1
|
Calamari ZT, Flynn JJ. Gene expression supports a single origin of horns and antlers in hoofed mammals. Commun Biol 2024; 7:509. [PMID: 38769090 PMCID: PMC11106249 DOI: 10.1038/s42003-024-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/02/2024] [Indexed: 05/22/2024] Open
Abstract
Horns, antlers, and other bony cranial appendages of even-toed hoofed mammals (ruminant artiodactyls) challenge traditional morphological homology assessments. Cranial appendages all share a permanent bone portion with family-specific integument coverings, but homology determination depends on whether the integument covering is an essential component or a secondary elaboration of each structure. To enhance morphological homology assessments, we tested whether juvenile cattle horn bud transcriptomes share homologous gene expression patterns with deer antlers relative to pig outgroup tissues, treating the integument covering as a secondary elaboration. We uncovered differentially expressed genes that support horn and antler homology, potentially distinguish them from non-cranial-appendage bone and other tissues, and highlight the importance of phylogenetic outgroups in homology assessments. Furthermore, we found differentially expressed genes that could support a shared cranial neural crest origin for horns and antlers and expression patterns that refine our understanding of the timing of horn and antler differentiation.
Collapse
Affiliation(s)
- Zachary T Calamari
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
- Department of Natural Sciences, Baruch College, City University of New York, 17 Lexington Avenue, Box A-920, New York, NY, 10010, USA.
| | - John J Flynn
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
2
|
Uncovering Novel Features of the Pc Locus in Horn Development from Gene-Edited Holstein Cattle by RNA-Sequencing Analysis. Int J Mol Sci 2022; 23:ijms232012060. [PMID: 36292916 PMCID: PMC9603690 DOI: 10.3390/ijms232012060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
The Polled Celtic (Pc) mutation locus is a genetically simple single mutation that is the best choice for breeding polled cattle using gene editing. However, the mechanism of the Pc locus for regulating horn development is unclear, so we used gene editing, somatic cell nuclear transfer and embryo transfer to obtain polled Holstein fetal bovine (gestation time 90 days) with a homozygous Pc insertion (gene-edited Holstein fetal bovine, EH) and the wild-type 90 days Holstein fetal bovine (WH) as controls. The hematoxylin-eosin (HE) staining results showed that, compared to the WH, the EH horn buds had no white keratinized projections or vacuolated keratinocytes and no thick nerve bundles under the dermal tissue. Furthermore, DNA sequencing results showed that the Pc locus was homozygously inserted into the fetal bovine genome. A total of 791 differentially expressed genes were identified by transcriptome sequencing analysis. Enrichment analysis and protein interaction analysis results of differentially expressed genes showed that abundant gene changes after Pc insertion were associated with the adhesion molecule regulation, actin expression, cytoskeletal deformation and keratin expression and keratinization. It was also noted that the results contained several genes that had been reported to be associated with the development of horn traits, such as RXFP2 and TWIST1. This study identified these changes for the first time and summarized them. The results suggested that the Pc mutant locus may inhibit neural crest cell EMT generation and keratin expression, leading to failures in neural crest cell migration and keratinization of the horn bud tissue, regulating the production of the polled phenotype.
Collapse
|
3
|
Hennig SL, McNabb BR, Trott JF, Van Eenennaam AL, Murray JD. LincRNA#1 knockout alone does not affect polled phenotype in cattle heterozygous for the celtic POLLED allele. Sci Rep 2022; 12:7627. [PMID: 35538091 PMCID: PMC9090918 DOI: 10.1038/s41598-022-11669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
A long intergenic non-coding RNA (lincRNA#1) is overexpressed in the horn bud region of polled (hornless) bovine fetuses, suggesting a potential role in horn bud suppression. Genome editing was used to test whether the absence of this sequence was associated with the horned phenotype. Two gRNAs with high mutation efficiencies targeting the 5' and the 3' regions flanking the lincRNA#1 sequence were co-injected with Cas9 as ribonucleoprotein complexes into bovine zygotes (n = 121) 6 h post insemination. Of the resulting blastocysts (n = 31), 84% had the expected 3.7 kb deletion; of these embryos with the 3.7 kb deletions, 88% were biallelic knockouts. Thirty-nine presumptive edited 7-day blastocysts were transferred to 13 synchronized recipient cows resulting in ten pregnancies, five with embryos heterozygous for the dominant PC POLLED allele at the POLLED locus, and five with the recessive pp genotype. Eight (80%) of the resulting fetuses were biallelic lincRNA#1 knockouts, with the remaining two being mosaic. RT-qPCR analysis was used to confirm the absence of lincRNA#1 expression in knockout fetuses. Phenotypic and histological analysis of the genotypically (PCp) POLLED, lincRNA#1 knockout fetuses revealed similar morphology to non-edited, control polled fetuses, indicating the absence of lincRNA#1 alone does not result in a horned phenotype.
Collapse
Affiliation(s)
- Sadie L Hennig
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | | | - James D Murray
- Department of Animal Science, University of California-Davis, Davis, CA, USA. .,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Simon R, Drögemüller C, Lühken G. The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes (Basel) 2022; 13:genes13050832. [PMID: 35627216 PMCID: PMC9140736 DOI: 10.3390/genes13050832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Horns are the most obvious common feature of Bovidae. The naturally occurring absence of horns in these species, also known as polledness, is of surprisingly heterogeneous nature, although they are Mendelian traits. This review compares in detail the molecular differences among the causes of inherited polledness in the domestic ruminant species of cattle, yak, sheep, and goat based on the causal gene variants that have been discovered in recent years. The genetic causes for the lack of horns in small ruminants seem not only to be more complex, e.g., in sheep, breed-specific characteristics are still unexplained, but in goats, there is also the associated disorder of intersexuality—polled intersex syndrome (PIS). In connection with animal welfare and the associated discussion about a legal ban on the dehorning of all farm animals, naturally hornless animals and the causal genetic variants are of increasing research interest in the age of genome editing. However, the low acceptance of genetic engineering in livestock, especially in European societies, limits its use in food-producing animals. Therefore, genotype-based targeted selection of naturally occurring variants is still a widely used method for spreading this desired trait within and across populations, at least in cattle and sheep.
Collapse
Affiliation(s)
- Rebecca Simon
- Institute for Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany; (R.S.); (G.L.)
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Correspondence:
| | - Gesine Lühken
- Institute for Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany; (R.S.); (G.L.)
| |
Collapse
|
5
|
Grohs C, Boussaha M, Hozé C, Capitan A. Rare cases of hernia of the linea alba among TWIST1 haploinsufficient Charolais cattle. Anim Genet 2022; 53:239-241. [PMID: 35187669 DOI: 10.1111/age.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile Grohs
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mekki Boussaha
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris Hozé
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France.,ALLICE, Paris, France
| | - Aurélien Capitan
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France.,ALLICE, Paris, France
| |
Collapse
|
6
|
Allouch GM, Alshanbari FA. Morphological study on the skull sutures and their relationships to skull morphology in young camels ( Camelus dromedarius). Open Vet J 2022; 12:718-727. [PMID: 36589401 PMCID: PMC9789767 DOI: 10.5455/ovj.2022.v12.i5.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Objective The sutures are associated with anatomical and physiological differences in skull camels. There is a deficiency in the information regarding the anatomy of dromedary camels, especially on fibrous joints (sutures) of the camels' skull. Aim The goal of this work was to give a detailed gross anatomical and radiographic description of the sutures in the camels' skull. This description may be of great importance for veterinarians to differentiate between the suture and the fracture of the head in the radiographic photos. Methods The current study was conducted on 10 skulls of the young (Howar) dromedary camel at 4-10 months old. The skulls were prepared by using the boiling and maceration techniques. The gross and radiographic photos of the sutures were taken using a digital camera and Siemens mobile full-wave X-ray machine (Siemens Medical Solutions, Erlangen, Germany). Results The skull is made up of nineteen bones -6 single and 13 paired-the majority of which are joined by joints termed as sutures. The sutures of the camel skulls were viewed in dorsal, ventral, lateral-vertical, and inside directions. They were of four types which are the coronal, serrate, plane, and squamosal sutures in different positions of the skull. Conclusion The current study showed that the fibrous joints of camel skulls (sutures) were similar to those of other domestic animals. This information is critical for supporting veterinarians to differentiate sutures from fractures that may have happened in the skull of the dromedary camel using radiological pictures.
Collapse
Affiliation(s)
- Gamal Mounir Allouch
- Corresponding Author: Gamal Mounir Allouch. College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia.
| | | |
Collapse
|
7
|
Allais-Bonnet A, Hintermann A, Deloche MC, Cornette R, Bardou P, Naval-Sanchez M, Pinton A, Haruda A, Grohs C, Zakany J, Bigi D, Medugorac I, Putelat O, Greyvenstein O, Hadfield T, Jemaa SB, Bunevski G, Menzi F, Hirter N, Paris JM, Hedges J, Palhiere I, Rupp R, Lenstra JA, Gidney L, Lesur J, Schafberg R, Stache M, Wandhammer MD, Arbogast RM, Guintard C, Blin A, Boukadiri A, Rivière J, Esquerré D, Donnadieu C, Danchin-Burge C, Reich CM, Riley DG, Marle-Koster EV, Cockett N, Hayes BJ, Drögemüller C, Kijas J, Pailhoux E, Tosser-Klopp G, Duboule D, Capitan A. Analysis of Polycerate Mutants Reveals the Evolutionary Co-option of HOXD1 for Horn Patterning in Bovidae. Mol Biol Evol 2021; 38:2260-2272. [PMID: 33528505 PMCID: PMC8136503 DOI: 10.1093/molbev/msab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as “headgear,” which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- ALLICE, Paris, France.,Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Aurélie Hintermann
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marie-Christine Deloche
- ALLICE, Paris, France.,Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.,INRAE, Sigenae, Castanet-Tolosan, France
| | | | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Ashleigh Haruda
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Daniele Bigi
- Dipartimento di Scienza e Tecnologie Agro-Alimentari, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivier Putelat
- Archéologie Alsace, Sélestat, France.,UMR 7044, ARCHIMEDE, MISHA, Strasbourg, France
| | - Ockert Greyvenstein
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Tracy Hadfield
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Gjoko Bunevski
- Livestock Department, Faculty of Agricultural Sciences and Food Institute of Animal Biotechnology, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | - Fiona Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Hirter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia M Paris
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - John Hedges
- Manx Loaghtan Sheep Breeders' Group, Bassingbourn, Cambridgeshire, United Kingdom
| | - Isabelle Palhiere
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Rachel Rupp
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louisa Gidney
- Rent a Peasant, Tow Law, Bishop Auckland, Durham County, United Kingdom
| | - Joséphine Lesur
- Unité Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Renate Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Stache
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Claude Guintard
- Unité d'Anatomie Comparée, Ecole Nationale Vétérinaire de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique-ONIRIS, Nantes, France.,Groupe d'Études Remodelage Osseux et bioMatériaux (GEROM), Université d'Angers, Unité INSERM 922, LHEA/IRIS-IBS, CHU d'Angers, Angers, France
| | - Amandine Blin
- Muséum National d'Histoire Naturelle, CNRS, UMS 2700 2AD, Paris, France
| | - Abdelhak Boukadiri
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Diane Esquerré
- INRAE, US, 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | | | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - David G Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Noelle Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Benjamin J Hayes
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, University of Queensland, St. Lucia, QLD, Australia
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - James Kijas
- CSIRO Agriculture & Food, St. Lucia, QLD, Australia
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Swiss Cancer Research Institute, EPFL, Lausanne, Switzerland.,Collège de France, Paris, France
| | - Aurélien Capitan
- ALLICE, Paris, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
8
|
|
9
|
A de novo frameshift mutation in ZEB2 causes polledness, abnormal skull shape, small body stature and subfertility in Fleckvieh cattle. Sci Rep 2020; 10:17032. [PMID: 33046754 PMCID: PMC7550345 DOI: 10.1038/s41598-020-73807-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023] Open
Abstract
Polledness in cattle is an autosomal dominant trait. Previous studies have revealed allelic heterogeneity at the polled locus and four different variants were identified, all in intergenic regions. In this study, we report a case of polled bull (FV-Polled1) born to horned parents, indicating a de novo origin of this polled condition. Using 50K genotyping and whole genome sequencing data, we identified on chromosome 2 an 11-bp deletion (AC_000159.1:g.52364063_52364073del; Del11) in the second exon of ZEB2 gene as the causal mutation for this de novo polled condition. We predicted that the deletion would shorten the protein product of ZEB2 by almost 91%. Moreover, we showed that all animals carrying Del11 mutation displayed symptoms similar to Mowat-Wilson syndrome (MWS) in humans, which is also associated with genetic variations in ZEB2. The symptoms in cattle include delayed maturity, small body stature and abnormal shape of skull. This is the first report of a de novo dominant mutation affecting only ZEB2 and associated with a genetic absence of horns. Therefore our results demonstrate undoubtedly that ZEB2 plays an important role in the process of horn ontogenesis as well as in the regulation of overall development and growth of animals.
Collapse
|
10
|
Ketel C, Asai-Coakwell M. Heterozygosity of the Celtic polled locus in Canadian scurred beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polled cattle are preferable to horned or scurred animals because they are safer for handling and cause less bruising. Although DNA testing can determine horned/polled genotype, scurs may appear in polled animals. The inheritance of scurs is complex because it is a sex-influenced trait that interacts with the polled locus. We demonstrate that in 685 purebred and crossbred Canadian beef cattle, all 153 scurred animals were heterozygous polled at the Celtic variant. In addition, male obligate carriers of scurs were smooth polled when homozygous for the polled mutation. Scurred and non-scurred males were sequenced for five genes (CTDNEP1, SHBG, SOX15, FGF11, and DHRS7C) within the scur candidate region on BTA19 that are functionally related to bone development and hormone regulation. Multipoint linkage analysis was conducted using 18 microsatellite markers and two informative variants (DHRS7C g.29594018G>C and CTDNEP1 c.462G>A) in the scurred families and further supported mapping on BTA19 between BMS2142 (logarithm of the odds (LOD) = 5.42) and IDVGA46 (LOD = 3.47). These data indicate epistatic interactions between the scurred and polled loci and emphasise the necessity for a scurred DNA test to assist purebred beef producers in eradicating the scur trait.
Collapse
Affiliation(s)
- Crystal Ketel
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Mika Asai-Coakwell
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
11
|
Nasoori A. Formation, structure, and function of extra-skeletal bones in mammals. Biol Rev Camb Philos Soc 2020; 95:986-1019. [PMID: 32338826 DOI: 10.1111/brv.12597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
This review describes the formation, structure, and function of bony compartments in antlers, horns, ossicones, osteoderm and the os penis/os clitoris (collectively referred to herein as AHOOO structures) in extant mammals. AHOOOs are extra-skeletal bones that originate from subcutaneous (dermal) tissues in a wide variety of mammals, and this review elaborates on the co-development of the bone and skin in these structures. During foetal stages, primordial cells for the bony compartments arise in subcutaneous tissues. The epithelial-mesenchymal transition is assumed to play a key role in the differentiation of bone, cartilage, skin and other tissues in AHOOO structures. AHOOO ossification takes place after skeletal bone formation, and may depend on sexual maturity. Skin keratinization occurs in tandem with ossification and may be under the control of androgens. Both endochondral and intramembranous ossification participate in bony compartment formation. There is variation in gradients of density in different AHOOO structures. These gradients, which vary according to function and species, primarily reduce mechanical stress. Anchorage of AHOOOs to their surrounding tissues fortifies these structures and is accomplished by bone-bone fusion and Sharpey fibres. The presence of the integument is essential for the protection and function of the bony compartments. Three major functions can be attributed to AHOOOs: mechanical, visual, and thermoregulatory. This review provides the first extensive comparative description of the skeletal and integumentary systems of AHOOOs in a variety of mammals.
Collapse
Affiliation(s)
- Alireza Nasoori
- School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
12
|
Wang Y, Zhang C, Wang N, Li Z, Heller R, Liu R, Zhao Y, Han J, Pan X, Zheng Z, Dai X, Chen C, Dou M, Peng S, Chen X, Liu J, Li M, Wang K, Liu C, Lin Z, Chen L, Hao F, Zhu W, Song C, Zhao C, Zheng C, Wang J, Hu S, Li C, Yang H, Jiang L, Li G, Liu M, Sonstegard TS, Zhang G, Jiang Y, Wang W, Qiu Q. Genetic basis of ruminant headgear and rapid antler regeneration. Science 2020; 364:364/6446/eaav6335. [PMID: 31221830 DOI: 10.1126/science.aav6335] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chenzhou Zhang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Nini Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Yue Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiangang Han
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xueqin Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shujun Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianqing Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chang Liu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeshan Lin
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fei Hao
- Center of Special Environmental Biomechanics and Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenbo Zhu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengchuang Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Sichuan 610000, China
| | - Jianming Wang
- Sichuan Institute of Musk Deer Breeding, Sichuan 610000, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Yang
- Center of Special Environmental Biomechanics and Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Jiang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guangyu Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Mingjun Liu
- The Key Laboratory of Animal Biotechnology of Xinjiang, Xinjiang Academy of Animal Science, Xinjiang, Urumqi 830026, China
| | | | - Guojie Zhang
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
13
|
Gehrke LJ, Capitan A, Scheper C, König S, Upadhyay M, Heidrich K, Russ I, Seichter D, Tetens J, Medugorac I, Thaller G. Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genet Sel Evol 2020; 52:6. [PMID: 32033534 PMCID: PMC7006098 DOI: 10.1186/s12711-020-0525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breeding genetically hornless, i.e. polled, cattle provides an animal welfare-friendly and non-invasive alternative to the dehorning of calves. However, the molecular regulation of the development of horns in cattle is still poorly understood. Studying genetic characters such as polledness and scurs, can provide valuable insights into this process. Scurs are hornlike formations that occur occasionally in a wide variety of sizes and forms as an unexpected phenotype when breeding polled cattle. Methods We present a unique dataset of 885 Holstein–Friesian cattle with polled parentage. The horn phenotype was carefully examined, and the phenotypic heterogeneity of the trait is described. Using a direct gene test for polledness, the polled genotype of the animals was determined. Subsequently, the existence of a putative scurs locus was investigated using high-density genotype data of a selected subset of 232 animals and two mapping approaches: mixed linear model-based association analyses and combined linkage disequilibrium and linkage analysis. Results The results of an exploratory data analysis indicated that the expression of scurs depends on age at phenotyping, sex and polled genotype. Scurs were more prevalent in males than in females. Moreover, homozygous polled animals did not express any pronounced scurs and we found that the Friesian polled allele suppresses the development of scurs more efficiently than the Celtic polled allele. Combined linkage and linkage disequilibrium mapping revealed four genome-wide significant loci that affect the development of scurs, one on BTA5 and three on BTA12. Moreover, suggestive associations were detected on BTA16, 18 and 23. The mixed linear model-based association analysis supports the results of the combined linkage and linkage disequilibrium analysis. None of the mapping approaches provided convincing evidence for a monogenic inheritance of scurs. Conclusions Our results contradict the initial and still broadly accepted model for the inheritance of horns and scurs. We hypothesise an oligogenetic model to explain the development of scurs and polledness.
Collapse
Affiliation(s)
- Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany. .,Vereinigte Informationssysteme Tierhaltung w.V. (Vit) Verden, 27283, Verden, Germany.
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Kristin Heidrich
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany.,Tierzuchtforschung e.V. München, Grub, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, Georg-August University, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, 37077, Göttingen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
14
|
Optimized Genetic Testing for Polledness in Multiple Breeds of Cattle. G3-GENES GENOMES GENETICS 2020; 10:539-544. [PMID: 31767638 PMCID: PMC7003080 DOI: 10.1534/g3.119.400866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many breeds of modern cattle are naturally horned, and for sound husbandry management reasons the calves frequently undergo procedures to physically remove the horns by disbudding or dehorning. These procedures are however a welfare concern. Selective breeding for polledness - absence of horns - has been effective in some cattle breeds but not in others (Bos indicus genotypes) due in part to the complex genetics of horn phenotype. To address this problem different approaches to genetic testing which provide accurate early-in-life prediction of horn phenotype have been evaluated, initially using microsatellites (MSAT) and more recently single nucleotide polymorphism (SNP). A direct gene test is not effective given the genetic heterogeneity and large-sized sequence variants associated with polledness in different breeds. The current study investigated 39,943 animals of multiple breeds to assess the accuracy of available poll testing assays. While the standard SNP-based test was an improvement on the earlier MSAT haplotyping method, 1999 (9.69%) out of 20,636 animals tested with this SNP-based assay did not predict a genotype, most commonly associated with the Indicus-influenced breeds. The current study has developed an optimized poll gene test that resolved the vast majority of these 1999 unresolved animals, while the predicted genotypes of those previously resolved remained unchanged. Hence the optimized poll test successfully predicted a genotype in 99.96% of samples assessed. We demonstrated that a robust set of 5 SNPs can effectively determine PC and PF alleles and eliminate the ambiguous and undetermined results of poll gene testing previously identified as an issue in cattle.
Collapse
|
15
|
Aldersey JE, Sonstegard TS, Williams JL, Bottema CDK. Understanding the effects of the bovine POLLED variants. Anim Genet 2020; 51:166-176. [PMID: 31999853 DOI: 10.1111/age.12915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/31/2022]
Abstract
Horns are paired appendages on the head of bovine species, comprising an inner bony core and outer keratin sheath. The horn bud forms during early fetal development but ossification of the developing horn does not occur until approximately 1 month after birth. Little is known about the genetic pathways that lead to horn growth. Hornless, or polled, animals are found in all domestic bovids. Histological studies of bovine fetuses have shown that the horn bud does not form in polled individuals. There are currently four known genetic variants for polledness in cattle on BTA1. All of the variants are intergenic, but probably affect regulation of nearby genes or long non-coding RNAs. Transcriptomic studies suggest that the expression of two nearby long non-coding RNAs are affected by the Celtic POLLED variant, but further studies are required to confirm these data. Candidate genes located elsewhere in the genome are involved in regulating bone formation and epithelial-to-mesenchymal transition. Expression of one of these candidate genes, RXFP2, appears to be reduced in the fetal horn bud of polled animals carrying the Celtic variant compared with horned individuals. Investigating horn ontogenesis and the genetic pathway by which the POLLED variants prevent horn development has implications for cattle breeding. If the genetic basis of horn bud formation and polledness is better understood, then new targets may be identified for precision genome editing to create polled individuals.
Collapse
Affiliation(s)
- J E Aldersey
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA, 5371, Australia
| | | | - J L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA, 5371, Australia
| | - C D K Bottema
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA, 5371, Australia
| |
Collapse
|
16
|
Hempstead MN, Waas JR, Stewart M, Cave VM, Turner AR, Sutherland MA. The effectiveness of clove oil and two different cautery disbudding methods on preventing horn growth in dairy goat kids. PLoS One 2018; 13:e0198229. [PMID: 30427945 PMCID: PMC6235237 DOI: 10.1371/journal.pone.0198229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
The effectiveness of clove oil and cautery disbudding on horn growth was evaluated in goat kids. The study used 243 Saanen doe kids (4±1 days old; mean±SD) on two goat farms that were disbudded with either (i) clove oil injection (CLOVE), (ii) a cautery iron and bud removed (BUDOFF), or (iii) a cautery iron with bud left intact (BUDON). Each kid received a different treatment per bud, which were balanced between buds (left/right) and randomly allocated. A trained observer monitored bud growth following treatment for 3 months recording either: N: no growth, H: normal horn, S: abnormal horn (scur), or SC: soft, fibrous lump (scorn). After the final observation, buds were assessed for the probability of detecting (i) success (no growth), (ii) scurs, (iii) horns or (iv) scorns [with 95% CI]. The probability of success for BUDOFF (0.77 [0.63, 0.87]) was higher than for BUDON (0.20 [0.11, 0.34]) and CLOVE (0.09 [0.04, 0.18]; P ≤ 0.05). Furthermore, the probability of success for BUDON was higher than for CLOVE (P ≤ 0.05). The probability of scurs was higher for CLOVE (0.72 [0.63, 0.80]) than BUDOFF (0.25 [0.17, 0.34]) and BUDON (0.30 [0.21, 0.39]; P ≤ 0.05). There was no difference in the probability of scurs for BUDOFF and BUDON (P > 0.05). The probability of horns was higher for CLOVE (0.21 [0.15, 0.29]) than BUDON (0.02 [0.01, 0.06]; P ≤ 0.05); horns were not observed for BUDOFF. The probability of scorns for BUDON, the only treatment that led to scorns, was 0.41 (0.25, 0.60). These results suggest that BUDOFF was more effective at preventing growth than CLOVE and BUDON and appears the most effective method, of the methods tested, for disbudding kids. Future research should explore other alternatives to cautery disbudding that may be both efficacious and cause less pain.
Collapse
Affiliation(s)
- Melissa N. Hempstead
- Animal Behaviour and Welfare, AgResearch Ltd., Hamilton, New Zealand
- School of Science, The University of Waikato, Hamilton, New Zealand
| | - Joseph R. Waas
- School of Science, The University of Waikato, Hamilton, New Zealand
| | | | - Vanessa M. Cave
- Animal Behaviour and Welfare, AgResearch Ltd., Hamilton, New Zealand
| | - Amanda R. Turner
- Animal Behaviour and Welfare, AgResearch Ltd., Hamilton, New Zealand
| | | |
Collapse
|
17
|
Stafuzza NB, Silva RMDO, Peripolli E, Bezerra LAF, Lôbo RB, Magnabosco CDU, Di Croce FA, Osterstock JB, Munari DP, Lourenco DAL, Baldi F. Genome-wide association study provides insights into genes related with horn development in Nelore beef cattle. PLoS One 2018; 13:e0202978. [PMID: 30161212 PMCID: PMC6116989 DOI: 10.1371/journal.pone.0202978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022] Open
Abstract
The causal mutation for polledness in Nelore (Bos taurus indicus) breed seems to have appeared first in Brazil in 1957. The expression of the polled trait is known to be ruled by a few groups of alleles in taurine breeds; however, the genetic basis of this trait in indicine cattle is still unclear. The aim of this study was to identify genomic regions associated with the hornless trait in a commercial Nelore population. A total of 107,294 animals had phenotypes recorded and 2,238 were genotyped/imputed for 777k SNP. The weighted single-step approach for genome-wide association study (WssGWAS) was used to estimate the SNP effects and variances accounted for by 1 Mb sliding SNP windows. A centromeric region of chromosome 1 with 3.11 Mb size (BTA1: 878,631–3,987,104 bp) was found to be associated with hornless in the studied population. A total of 28 protein-coding genes are mapped in this region, including the taurine Polled locus and the IFNAR1, IFNAR2, IFNGR2, KRTAP11-1, MIS18A, OLIG1, OLIG2, and SOD1 genes, which expression can be related to the horn formation as described in literature. The functional enrichment analysis by DAVID tool revealed cytokine-cytokine receptor interaction, JAK-STAT signaling, natural killer cell mediated cytotoxicity, and osteoclast differentiation pathways as significant (P < 0.05). In addition, a runs of homozygosity (ROH) analysis identified a ROH island in polled animals with 2.47 Mb inside the region identified by WssGWAS. Polledness in Nelore cattle is associated with one region in the genome with 3.1 Mb size in chromosome 1. Several genes are harbored in this region, and they may act together in the determination of the polled/horned phenotype. Fine mapping the locus responsible for polled trait in Nelore breed and the identification of the molecular mechanisms regulating the horn growth deserve further investigation.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Departamento de Ciencias Exatas, Faculdade de Ciencias Agrarias e Veterinarias (FCAV), Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Jaboticabal, Sao Paulo, Brazil
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Rafael Medeiros de Oliveira Silva
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
- National Center for Cool and Cold Water Aquaculture (NCCCWA), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Leetown, West Virginia, United States of America
| | - Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciencias Agrarias e Veterinarias (FCAV), Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Luiz Antônio Framartino Bezerra
- Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto (FMRP), Universidade de Sao Paulo (USP), Ribeirao Preto, Sao Paulo, Brazil
| | - Raysildo Barbosa Lôbo
- Associaçao Nacional dos Criadores e Pesquisadores (ANCP), Ribeirao Preto, Sao Paulo, Brazil
| | | | | | | | - Danísio Prado Munari
- Departamento de Ciencias Exatas, Faculdade de Ciencias Agrarias e Veterinarias (FCAV), Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Daniela A. Lino Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciencias Agrarias e Veterinarias (FCAV), Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Jaboticabal, Sao Paulo, Brazil
| |
Collapse
|
18
|
Li M, Wu X, Guo X, Bao P, Ding X, Chu M, Liang C, Yan P. Comparative iTRAQ proteomics revealed proteins associated with horn development in yak. Proteome Sci 2018; 16:14. [PMID: 30061793 PMCID: PMC6056918 DOI: 10.1186/s12953-018-0141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023] Open
Abstract
Background The practice of dehorning yak raises animal safety concerns, which have been addressed by selective breeding to obtain genetically hornless yak. The POLLED locus in yak has been studied extensively; however, little is known regarding the proteins that regulate horn bud development. Methods A differential proteomic analysis was performed to compare the skin from the horn bud region of polled yak fetuses and the horn bud tissue of horned yak fetuses using isobaric tags for relative and absolute quantitation (iTRAQ) technology coupled with 2D LC-MS/MS. Results One hundred differentially abundant proteins (DAPs) were identified. Of these, 29 were up-regulated and 71 were down-regulated in skin from the horn bud region of polled fetuses when compared to the horn bud tissue of horned fetuses. Bioinformatics analyses showed that the up-regulated DAPs were mainly associated with metabolic activities, while the down-regulated DAPs were significantly enriched in cell adhesion and cell movement activities. Conclusions We concluded that some important proteins were associated with cell adhesion, cell motility, keratinocyte differentiation, cytoskeleton organization, osteoblast differentiation, and fatty acid metabolism during horn bud development. These results advance our understanding of the molecular mechanisms underlying horn development.
Collapse
Affiliation(s)
- Mingna Li
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xiaoyun Wu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xian Guo
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Pengjia Bao
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Xuezhi Ding
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Min Chu
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Chunnian Liang
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| | - Ping Yan
- Key Laboratory for Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050 People's Republic of China
| |
Collapse
|
19
|
Barik M, Bajpai M, Malhotra A, Samantaray JC, Dwivedi S, Das S. Genome-Wide Association Study in Craniosynostosis Condition Using Innovative Systematic Bioinformatic Analysis Tools and Techniques: Future Prospective and Clinical Practice. J Pediatr Neurosci 2018; 13:170-175. [PMID: 30090130 PMCID: PMC6057197 DOI: 10.4103/jpn.jpn_71_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Craniosynostosis (CS) conditions are included with the premature fusion of one or more multiple cranial sutures. As the second leading and most common craniofacial anomaly and orofacial clefts globally. Syndromic and nonsyndromic CS (NSCS) occur as a part of a genetic syndrome unlike Apert, Crouzon, Pfeiffer, Muenke, and Saethre–Chotzen syndromes. Approximately, 90% of the cases of CS arises from NSCS group and it is now a great challenge for the researcher and neurosurgeon for Indian-origin children, a great burden worldwide. Material and Methods: Study design: Prospective study of analysis sequence pattern on CS and NSCS from January 2007 to 2018 was carried out. Inclusion criteria: Diagnosed cases in syndromic and NSCS patients between 3 months and 14 years of age either preoperative or postoperative were included in the study of both groups (syndromic and NSCS). Exclusion criteria: Patients with primary microcephaly (secondary CS), postural plagiocephaly, incomplete data, no visual perception, and who were lost to follow-up, and who had no interest to participate the study were excluded from the study. Bioinformatic analysis: We have performed systematic bioinformatic analysis for all responsible genes by combining with using through the GeneDecks, Gene Runner, DAVID, and STRING databases. Genes testing: FGF family genes, MSX genes, such as Irf6, TP63, Dlx2, Dlx5, Pax3, Pax9, Bmp4, Tgf-beta2, and Tgf-beta3 were found to be involved in Cleft lip and cleft palate (CL/P), and Fgfr2, Fgfr1, Fgfr3, and TWIST, MSX, MSX1, 2 were found to be involved in both the groups of CS (SCS + NSCS). Results: FGFR, MSX, Irf6, TP63, Dlx2, Dlx5, Pax3, Pax9, Bmp4, Tgf-beta2, and Tgf-beta3 demonstrated and find out that in CL/P, and Fgfr2, Fgfr1, Fgfr3, and Twist1 had accurate sequence data with more than accuracy of 95% reported with proper order with additional anomalies CS through newly developed tools. Conclusion: Newly developed techniques of GeneDecks, Gene Runner, DAVID, and STRING databases gave better picture to analyze the larger population, patients (SCS + NSCS) with complex genetic, maternal, parental age, environmental, and stochastic factors contributing to NSCS networking, signaling, and pathways involvement. This bioinformatic tools analyzed better prediction of CS and NSCS sequences guiding us the newer invention modalities of pattern of screening and further development of recent future application.
Collapse
Affiliation(s)
- Mayadhar Barik
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Minu Bajpai
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Arun Malhotra
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotish C Samantaray
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sadananda Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sambhunath Das
- Department of Cardiac Anaesthesia, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
20
|
Liang C, Wang L, Wu X, Wang K, Ding X, Wang M, Chu M, Xie X, Qiu Q, Yan P. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak. PLoS One 2016; 11:e0158642. [PMID: 27389700 PMCID: PMC4936749 DOI: 10.1371/journal.pone.0158642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species.
Collapse
Affiliation(s)
- Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Lizhong Wang
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Kun Wang
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
| | - Xuezhi Ding
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
| | - Mingcheng Wang
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xiuyue Xie
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Qiu
- State Key Laboratory of Grassland Agro-ecosystem, College of Life Science, Lanzhou University, Lanzhou, China
- * E-mail: (QQ); (PY)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, China
- * E-mail: (QQ); (PY)
| |
Collapse
|
21
|
|
22
|
Wiedemar N, Drögemüller C. A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep. Anim Genet 2015; 46:457-61. [PMID: 26103004 PMCID: PMC4744954 DOI: 10.1111/age.12309] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
Sheep breeds show a broad spectrum of different horn phenotypes. In most modern production breeds, sheep are polled (absence of horns), whereas horns occur mainly in indigenous breeds. Previous studies mapped the responsible locus to the region of the RXFP2 gene on ovine chromosome 10. A 4-kb region of the 3'-end of RXFP2 was amplified in horned and polled animals from seven Swiss sheep breeds. Sequence analysis identified a 1833-bp genomic insertion located in the 3'-UTR region of RXFP2 present in polled animals only. An efficient PCR-based genotyping method to determine the polled genotype of individual sheep is presented. Comparative sequence analyses revealed evidence that the polled-associated insertion adds a potential antisense RNA sequence of EEF1A1 to the 3'-end of RXFP2 transcripts.
Collapse
Affiliation(s)
- Natalie Wiedemar
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Novel Features of the Prenatal Horn Bud Development in Cattle (Bos taurus). PLoS One 2015; 10:e0127691. [PMID: 25993643 PMCID: PMC4439086 DOI: 10.1371/journal.pone.0127691] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/17/2015] [Indexed: 01/31/2023] Open
Abstract
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.
Collapse
|
24
|
Tetens J, Wiedemar N, Menoud A, Thaller G, Drögemüller C. Association mapping of thescurslocus in polled Simmental cattle - evidence for genetic heterogeneity. Anim Genet 2015; 46:224-5. [DOI: 10.1111/age.12237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 11/27/2022]
Affiliation(s)
- J. Tetens
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University Kiel; D-24118 Kiel Germany
| | - N. Wiedemar
- Institute of Genetics; Vetsuisse Faculty; University of Bern; CH-3001 Bern Switzerland
| | - A. Menoud
- Institute of Genetics; Vetsuisse Faculty; University of Bern; CH-3001 Bern Switzerland
| | - G. Thaller
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University Kiel; D-24118 Kiel Germany
| | - C. Drögemüller
- Institute of Genetics; Vetsuisse Faculty; University of Bern; CH-3001 Bern Switzerland
| |
Collapse
|
25
|
Rothammer S, Capitan A, Mullaart E, Seichter D, Russ I, Medugorac I. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet Sel Evol 2014; 46:44. [PMID: 24993890 PMCID: PMC4099407 DOI: 10.1186/1297-9686-46-44] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background The absence of horns, called polled phenotype, is the favored trait in modern cattle husbandry. To date, polled cattle are obtained primarily by dehorning calves. Dehorning is a practice that raises animal welfare issues, which can be addressed by selecting for genetically hornless cattle. In the past 20 years, there have been many studies worldwide to identify unique genetic markers in complete association with the polled trait in cattle and recently, two different alleles at the POLLED locus, both resulting in the absence of horns, were reported: (1) the Celtic allele, which is responsible for the polled phenotype in most breeds and for which a single candidate mutation was detected and (2) the Friesian allele, which is responsible for the polled phenotype predominantly in the Holstein-Friesian breed and in a few other breeds, but for which five candidate mutations were identified in a 260-kb haplotype. Further studies based on genome-wide sequencing and high-density SNP (single nucleotide polymorphism) genotyping confirmed the existence of the Celtic and Friesian variants and narrowed down the causal Friesian haplotype to an interval of 145 kb. Results Almost 6000 animals were genetically tested for the polled trait and we detected a recombinant animal which enabled us to reduce the Friesian POLLED haplotype to a single causal mutation, namely a 80-kb duplication. Moreover, our results clearly disagree with the recently reported perfect co-segregation of the POLLED mutation and a SNP at position 1 390 292 bp on bovine chromosome 1 in the Holstein-Friesian population. Conclusion We conclude that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesian origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivica Medugorac
- Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany.
| |
Collapse
|
26
|
Wiedemar N, Tetens J, Jagannathan V, Menoud A, Neuenschwander S, Bruggmann R, Thaller G, Drögemüller C. Independent polled mutations leading to complex gene expression differences in cattle. PLoS One 2014; 9:e93435. [PMID: 24671182 PMCID: PMC3966897 DOI: 10.1371/journal.pone.0093435] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/26/2014] [Indexed: 11/19/2022] Open
Abstract
The molecular regulation of horn growth in ruminants is still poorly understood. To investigate this process, we collected 1019 hornless (polled) animals from different cattle breeds. High-density SNP genotyping confirmed the presence of two different polled associated haplotypes in Simmental and Holstein cattle co-localized on BTA 1. We refined the critical region of the Simmental polled mutation to 212 kb and identified an overlapping region of 932 kb containing the Holstein polled mutation. Subsequently, whole genome sequencing of polled Simmental and Holstein cows was used to determine polled associated genomic variants. By genotyping larger cohorts of animals with known horn status we found a single perfectly associated insertion/deletion variant in Simmental and other beef cattle confirming the recently published possible Celtic polled mutation. We identified a total of 182 sequence variants as candidate mutations for polledness in Holstein cattle, including an 80 kb genomic duplication and three SNPs reported before. For the first time we showed that hornless cattle with scurs are obligate heterozygous for one of the polled mutations. This is in contrast to published complex inheritance models for the bovine scurs phenotype. Studying differential expression of the annotated genes and loci within the mapped region on BTA 1 revealed a locus (LOC100848215), known in cow and buffalo only, which is higher expressed in fetal tissue of wildtype horn buds compared to tissue of polled fetuses. This implicates that the presence of this long noncoding RNA is a prerequisite for horn bud formation. In addition, both transcripts associated with polledness in goat and sheep (FOXL2 and RXFP2), show an overexpression in horn buds confirming their importance during horn development in cattle.
Collapse
Affiliation(s)
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Annie Menoud
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Samuel Neuenschwander
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Cord Drögemüller
- Institute of Genetics, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux MN, Rossignol MN, van Marle-Köster E, Hreiðarsdóttir GE, Barbey S, Dozias D, Cobo E, Reversé P, Catros O, Marchand JL, Soulas P, Roy P, Marquant-Leguienne B, Le Bourhis D, Clément L, Salas-Cortes L, Venot E, Pannetier M, Phocas F, Klopp C, Rocha D, Fouchet M, Journaux L, Bernard-Capel C, Ponsart C, Eggen A, Blum H, Gallard Y, Boichard D, Pailhoux E, Capitan A. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS One 2013; 8:e63512. [PMID: 23717440 PMCID: PMC3661542 DOI: 10.1371/journal.pone.0063512] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/02/2013] [Indexed: 11/25/2022] Open
Abstract
Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Cécile Grohs
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anis Djari
- Institut National de la Recherche Agronomique, Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sébastien Fritz
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | | | - Aurélia Baur
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | - Stéphan Bouet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sophie Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Per Wahlberg
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Diane Esquerré
- GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- Institut National de la Recherche Agronomique, UMR444 Génétique Cellulaire, Castanet-Tolosan, France
| | - Chris Hoze
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Mekki Boussaha
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Bernard Weiss
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Dominique Thépot
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | - Este van Marle-Köster
- Department of Animal & Wildlife Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Sarah Barbey
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Dominique Dozias
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Emilie Cobo
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | | | | | | | | | | | | | - Daniel Le Bourhis
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Laetitia Clément
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Laura Salas-Cortes
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Eric Venot
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Maëlle Pannetier
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Florence Phocas
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Christophe Klopp
- Institut National de la Recherche Agronomique, Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Dominique Rocha
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | | | - Laurent Journaux
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | | | - Claire Ponsart
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - André Eggen
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yves Gallard
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Didier Boichard
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Pailhoux
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Aurélien Capitan
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
- * E-mail:
| |
Collapse
|
28
|
Capitan A, Allais-Bonnet A, Pinton A, Marquant-Le Guienne B, Le Bourhis D, Grohs C, Bouet S, Clément L, Salas-Cortes L, Venot E, Chaffaux S, Weiss B, Delpeuch A, Noé G, Rossignol MN, Barbey S, Dozias D, Cobo E, Barasc H, Auguste A, Pannetier M, Deloche MC, Lhuilier E, Bouchez O, Esquerré D, Salin G, Klopp C, Donnadieu C, Chantry-Darmon C, Hayes H, Gallard Y, Ponsart C, Boichard D, Pailhoux E. A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull. PLoS One 2012; 7:e49084. [PMID: 23152852 PMCID: PMC3494662 DOI: 10.1371/journal.pone.0049084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 12/15/2022] Open
Abstract
Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation.
Collapse
Affiliation(s)
- Aurélien Capitan
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Cattle production faces new challenges regarding sustainability with its three pillars - economic, societal and environmental. The following three main factors will drive dairy cattle selection in the future: (1) During a long period, intensive selection for enhanced productivity has deteriorated most functional traits, some reaching a critical point and needing to be restored. This is especially the case for the Holstein breed and for female fertility, mastitis resistance, longevity and metabolic diseases. (2) Genomic selection offers two new opportunities: as the potential genetic gain can be almost doubled, more traits can be efficiently selected; phenotype recording can be decoupled from selection and limited to several thousand animals. (3) Additional information from other traits can be used, either from existing traditional recording systems at the farm level or from the recent and rapid development of new technologies and precision farming. Milk composition (i.e. mainly fatty acids) should be adapted to better meet human nutritional requirements. Fatty acids can be measured through a new interpretation of the usual medium infrared spectra. Milk composition can also provide additional information about reproduction and health. Modern milk recorders also provide new information, that is, on milking speed or on the shape of milking curves. Electronic devices measuring physiological or activity parameters can predict physiological status like estrus or diseases, and can record behavioral traits. Slaughterhouse data may permit effective selection on carcass traits. Efficient observatories should be set up for early detection of new emerging genetic defects. In the near future, social acceptance of cattle production could depend on its capacity to decrease its ecological footprint. The first solution consists in increasing survival and longevity to reduce replacement needs and the number of nonproductive animals. At the individual level, selection on rumen activity may lead to decreased methane production and concomitantly to improved feed efficiency. A major effort should be dedicated to this new field of research and particularly to rumen flora metagenomics. Low input in cattle production is very important and tomorrow's cow will need to adapt to a less intensive production environment, particularly lower feed quality and limited care. Finally, global climate change will increase pathogen pressure, thus more accurate predictors for disease resistance will be required.
Collapse
|
30
|
Medugorac I, Seichter D, Graf A, Russ I, Blum H, Göpel KH, Rothammer S, Förster M, Krebs S. Bovine polledness--an autosomal dominant trait with allelic heterogeneity. PLoS One 2012; 7:e39477. [PMID: 22737241 PMCID: PMC3380827 DOI: 10.1371/journal.pone.0039477] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
The persistent horns are an important trait of speciation for the family Bovidae with complex morphogenesis taking place briefly after birth. The polledness is highly favourable in modern cattle breeding systems but serious animal welfare issues urge for a solution in the production of hornless cattle other than dehorning. Although the dominant inhibition of horn morphogenesis was discovered more than 70 years ago, and the causative mutation was mapped almost 20 years ago, its molecular nature remained unknown. Here, we report allelic heterogeneity of the POLLED locus. First, we mapped the POLLED locus to a ∼381-kb interval in a multi-breed case-control design. Targeted re-sequencing of an enlarged candidate interval (547 kb) in 16 sires with known POLLED genotype did not detect a common allele associated with polled status. In eight sires of Alpine and Scottish origin (four polled versus four horned), we identified a single candidate mutation, a complex 202 bp insertion-deletion event that showed perfect association to the polled phenotype in various European cattle breeds, except Holstein-Friesian. The analysis of the same candidate interval in eight Holsteins identified five candidate variants which segregate as a 260 kb haplotype also perfectly associated with the POLLED gene without recombination or interference with the 202 bp insertion-deletion. We further identified bulls which are progeny tested as homozygous polled but bearing both, 202 bp insertion-deletion and Friesian haplotype. The distribution of genotypes of the two putative POLLED alleles in large semi-random sample (1,261 animals) supports the hypothesis of two independent mutations.
Collapse
|