1
|
Liu JA, Tam KW, Chen YL, Feng X, Chan CWL, Lo ALH, Wu KLK, Hui MN, Wu MH, Chan KKK, Cheung MPL, Cheung CW, Shum DKY, Chan YS, Cheung M. Transplanting Human Neural Stem Cells with ≈50% Reduction of SOX9 Gene Dosage Promotes Tissue Repair and Functional Recovery from Severe Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205804. [PMID: 37296073 PMCID: PMC10369238 DOI: 10.1002/advs.202205804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/30/2023] [Indexed: 06/12/2023]
Abstract
Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Long Chen
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xianglan Feng
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy Wing Lam Chan
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Amos Lok Hang Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Ning Hui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming-Hoi Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ken Kwok-Keung Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Song F, Akonyani ZP, Li Y, Su D, Wu L, Pang Y, Hu S, Wu D, Li C, Yang D, Wu J. The impact of different feeds on DNA methylation, glycolysis/gluconeogenesis signaling pathway, and gene expression of sheep muscle. PeerJ 2022; 10:e13455. [PMID: 35642195 PMCID: PMC9148555 DOI: 10.7717/peerj.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023] Open
Abstract
DNA methylation is an important epigenetic regulatory form that regulates gene expression and tissue development. This study compared the effects of high fiber, low protein (HFLP) and low fiber, high protein (LFHP) diets on the DNA methylation profile of twin lambs' muscles, their effect on glycolysis/gluconeogenesis and related pathways by transcriptome and deep whole-genome bisulfite sequencing (WGBS). Results identified 1,945 differentially methylated regions (DMRs) and 1,471 differentially methylated genes (DMGs). Also, 487 differentially expressed transcripts belonging to 368 differentially expressed genes (DEGs) were discovered between the twin lambs under different diets. Eleven overlapped genes were detected between the DEGs and the DMGs. FKBP5 and FOXO1 were detected to be significantly different. The FOXO1 regulated cAMP and the glycolysis/gluconeogenesis pathways. The glycolysis/gluconeogenesis, and the FOXO pathways were significantly enriched. The expressions of HOMER1 and FOXO1 in the HFLP group were significantly higher than those in the LFHP group. There is a significant correlation between the upregulated gene expression and hypomethylation of HOMER1 and FOXO1 gene in HFLP group. The results showed that FOXO1 induces PDK4 expression in muscle while regulating FKBP5 activity, which stimulates glucose production by activating specific gluconeogenesis target genes. The FOXO1 was able to regulate the glucose metabolism, the cAMP and the occurrence of glycolysis/gluconeogenesis pathways. This study showed that feed type can affect the methylation levels of the glycolysis related gluconeogenesis genes and interaction pathways, providing new ideas for a better understanding of the regulation of muscle energy metabolism and feed development.
Collapse
Affiliation(s)
- Feng Song
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | | | - Ying Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Deqiqige Su
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Lantuya Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yue Pang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Sile Hu
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Dubala Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China,Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Bao J, Närhi K, Teodòsio A, Hemmes A, Linnavirta NM, Mäyränpää MI, Salmenkivi K, Le Quesne J, Verschuren EW. SOX9 has distinct roles in the formation and progression of different non-small cell lung cancer histotypes. J Pathol 2021; 255:16-29. [PMID: 34021911 PMCID: PMC11497254 DOI: 10.1002/path.5733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
The transcription factor SOX9 is a key regulator of multiple developmental processes and is frequently re-expressed in non-small cell lung cancer (NSCLC). Its precise role in the progression of NSCLC histotypes has, however, remained elusive. We show that SOX9 expression relates to poor overall survival and invasive histopathology in human non-mucinous adenocarcinoma and is absent in murine early minimally invasive and low in human in situ adenocarcinoma. Interestingly, despite wide SOX9 expression across advanced NSCLC histotypes, its genetic deletion in the murine KrasG12D ;Lkb1fl/fl model selectively disrupted only the growth of papillary NSCLC, without affecting the initiation of precursor lesions or growth of mucinous or squamous tissue. Spatial tissue phenotyping indicated a requirement of SOX9 expression for the progression of surfactant protein C-expressing progenitor cells, which gave rise to papillary tumours. Intriguingly, while SOX9 expression was dispensable for squamous tissue formation, its loss in fact led to enhanced squamous tumour metastasis, which was associated with altered collagen IV deposition in the basement membrane. Our work therefore demonstrates histopathology-selective roles for SOX9 in NSCLC progression, namely as a promoter for papillary adenocarcinoma progression, but an opposing metastasis-suppressing role in squamous histotype tissue. This attests to a pleiotropic SOX9 function, linked to the cell of origin and microenvironmental tissue contexts. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jie Bao
- Institute for Molecular Medicine Finland, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Katja Närhi
- Institute for Molecular Medicine Finland, HiLIFEUniversity of HelsinkiHelsinkiFinland
- GlaxoSmithKlineEspooFinland
| | - Ana Teodòsio
- MRC Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Nora M Linnavirta
- Institute for Molecular Medicine Finland, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Mikko I Mäyränpää
- HUSLAB, Division of PathologyHelsinki University HospitalHelsinkiFinland
- Department of PathologyUniversity of HelsinkiHelsinkiFinland
| | | | - John Le Quesne
- MRC Toxicology UnitUniversity of CambridgeCambridgeUK
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUK
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland, HiLIFEUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Willmann SJ. Cutting the edge between cancerogenesis and organogenesis of the pancreatic endocrine lineage allocation-comprehensive review of the genes Synaptotagmin 13 and 533041C22 Rik in epithelial-to-mesenchymal transition. Cancer Metastasis Rev 2021; 39:953-958. [PMID: 32447478 PMCID: PMC8205884 DOI: 10.1007/s10555-020-09897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past years, a multitude of studies has been published in the field of pancreatic organogenesis to interrogate the critical regulators of endocrine lineage segregation. Preliminary, transcription factors are guiding the transcriptional hierarchy of the endocrine specified cells, underpinning the importance of open chromatin formation. Signaling pathways either inhibit or accelerate the transcriptional landscape of pancreatic organogenesis. Thus, the fine-tuned process in the former pancreatic multipotent progenitors in the mechanism of lineage segregation needs to be elucidated more precisely for unraveling the temporal-spatial lineage-determining factors. Previously, Willmann et al. described candidate gene regulators of lineage segregation during the secondary transition of pancreatic organogenesis. At embryonic stage (E) 12.5, the former multipotent pancreatic progenitor compartmentalizes into the acinar, ductal, and endocrine lineage. In the adult pancreatic gland, acinar cells secrete enzymes that are transported by the duct to the duodenum. In contrast, the endocrine cells are clustered within the acinar tissue in the Islets of Langerhans. These Islets of Langerhans consist of a subset of α, δ, ε, and PP cells and β cells, and the function of the α and β cells is predominantly described by regulating glucose homeostasis, contrary, the function of the additional subtypes in the Islets of Langerhans remains still unclear and is rather pointing to a supportive role for the α and β cells. The essential wave of endocrine precursor cells emerges at E 14.5 out of the ductal cord-like structure in a process called epithelial-to-mesenchymal transition (EMT). This EMT is a reversible and incomplete process that includes significant intermedia states. As EMT is in focus in the field of cancer research, missense in endocrine lineage segregation is linking to a progression of pancreatic cancer, to be more precise in adenocarcinoma, e.g., meaning pancreatic ductal adenocarcinoma. Thus, the previous review will further accelerate the understanding of EMT about endocrine lineage segregation, respective pancreatic ductal adenocarcinoma, and introduces factors previously only known for either lineage segregation or related in cancer disease into a complete picture.
Collapse
|
6
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
7
|
Bulanenkova SS, Snezhkov EV, Akopov SB. SOX9 as One of the Central Units of Regulation Axis of Pancreas Embryogenesis and Cancer Progression. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416819030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Villani V, Thornton ME, Zook HN, Crook CJ, Grubbs BH, Orlando G, De Filippo R, Ku HT, Perin L. SOX9+/PTF1A+ Cells Define the Tip Progenitor Cells of the Human Fetal Pancreas of the Second Trimester. Stem Cells Transl Med 2019; 8:1249-1264. [PMID: 31631582 PMCID: PMC6877773 DOI: 10.1002/sctm.19-0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made in recent years in characterizing human multipotent progenitor cells (hMPCs) of the early pancreas; however, the identity and persistence of these cells during the second trimester, after the initiation of branching morphogenesis, remain elusive. Additionally, studies on hMPCs have been hindered by few isolation methods that allow for the recovery of live cells. Here, we investigated the tip progenitor domain in the branched epithelium of human fetal pancreas between 13.5 and 17.5 gestational weeks by immunohistological staining. We also used a novel RNA-based technology to isolate live cells followed by gene expression analyses. We identified cells co-expressing SOX9 and PTF1A, two transcription factors known to be important for pancreatic MPCs, within the tips of the epithelium and observed a decrease in their proportions over time. Pancreatic SOX9+/PTF1A+ cells were enriched for MPC markers, including MYC and GATA6. These cells were proliferative and appeared active in branching morphogenesis and matrix remodeling, as evidenced by gene set enrichment analysis. We identified a hub of genes pertaining to the expanding tip progenitor niche, such as FOXF1, GLI3, TBX3, FGFR1, TGFBR2, ITGAV, ITGA2, and ITGB3. YAP1 of the Hippo pathway emerged as a highly enriched component within the SOX9+/PTF1A+ cells. Single-cell RNA-sequencing further corroborated the findings by identifying a cluster of SOX9+/PTF1A+ cells with multipotent characteristics. Based on these results, we propose that the SOX9+/PTF1A+ cells in the human pancreas are uncommitted MPC-like cells that reside at the tips of the expanding pancreatic epithelium, directing self-renewal and inducing pancreatic organogenesis. Stem Cells Translational Medicine 2019;8:1249&1264.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Heather N. Zook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Christiana J. Crook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Giuseppe Orlando
- Department of SurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9. Stem Cell Res Ther 2019; 10:59. [PMID: 30767782 PMCID: PMC6376733 DOI: 10.1186/s13287-019-1154-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background The regulatory mechanism of insulin-producing cells (IPCs) differentiation from induced pluripotent stem cells (iPSCs) in vitro is very important in the phylogenetics of pancreatic islets, the molecular pathogenesis of diabetes, and the acquisition of high-quality pancreatic β-cells derived from stem cells for cell therapy. Methods miPSCs were induced for IPCs differentiation. miRNA microarray assays were performed by using total RNA from our iPCs-derived IPCs containing undifferentiated iPSCs and iPSCs-derived IPCSs at day 4, day 14, and day 21 during step 3 to screen the differentially expressed miRNAs (DEmiRNAs) related to IPCs differentiation, and putative target genes of DEmiRNAs were predicted by bioinformatics analysis. miR-690 was selected for further research, and MPCs were transfected by miR-690-agomir to confirm whether it was involved in the regulation of IPCs differentiation in iPSCs. Quantitative Real-Time PCR (qRT-PCR), Western blotting, and immunostaining assays were performed to examine the pancreatic function of IPCs at mRNA and protein level respectively. Flow cytometry and ELISA were performed to detect differentiation efficiency and insulin content and secretion from iPSCs-derived IPCs in response to stimulation at different concentration of glucose. The targeting of the 3′-untranslated region of Sox9 by miR-690 was examined by luciferase assay. Results We found that miR-690 was expressed dynamically during IPCs differentiation according to the miRNA array results and that overexpression of miR-690 significantly impaired the maturation and insulinogenesis of IPCs derived from iPSCs both in vitro and in vivo. Bioinformatic prediction and mechanistic analysis revealed that miR-690 plays a pivotal role during the differentiation of IPCs by directly targeting the transcription factor sex-determining region Y (SRY)-box9. Furthermore, downstream experiments indicated that miR-690 is likely to act as an inactivated regulator of the Wnt signaling pathway in this process. Conclusions We discovered a previously unknown interaction between miR-690 and sox9 but also revealed a new regulatory signaling pathway of the miR-690/Sox9 axis during iPSCs-induced IPCs differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1154-8) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Lee S, Lee CM, Kim SC. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo. Stem Cell Res Ther 2016; 7:162. [PMID: 27836003 PMCID: PMC5105312 DOI: 10.1186/s13287-016-0422-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4+ cells. Methods Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4+ and CA19-9+ cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4+ and CA19-9+ cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. Results SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4+ cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4+ cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9+ cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4+ or CA19-9+ cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9+ cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4+ cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4+ cells. Conclusions SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0422-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Chan Mi Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea. .,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
11
|
Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet-Guibert J, Bachs O, Besson A. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget 2016; 6:35880-92. [PMID: 26416424 PMCID: PMC4742148 DOI: 10.18632/oncotarget.5770] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/12/2015] [Indexed: 02/07/2023] Open
Abstract
p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogrammation of acinar cells and metaplasia.
Collapse
Affiliation(s)
- Pauline Jeannot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Caroline Callot
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Romain Baer
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Nicolas Duquesnes
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Julie Guillermet-Guibert
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Oriol Bachs
- Department of Cell Biology, Immunology and Neurosciences, University of Barcelona - IDIBAPS, Barcelona, Spain
| | - Arnaud Besson
- INSERM UMR1037, Cancer Research Center of Toulouse, Toulouse, France.,Université de Toulouse, Toulouse, France.,CNRS ERL5294, Toulouse, France
| |
Collapse
|
12
|
Huang W, Beer RL, Delaspre F, Wang G, Edelman HE, Park H, Azuma M, Parsons MJ. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 2016; 418:28-39. [PMID: 27565026 DOI: 10.1016/j.ydbio.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing β cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated β-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults.
Collapse
Affiliation(s)
- Wei Huang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hannah E Edelman
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Michael J Parsons
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA; Department of Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Yin C. Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas. Semin Cell Dev Biol 2016; 63:68-78. [PMID: 27552918 DOI: 10.1016/j.semcdb.2016.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022]
Abstract
The liver and pancreas are the prime digestive and metabolic organs in the body. After emerging from the neighboring domains of the foregut endoderm, they turn on distinct differentiation and morphogenesis programs that are regulated by hierarchies of transcription factors. Members of SOX family of transcription factors are expressed in the liver and pancreas throughout development and act upstream of other organ-specific transcription factors. They play key roles in maintaining stem cells and progenitors. They are also master regulators of cell fate determination and tissue morphogenesis. In this review, we summarize the current understanding of SOX transcription factors in mediating liver and pancreas development. We discuss their contribution to adult organ function, homeostasis and injury responses. We also speculate how the knowledge of SOX transcription factors can be applied to improve therapies for liver diseases and diabetes.
Collapse
Affiliation(s)
- Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Masjkur J, Poser SW, Nikolakopoulou P, Chrousos G, McKay RD, Bornstein SR, Jones PM, Androutsellis-Theotokis A. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology. Diabetes 2016; 65:314-30. [PMID: 26798118 DOI: 10.2337/db15-1099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.
Collapse
Affiliation(s)
- Jimmy Masjkur
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Steven W Poser
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | | | - George Chrousos
- First Department of Pediatrics, University of Athens Medical School and Aghia Sophia Children's Hospital, Athens, Greece
| | | | - Stefan R Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Peter M Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London, U.K
| | - Andreas Androutsellis-Theotokis
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany Department of Stem Cell Biology, Centre for Biomolecular Sciences, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, U.K.
| |
Collapse
|
15
|
A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 2015; 13:326-36. [PMID: 26440894 DOI: 10.1016/j.celrep.2015.08.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/10/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.
Collapse
|
16
|
De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015; 142:871-82. [PMID: 25715395 DOI: 10.1242/dev.110759] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.
Collapse
Affiliation(s)
- Matias G De Vas
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Janel L Kopp
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Claire Heliot
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Silvia Cereghini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Cécile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| |
Collapse
|
17
|
Rapid screening of gene function by systemic delivery of morpholino oligonucleotides to live mouse embryos. PLoS One 2015; 10:e0114932. [PMID: 25629157 PMCID: PMC4309589 DOI: 10.1371/journal.pone.0114932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Traditional gene targeting methods in mice are complex and time consuming, especially when conditional deletion methods are required. Here, we describe a novel technique for assessing gene function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, target tissues were explanted, cultured and analysed for expression of key markers. We established proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal development. These studies reveal the utility of this method as a means of first-pass analysis of gene function during organogenesis before committing to detailed genetic analysis.
Collapse
|
18
|
Can the ‘neuron theory’ be complemented by a universal mechanism for generic neuronal differentiation. Cell Tissue Res 2014; 359:343-84. [DOI: 10.1007/s00441-014-2049-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
|
19
|
Jonatan D, Spence JR, Method AM, Kofron M, Sinagoga K, Haataja L, Arvan P, Deutsch GH, Wells JM. Sox17 regulates insulin secretion in the normal and pathologic mouse β cell. PLoS One 2014; 9:e104675. [PMID: 25144761 PMCID: PMC4140688 DOI: 10.1371/journal.pone.0104675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.
Collapse
Affiliation(s)
- Diva Jonatan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Anna M. Method
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katie Sinagoga
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Gail H. Deutsch
- Seattle Children’s Hospital, Seattle, WA, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
20
|
Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CTL. Contribution of a non-β-cell source to β-cell mass during pregnancy. PLoS One 2014; 9:e100398. [PMID: 24940737 PMCID: PMC4062500 DOI: 10.1371/journal.pone.0100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.
Collapse
Affiliation(s)
- Chiara Toselli
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin M. Hyslop
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martha Hughes
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R. Natale
- Department of Reproductive Medicine, University of California San Diego, San Diego, California, United States of America
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institut D’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Carol T. L. Huang
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
22
|
Piccand J, Meunier A, Merle C, Jia Z, Barnier JV, Gradwohl G. Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes 2014; 63:203-15. [PMID: 24163148 PMCID: PMC3968432 DOI: 10.2337/db13-0384] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor neurogenin3 (Ngn3) triggers islet cell differentiation in the developing pancreas. However, little is known about the molecular mechanisms coupling cell cycle exit and differentiation in Ngn3(+) islet progenitors. We identified a novel effector of Ngn3 endocrinogenic function, the p21 protein-activated kinase Pak3, known to control neuronal differentiation and implicated in X-linked intellectual disability in humans. We show that Pak3 expression is initiated in Ngn3(+) endocrine progenitor cells and next maintained in maturing hormone-expressing cells during pancreas development as well as in adult islet cells. In Pak3-deficient embryos, the proliferation of Ngn3(+) progenitors and β-cells is transiently increased concomitantly with an upregulation of Ccnd1. β-Cell differentiation is impaired at E15.5 but resumes at later stages. Pak3-deficient mice do not develop overt diabetes but are glucose intolerant under high-fat diet (HFD). In the intestine, Pak3 is expressed in enteroendocrine cells but is not necessary for their differentiation. Our results indicate that Pak3 is a novel regulator of β-cell differentiation and function. Pak3 acts downstream of Ngn3 to promote cell cycle exit and differentiation in the embryo by a mechanism that might involve repression of Ccnd1. In the adult, Pak3 is required for the proper control of glucose homeostasis under challenging HFD.
Collapse
Affiliation(s)
- Julie Piccand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, Institut National de la Santé et de la Recherche Médicale UMR 964, Centre National de Recherche Scientifique, UMR 964, Université de Strasbourg, Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, Institut National de la Santé et de la Recherche Médicale UMR 964, Centre National de Recherche Scientifique, UMR 964, Université de Strasbourg, Illkirch, France
| | - Carole Merle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, Institut National de la Santé et de la Recherche Médicale UMR 964, Centre National de Recherche Scientifique, UMR 964, Université de Strasbourg, Illkirch, France
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto, Canada
| | - Jean-Vianney Barnier
- Université Paris-Sud, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France
- Centre National de Recherche Scientifique, UMR 8195, Orsay, France
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, Institut National de la Santé et de la Recherche Médicale UMR 964, Centre National de Recherche Scientifique, UMR 964, Université de Strasbourg, Illkirch, France
- Corresponding author: Gérard Gradwohl,
| |
Collapse
|
23
|
Belo J, Krishnamurthy M, Oakie A, Wang R. The Role of SOX9 Transcription Factor in Pancreatic and Duodenal Development. Stem Cells Dev 2013; 22:2935-43. [DOI: 10.1089/scd.2013.0106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jamie Belo
- Children's Health Research Institute, Western University, London, Canada
| | | | - Amanda Oakie
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Rennian Wang
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| |
Collapse
|
24
|
Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, Lefebvre V. A far-upstream (-70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 2013; 41:4459-69. [PMID: 23449223 PMCID: PMC3632127 DOI: 10.1093/nar/gkt140] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SOX9 encodes a transcription factor that presides over the specification and differentiation of numerous progenitor and differentiated cell types, and although SOX9 haploinsufficiency and overexpression cause severe diseases in humans, including campomelic dysplasia, sex reversal and cancer, the mechanisms underlying SOX9 transcription remain largely unsolved. We identify here an evolutionarily conserved enhancer located 70-kb upstream of mouse Sox9 and call it SOM because it specifically activates a Sox9 promoter reporter in most Sox9-expressing somatic tissues in transgenic mice. Moreover, SOM-null fetuses and pups reduce Sox9 expression by 18–37% in the pancreas, lung, kidney, salivary gland, gut and liver. Weanlings exhibit half-size pancreatic islets and underproduce insulin and glucagon, and adults slowly recover from acute pancreatitis due to a 2-fold impairment in Sox9 upregulation. Molecular and genetic experiments reveal that Sox9 protein dimers bind to multiple recognition sites in the SOM sequence and are thereby both necessary and sufficient for enhancer activity. These findings thus uncover that Sox9 directly enhances its functions in somatic tissue development and adult regeneration through SOM-mediated positive auto-regulation. They provide thereby novel insights on molecular mechanisms controlling developmental and disease processes and suggest new strategies to improve disease treatments.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Cellular and Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pan FC, Bankaitis ED, Boyer D, Xu X, Van de Casteele M, Magnuson MA, Heimberg H, Wright CVE. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 2013; 140:751-64. [PMID: 23325761 DOI: 10.1242/dev.090159] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a(+) MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a(+)Sox9(+)Hnf1β(+) MPCs are intermingled with Ptf1a(HI)Sox9(LO) proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1β) in Ptf1a(+) acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin(+) β-cells that are mature by the criteria of producing Pdx1(HI), Nkx6.1(+) and MafA(+). These Ptf1a lineage-derived endocrine/β-cells are likely formed via Ck19(+)/Hnf1β(+)/Sox9(+) ductal and Ngn3(+) endocrine progenitor intermediates. Acinar to endocrine/β-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing β-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature β-cells.
Collapse
Affiliation(s)
- Fong Cheng Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 2012; 139:3363-72. [PMID: 22874919 DOI: 10.1242/dev.078733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.
Collapse
Affiliation(s)
- Philip A Seymour
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M. Differential regulation of embryonic and adult β cell replication. Cell Cycle 2012; 11:2431-42. [PMID: 22659844 PMCID: PMC3404874 DOI: 10.4161/cc.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from an inadequate functional β cell mass, either due to autoimmune destruction (Type 1 diabetes) or insulin resistance combined with β cell failure (Type 2 diabetes). Strategies to enhance β cell regeneration or increase cell proliferation could improve outcomes for patients with diabetes. Research conducted over the past several years has revealed that factors regulating embryonic β cell mass expansion differ from those regulating replication ofβ cells post-weaning. This article aims to compare and contrast factors known to control embryonic and postnatal β cell replication. In addition, we explore the possibility that connective tissue growth factor (CTGF) could increase adult β cell replication. We have already shown that CTGF is required for embryonicβ cell proliferation and is sufficient to induce replication of embryonic β cells. Here we examine whether adult β cell replication and expansion of β cell mass can be enhanced by increased CTGF expression in mature β cells.
Collapse
Affiliation(s)
- Uma Gunasekaran
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
28
|
Shih HP, Kopp JL, Sandhu M, Dubois CL, Seymour PA, Grapin-Botton A, Sander M. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 2012; 139:2488-99. [PMID: 22675211 DOI: 10.1242/dev.078634] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the pancreas, Notch signaling is thought to prevent cell differentiation, thereby maintaining progenitors in an undifferentiated state. Here, we show that Notch renders progenitors competent to differentiate into ductal and endocrine cells by inducing activators of cell differentiation. Notch signaling promotes the expression of Sox9, which cell-autonomously activates the pro-endocrine gene Ngn3. However, at high Notch activity endocrine differentiation is blocked, as Notch also induces expression of the Ngn3 repressor Hes1. At the transition from high to intermediate Notch activity, only Sox9, but not Hes1, is maintained, thus de-repressing Ngn3 and initiating endocrine differentiation. In the absence of Sox9 activity, endocrine and ductal cells fail to differentiate, resulting in polycystic ducts devoid of primary cilia. Although Sox9 is required for Ngn3 induction, endocrine differentiation necessitates subsequent Sox9 downregulation and evasion from Notch activity via cell-autonomous repression of Sox9 by Ngn3. If high Notch levels are maintained, endocrine progenitors retain Sox9 and undergo ductal fate conversion. Taken together, our findings establish a novel role for Notch in initiating both ductal and endocrine development and reveal that Notch does not function in an on-off mode, but that a gradient of Notch activity produces distinct cellular states during pancreas development.
Collapse
Affiliation(s)
- Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|