 78578 (NC_009648.1) and Kp342 (NC_011283.1). Our results show that rarA overexpression resulted in the differential expression of 66 genes (42 upregulated and 24 downregulated). Under the COG (clusters of orthologous groups) functional classification, the majority of affected genes belonged to the category of cell envelope biogenesis and posttranslational modification, along with genes encoding the previously uncharacterized transport proteins (e.g., KPN_03141, sdaCB, and leuE) and the porin OmpF. However, genes associated with energy production and conversion and amino acid transport/metabolism (e.g., nuoA, narJ, and proWX) were found to be downregulated. Biolog phenotype analyses demonstrated that rarA overexpression confers enhanced growth of the overexpresser in the presence of several antibiotic classes (i.e., beta-lactams and fluoroquinolones), the antifungal/antiprotozoal compound clioquinol, disinfectants (8-hydroxyquinoline), protein synthesis inhibitors (i.e., minocycline and puromycin), membrane biogenesis agents (polymyxin B and amitriptyline), DNA synthesis (furaltadone), and the cytokinesis inhibitor (sanguinarine). Both our transcriptome and phenotypic microarray data support and extend the role of RarA in the MDR phenotype of K. pneumoniae.
Collapse
|
28
|
Giraud E, Baucheron S, Virlogeux-Payant I, Nishino K, Cloeckaert A. Effects of Natural Mutations in the ramRA Locus on Invasiveness of Epidemic Fluoroquinolone-Resistant Salmonella enterica Serovar Typhimurium Isolates. J Infect Dis 2012; 207:794-802. [DOI: 10.1093/infdis/jis755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|