1
|
Characterization of Zinc(II) Complex of 1,4,7,10-Tetrazacyclododecane and Deprotonated 5-Fluorouracil (FU) in Crystalline/Solution States and Evaluation of Anticancer Activity: Approach for Improving the Anticancer Activity of FU. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Rahaman W, Bag A, Pal S. Influence of Linker Orientation and Regulative Factor(s) in Liposomal Gene Delivery: A Molecular Level Investigation. J Phys Chem A 2022; 126:1816-1822. [PMID: 35286091 DOI: 10.1021/acs.jpca.1c09681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular level understanding of liposome-gene interaction is immensely important for the research progress and technological advancement of gene delivery, which is highly significant due to a wide range of applications of gene therapy. The liposomal gene delivery method is one of the most promising techniques due to its efficacy to easily fuse with the cell membrane and its lower toxicity. In vivo gene delivery using liposomes is reported to be extremely successful. However, the success of gene delivery depends on various factors including the chemical nature of the structural unit of the liposome. To explore the regulative factor(s) for liposomal gene delivery, we systematically analyze the linker orientation effect on the gene delivery efficiency of liposomes through a density functional theory (DFT) study. Interestingly, it is observed that the liposome-gene interaction is not the regulating factor for successful gene delivery. The success depends on the gel to liquid melting temperature of the liposome.
Collapse
Affiliation(s)
- Wahida Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Arijit Bag
- Department of Applied Sciences, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal 741249, India
| | - Sourav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India.,Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| |
Collapse
|
3
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
4
|
Lejault P, Duskova K, Bernhard C, Valverde IE, Romieu A, Monchaud D. The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pauline Lejault
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Katerina Duskova
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Claire Bernhard
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Ibai E. Valverde
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - Anthony Romieu
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- CNRS UMR6302, Université Bourgogne Franche-Comté (UBFC); Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB); 9, Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
5
|
Yu QY, Guo Y, Zhang J, Huang Z, Yu XQ. Zn(ii) coordination to cyclen-based polycations for enhanced gene delivery. J Mater Chem B 2019; 7:451-459. [DOI: 10.1039/c8tb02414f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zn2+ coordination greatly improved the gene transfection efficiency of cyclen-based polycations.
Collapse
Affiliation(s)
- Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yu Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
6
|
Muripiti V, Brijesh L, Rachamalla HK, Marepally SK, Banerjee R, Patri SV. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection. Bioorg Chem 2018; 82:178-191. [PMID: 30326400 DOI: 10.1016/j.bioorg.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.
Collapse
Affiliation(s)
| | | | - Hari Krishnareddy Rachamalla
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | | - Rajkumar Banerjee
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | |
Collapse
|
7
|
Zhang YM, Huang Z, Zhang J, Wu WX, Liu YH, Yu XQ. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery. Biomater Sci 2017; 5:718-729. [DOI: 10.1039/c6bm00859c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ring-opening polymerization was found to be a promising strategy to improve the transfection efficiency and serum tolerance of cationic lipids.
Collapse
Affiliation(s)
- Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Wan-Xia Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
8
|
Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. Bioorg Med Chem 2015; 23:6364-78. [PMID: 26346671 DOI: 10.1016/j.bmc.2015.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation.
Collapse
|
9
|
Cyclen-based double-tailed lipids for DNA delivery: Synthesis and the effect of linking group structures. Bioorg Med Chem 2015. [DOI: 10.1016/j.bmc.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Huang Z, Liu YH, Zhang YM, Zhang J, Liu Q, Yu XQ. Cyclen-based cationic lipids containing a pH-sensitive moiety as gene delivery vectors. Org Biomol Chem 2015; 13:620-30. [DOI: 10.1039/c4ob01856g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Imidazole-functionalized cationic lipids with a cyclen headgroup were synthesized, and the structure–activity relationship in gene delivery mediated by these lipids was discussed.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiang Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
11
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
12
|
Wang HJ, Liu YH, Zhang J, Zhang Y, Xia Y, Yu XQ. Cyclen-based cationic lipids with double hydrophobic tails for efficient gene delivery. Biomater Sci 2014; 2:1460-1470. [DOI: 10.1039/c4bm00174e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene transfection abilities and structure–activity relationship of newly designed cationic lipids were studied in detail.
Collapse
Affiliation(s)
- Hai-Jiao Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Yang Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Yan Xia
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| |
Collapse
|
13
|
Liu BQ, Yi WJ, Zhang J, Liu Q, Liu YH, Fan SD, Yu XQ. Synthesis and gene transfection activity of cyclen-based cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails. Org Biomol Chem 2014; 12:3484-92. [DOI: 10.1039/c4ob00384e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Novel cyclen-based cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails were synthesized and applied as non-viral gene vectors.
Collapse
Affiliation(s)
- Bao-Quan Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
- Key Laboratory of Biochemical Engineering (Ministry of Education)
| | - Wen-Jing Yi
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Qiang Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| | - Sheng-Di Fan
- Key Laboratory of Biochemical Engineering (Ministry of Education)
- Dalian Nationalities University
- Dalian, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu, China
| |
Collapse
|
14
|
Zhang YM, Liu YH, Zhang J, Liu Q, Huang Z, Yu XQ. Cationic gemini lipids with cyclen headgroups: interaction with DNA and gene delivery abilities. RSC Adv 2014. [DOI: 10.1039/c4ra05974c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eleven Gemini cationic lipids and one mono counterpart were synthesized, and their structure–activity relationship as non-viral gene vectors was studied.
Collapse
Affiliation(s)
- Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Qiang Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064, PR China
| |
Collapse
|
15
|
Liu Q, Yi WJ, Zhang YM, Zhang J, Guo L, Yu XQ. Biotinylated cyclen-contained cationic lipids as non-viral gene delivery vectors. Chem Biol Drug Des 2013; 82:376-83. [PMID: 23659653 DOI: 10.1111/cbdd.12159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
Abstract
A series of 1, 4, 7, 10-tetraazacyclododecane (cyclen)-based cationic lipids, namely 5a-c bearing a biotin moiety and a variety of end groups (cholesterol, diosgenin, and α-tocopherol) via biodegradable carbamate bond linkage were prepared and applied as non-viral gene delivery vectors. The liposomes formed from 5 and dioleoylphosphatidylethanolamine could bind and condense plasmid DNA into nanoparticles with appropriate size and zeta potentials. All biotinylated cyclen cationic lipids showed higher cell viability than commercially available lipofectamine 2000 even at high N/P ratios, while their transfection efficiency was relatively lower. Further, results indicate that among the three lipids, α-tocopherol-containing compound 5c has higher DNA-binding ability, lower cytotoxicity, and higher transfection efficiency. Transfection in two different cell lines revealed that these lipoplexes have higher gene delivery efficiency toward tumor cells.
Collapse
Affiliation(s)
- Qiang Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | |
Collapse
|
16
|
Liu Q, Jiang QQ, Yi WJ, Zhang J, Zhang XC, Wu MB, Zhang YM, Zhu W, Yu XQ. Novel imidazole-functionalized cyclen cationic lipids: Synthesis and application as non-viral gene vectors. Bioorg Med Chem 2013; 21:3105-13. [DOI: 10.1016/j.bmc.2013.03.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
|
17
|
Solvent-induced molecular gel formation at room temperature and the preparation of related gel-emulsions. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4869-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
19
|
|
20
|
Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene 2013; 525:208-16. [PMID: 23542073 DOI: 10.1016/j.gene.2013.03.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/14/2023]
Abstract
Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, cedex 2, France.
| | | | | | | |
Collapse
|
21
|
Riduan SN, Zhang Y. Imidazolium salts and their polymeric materials for biological applications. Chem Soc Rev 2013; 42:9055-70. [DOI: 10.1039/c3cs60169b] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Li J, Zhu Y, Hazeldine ST, Firestine SM, Oupický D. Cyclam-based polymeric copper chelators for gene delivery and potential PET imaging. Biomacromolecules 2012; 13:3220-7. [PMID: 23004346 DOI: 10.1021/bm3009999] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of reducible polycationic copper chelators (RPCs) based on 1,4,8,11-tetraazacyclotetradecane (cyclam) were synthesized by Michael addition. Molecular weight of the polycations was controlled by reaction stoichiometry and reaction conditions, resulting in polymers with molecular weights ranging from 4400 to 13 800. The cyclam moieties in the polycations retained their ability to form complexes with Cu(II). The presence of disulfide bonds in the polycations resulted in substantially lower cytotoxicity than control 25 kDa poly(ethyleneimine). RPC as well as their complexes with Cu(II) exhibited high transfection activity in vitro. The reported polycationic Cu(II) chelates represent promising nucleic acid delivery vectors with potential for future theranostic applications.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
23
|
Huang QD, Ren J, Chen H, Ou WJ, Zhang J, Fu Y, Zhu W, Yu XQ. Cyclen-Based Cationic Lipids Containing Carbamate Linkages as Efficient Gene Delivery Vectors with Low Toxicity. Chempluschem 2012. [DOI: 10.1002/cplu.201200060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors. Bioorg Med Chem 2012; 20:1380-7. [DOI: 10.1016/j.bmc.2012.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/17/2022]
|
25
|
Zhang QF, Yang WH, Yi WJ, Zhang J, Ren J, Luo TY, Zhu W, Yu XQ. TACN-containing cationic lipids with ester bond: Preparation and application in gene delivery. Bioorg Med Chem Lett 2011; 21:7045-9. [DOI: 10.1016/j.bmcl.2011.09.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/16/2022]
|