1
|
Han M, Zhu H, Chen X, Luo X. 6-O-endosulfatases in tumor metastasis: heparan sulfate proteoglycans modification and potential therapeutic targets. Am J Cancer Res 2024; 14:897-916. [PMID: 38455409 PMCID: PMC10915330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Metastasis is the leading cause of cancer-associated mortality. Although advances in the targeted treatment and immunotherapy have improved the management of some cancers, the prognosis of metastatic cancers remains unsatisfied. Therefore, the specific mechanisms in tumor metastasis need further investigation. 6-O-endosulfatases (SULFs), comprising sulfatase1 (SULF1) and sulfatase 2 (SULF2), play pivotal roles in the post-synthetic modifications of heparan sulfate proteoglycans (HSPGs). Consequently, these extracellular enzymes can regulate a variety of downstream pathways by modulating HSPGs function. During the past decades, researchers have detected the expression of SULF1 and SULF2 in most cancers and revealed their roles in tumor progression and metastasis. Herein we reviewed the metastasis steps which SULFs participated in, elucidated the specific roles and mechanisms of SULFs in metastasis process, and discussed the effects of SULFs in different types of cancers. Moreover, we summarized the role of targeting SULFs in combination therapy to treat metastatic cancers, which provided some novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xin Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| |
Collapse
|
2
|
Li J, Wang X, Li Z, Li M, Zheng X, Zheng D, Wang Y, Xi M. SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer. Curr Cancer Drug Targets 2024; 24:820-834. [PMID: 37539927 DOI: 10.2174/1568009623666230804161607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND PURPOSE Sulfatase 1 (SULF1) can regulate the binding of numerous signaling molecules by removing 6-O-sulfate from heparan sulfate proteoglycans (HSPGs) to affect numerous physiological and pathological processes. Our research aimed to investigate the effect of the SULF1-mediated VEGFR2/PI3K/AKT signaling pathway on tumorigenesis and development of cervical cancer (CC). METHODS The expression and prognostic values of SULF1 in patients with CC were analyzed through bioinformatics analysis, qRT-PCR, immunohistochemistry, and western blot. The function and regulatory mechanism of SULF1 in proliferation, migration, and invasion of cervical cancer cells were examined through lentivirus transduction, CCK8, flow cytometry analysis, plate colony formation assay, scratch assay, transwell assay, western blot, VEGFR2 inhibitor (Ki8751), and mouse models. RESULTS SULF1 expression was significantly upregulated in CC tissues, which was significantly associated with poor prognosis of patients with CC. In vitro, the upregulation of SULF1 expression in HeLa cells promoted cell proliferation, colony formation, migration, and invasion while inhibiting apoptosis. Conversely, the downregulation of SULF1 expression had the opposite effect. In vivo, the upregulation of SULF1 expression resulted in a significant increase in both tumor growth and angiogenesis, while its downregulation had the opposite effect. Furthermore, western blot detection and cell function rescue assay confirmed that the upregulation of SULF1 in HeLa cells promoted the tumorigenic behaviors of cancer cells by activating the VEGFR2/PI3K/AKT signaling pathway. CONCLUSION SULF1 plays an oncogenic role in the tumorigenesis and development of CC, indicating its potential as a novel molecular target for gene-targeted therapy in patients with CC.
Collapse
Affiliation(s)
- Juan Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Diagnosis and Treatment for Cervical Diseases, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xihao Wang
- Department of Pathology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Minzhen Li
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelian Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Danxi Zheng
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mingrong Xi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
3
|
Timm BM, Follmar JL, Porell RN, Glass K, Thacker BE, Glass CA, Godula K. Human extracellular sulfatases use a dual mechanism for regulation of growth factor interactions with heparan sulfate proteoglycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568358. [PMID: 38045270 PMCID: PMC10690288 DOI: 10.1101/2023.11.22.568358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Membrane-associated heparan sulfate (HS) proteoglycans (PGs) contribute to the regulation of extracellular cellular signaling cues, such as growth factors (GFs) and chemokines, essential for normal organismal functions and implicated in various pathophysiologies. PGs accomplish this by presenting high affinity binding sites for GFs and their receptors through highly sulfated regions of their HS polysaccharide chains. The composition of HS, and thus GF-binding specificity, are determined during biosynthetic assembly prior to installation at the cell surface. Two extracellular 6- O -endosulfatase enzymes (Sulf-1 and Sulf-2) can uniquely further edit mature HS and alter its interactions with GFs by removing specific sulfation motifs from their recognition sequence on HS. Despite being implicated as signaling regulators during development and in disease, the Sulfs have resisted structural characterization, and their substrate specificity and effects on GF interactions with HS are still poorly defined. Using a panel of PG-mimetics comprising compositionally-defined bioengineered recombinant HS (rHS) substrates in combination with GF binding and enzyme activity assays, we have discovered that Sulfs control GF-HS interactions through a combination of catalytic processing and competitive blocking of high affinity GF-binding sites, providing a new conceptual framework for understanding the functional impact of these enzymes in biological context. Although the contributions from each mechanism are both Sulf- and GF-dependent, the PG-mimetic platform allows for rapid analysis of these complex relationships. Significance Statement Cells rely on extracellular signals such as growth factors (GFs) to mediate critical biological functions. Membrane-associated proteins bearing negatively charged heparan sulfate (HS) sugar chains engage with GFs and present them to their receptors, which regulates their activity. Two extracellular sulfatase (Sulf) enzymes can edit HS and alter GF interactions and activity, although the precise mechanisms remain unclear. By using chemically defined HS-mimetics as probes, we have discovered that Sulfs can modulate HS by means of catalytic alterations and competitive blocking of GF-binding sites. These unique dual activities distinguish Sulfs from other enzymes and provide clues to their roles in development and disease.
Collapse
|
4
|
Nyalali AMK, Leonard AU, Xu Y, Li H, Zhou J, Zhang X, Rugambwa TK, Shi X, Li F. CD147: an integral and potential molecule to abrogate hallmarks of cancer. Front Oncol 2023; 13:1238051. [PMID: 38023152 PMCID: PMC10662318 DOI: 10.3389/fonc.2023.1238051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
CD147 also known as EMMPRIN, basigin, and HAb18G, is a single-chain type I transmembrane protein shown to be overexpressed in aggressive human cancers of CNS, head and neck, breasts, lungs, gastrointestinal, genitourinary, skin, hematological, and musculoskeletal. In these malignancies, the molecule is integral to the diverse but complimentary hallmarks of cancer: it is pivotal in cancerous proliferative signaling, growth propagation, cellular survival, replicative immortality, angiogenesis, metabolic reprogramming, immune evasion, invasion, and metastasis. CD147 also has regulatory functions in cancer-enabling characteristics such as DNA damage response (DDR) and immune evasion. These neoplastic functions of CD147 are executed through numerous and sometimes overlapping molecular pathways: it transduces signals from upstream molecules or ligands such as cyclophilin A (CyPA), CD98, and S100A9; activates a repertoire of downstream molecules and pathways including matrix metalloproteinases (MMPs)-2,3,9, hypoxia-inducible factors (HIF)-1/2α, PI3K/Akt/mTOR/HIF-1α, and ATM/ATR/p53; and also functions as an indispensable chaperone or regulator to monocarboxylate, fatty acid, and amino acid transporters. Interestingly, induced loss of functions to CD147 prevents and reverses the acquired hallmarks of cancer in neoplastic diseases. Silencing of Cd147 also alleviates known resistance to chemoradiotherapy exhibited by malignant tumors like carcinomas of the breast, lung, pancreas, liver, gastric, colon, ovary, cervix, prostate, urinary bladder, glioblastoma, and melanoma. Targeting CD147 antigen in chimeric and induced-chimeric antigen T cell or antibody therapies is also shown to be safer and more effective. Moreover, incorporating anti-CD147 monoclonal antibodies in chemoradiotherapy, oncolytic viral therapy, and oncolytic virus-based-gene therapies increases effectiveness and reduces on and off-target toxicity. This study advocates the expedition and expansion by further exploiting the evidence acquired from the experimental studies that modulate CD147 functions in hallmarks of cancer and cancer-enabling features and strive to translate them into clinical practice to alleviate the emergency and propagation of cancer, as well as the associated clinical and social consequences.
Collapse
Affiliation(s)
- Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Surgery, Songwe Regional Referral Hospital, Mbeya, Tanzania
- Department of Orthopedics and Neurosurgery, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Angela U. Leonard
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
- Department of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yongxiang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Junlin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Xiaohan Shi
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Feng Li
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Oto J, Le QK, Schäfer SD, Kiesel L, Marí-Alexandre J, Gilabert-Estellés J, Medina P, Götte M. Role of Syndecans in Ovarian Cancer: New Diagnostic and Prognostic Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2023; 15:3125. [PMID: 37370735 DOI: 10.3390/cancers15123125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is the eighth cancer both in prevalence and mortality in women and represents the deadliest female reproductive cancer. Due to generally vague symptoms, OC is frequently diagnosed only at a late and advanced stage, resulting in high mortality. The tumor extracellular matrix and cellular matrix receptors play a key role in the pathogenesis of tumor progression. Syndecans are a family of four transmembrane heparan sulfate proteoglycans (PG), including syndecan-1, -2, -3, and -4, which are dysregulated in a myriad of cancers, including OC. Many clinicopathological studies suggest that these proteins are promising diagnostic and prognostic biomarkers for OC. Furthermore, functions of the syndecan family in the regulation of cellular processes make it an interesting pharmacological target for anticancer therapies.
Collapse
Affiliation(s)
- Julia Oto
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Quang-Khoi Le
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Sebastian D Schäfer
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Gynecology and Obstetrics, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| |
Collapse
|
6
|
Guo L, Wei B, Pan F, Wulan H, Cai M. Effects of dual-gene modification on biological characteristics of vascular endothelial cells and their significance as reserving cells for chronic wound repair. Growth Factors 2022; 40:221-230. [PMID: 36083236 DOI: 10.1080/08977194.2022.2118119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
bFGF is a commonly used and reliable factor for improving chronic wound healing, and hSulf-1 expression is abundant in surrounding cells of chronic wound tissue and vascular endothelial cells, which can reverse the effect of bFGF and inhibit the signalling activity of cell proliferation. In this study, an adenovirus, Ad5F35ET1-bFGF-shSulf1, was designed for establishing the dual-gene modified vascular endothelial cells, which were used as the repair cells for skin chronic wound. Ad5F35ET1-bFGF-shSulf1 infected ECV304 cells in vitro and mediated the overexpression of bFGF and the knockdown of hSulf-1, which effectively activated the AKT and ERK signal transduction pathways, facilitate cell proliferation and migration, with the cell viability to 128.29% at 72 h after infection, compared to 66.65%, 73.74%, 87.63%, 103.14% in the blank control, Ad5F35ET1-EGFP-shNC, Ad5F35ET1-shSulf1, Ad5F35ET1-bFGF groups, respectively. In the rat ear skin injury model, the wound healing was significantly accelerated in the Ad5F35ET1-rbFGF-shrSulf1 group compared to the blank control group (p = 0.0046), Ad5F35ET1-EGFP-shNC group (p = 0.0245), Ad5F35ET1-shrSulf group (p = 0.0426), and Ad5F35ET1-rbFGF group (p = 0.2853). The results demonstrated that this strategy may be a candidate therapy for chronic injury repair.
Collapse
Affiliation(s)
- Lingli Guo
- Department of Plastic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baohua Wei
- Department of Plastic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Pan
- Department of Plastic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hasi Wulan
- Department of Plastic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mi Cai
- Department of Plastic Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M, Rudat C, Kispert A, Niessen HW, Lübke T, Dierks T, Wollert KC. Heparan Sulfate-Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circ Res 2019; 125:787-801. [PMID: 31434553 DOI: 10.1161/circresaha.119.315023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE Mechanistic insight into the inflammatory response after acute myocardial infarction may inform new molecularly targeted treatment strategies to prevent chronic heart failure. OBJECTIVE We identified the sulfatase SULF2 in an in silico secretome analysis in bone marrow cells from patients with acute myocardial infarction and detected increased sulfatase activity in myocardial autopsy samples. SULF2 (Sulf2 in mice) and its isoform SULF1 (Sulf1) act as endosulfatases removing 6-O-sulfate groups from heparan sulfate (HS) in the extracellular space, thus eliminating docking sites for HS-binding proteins. We hypothesized that the Sulfs have a role in tissue repair after myocardial infarction. METHODS AND RESULTS Both Sulfs were dynamically upregulated after coronary artery ligation in mice, attaining peak expression and activity levels during the first week after injury. Sulf2 was expressed by monocytes and macrophages, Sulf1 by endothelial cells and fibroblasts. Infarct border zone capillarization was impaired, scar size increased, and cardiac dysfunction more pronounced in mice with a genetic deletion of either Sulf1 or Sulf2. Studies in bone marrow-chimeric Sulf-deficient mice and Sulf-deficient cardiac endothelial cells established that inflammatory cell-derived Sulf2 and endothelial cell-autonomous Sulf1 promote angiogenesis. Mechanistically, both Sulfs reduced HS sulfation in the infarcted myocardium, thereby diminishing Vegfa (vascular endothelial growth factor A) interaction with HS. Along this line, both Sulfs rendered infarcted mouse heart explants responsive to the angiogenic effects of HS-binding Vegfa164 but did not modulate the angiogenic effects of non-HS-binding Vegfa120. Treating wild-type mice systemically with the small molecule HS-antagonist surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide, 1 mg/kg/day) for 7 days after myocardial infarction released Vegfa from HS, enhanced infarct border-zone capillarization, and exerted sustained beneficial effects on cardiac function and survival. CONCLUSIONS These findings establish HS-editing Sulfs as critical inducers of postinfarction angiogenesis and identify HS sulfation as a therapeutic target for ischemic tissue repair.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Marc R Reboll
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Karsten Grote
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Hauke Schleiner
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yong Wang
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Xuekun Wu
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Stefanie Klede
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yuliya Mikhed
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | | | - Carsten Rudat
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Andreas Kispert
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Hans W Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (H.W.N.)
| | - Torben Lübke
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Kai C Wollert
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| |
Collapse
|
8
|
Poletto V, Rosti V, Biggiogera M, Guerra G, Moccia F, Porta C. The role of endothelial colony forming cells in kidney cancer's pathogenesis, and in resistance to anti-VEGFR agents and mTOR inhibitors: A speculative review. Crit Rev Oncol Hematol 2018; 132:89-99. [PMID: 30447930 DOI: 10.1016/j.critrevonc.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is highly dependent on angiogenesis, due to the overactivation of the VHL/HIF/VEGF/VEGFRs axis; this justifies the marked sensitivity of this neoplasm to antiangiogenic agents which, however, ultimately fail to control tumor growth. RCC also frequently shows alterations in the mTOR signaling pathway, and mTOR inhibitors have shown a similar pattern of initial activity/late failure as pure antiangiogenic agents. Understanding mechanisms of resistance to these agents would be key to improve the outcome of our patients. Circulating endothelial cells are a family of mainly bone marrow-derived progenitors, which have been postulated to be responsible of the reactivation of angiogenesis in different tumors. In this review, we shall discuss the complex nature and function of these cells, the evidence pro and contra their contribution to tumor vascularization, especially as far as RCC is concerned, and their possible role in determining resistance to presently available treatments.
Collapse
Affiliation(s)
- Valentina Poletto
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research and Experimental Biotechnology Laboratory Area, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, via Forlanini 6, 27100, Pavia, Italy.
| | - Camillo Porta
- Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100, Pavia, Italy; present address: Department of Internal Medicine, University of Pavia, and Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
9
|
Dardiotis E, Siokas V, Garas A, Paraskevaidis E, Kyrgiou M, Xiromerisiou G, Deligeoroglou E, Galazios G, Kontomanolis EN, Spandidos DA, Tsatsakis A, Daponte A. Genetic variations in the SULF1 gene alter the risk of cervical cancer and precancerous lesions. Oncol Lett 2018; 16:3833-3841. [PMID: 30127996 PMCID: PMC6096185 DOI: 10.3892/ol.2018.9104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection alone is not sufficient to explain the development of cervical cancer. Genetic variants have been linked to the development of precancerous lesions and cervical cancer. In this study, we aimed to evaluate the association of 10 single nucleotide polymorphisms (SNPs) of the Fas cell surface death receptor (FAS), trinucleotide repeat containing 6C (TNRC6C), transmembrane channel like 8 (TMC8), DNA meiotic recombinase 1 (DMC1), deoxyuridine triphosphatase (DUT), sulfatase 1 (SULF1), 2′-5-oligoadenylate synthetase 3 (OAS3), general transcription factor IIH subunit 4 (GTF2H4) and interferon gamma (IFNG) genes with susceptibility to precancerous lesions and cervical cancer. In total, 608 female participants, consisting of 199 patients with persistent low-grade precancerous lesions (CIN1), 100 with high-grade precancerous lesions (CIN2/3), 17 patients with cervical cancer and 292 healthy controls, were enrolled in this study. SNPs were tested for associations with each of the above-mentioned cervical group lesions or when considering an overall patient group. A significant difference for rs4737999 was observed between the controls and the overall patient group considering the recessive mode of inheritance [odds ratio (OR), 0.48; 95% confidence interval (CI), 0.24–0.96; P=0.033]. This effect was even stronger on the risk of CIN1 lesions. Carriers of the rs4737999 AA genotype were almost 3-fold less likely of having low grade lesions compared to the other genotypes. On the whole, this study provides evidence of an influence of the SULF1 gene rs4737999 SNP in the development of precancerous lesions/cervical cancer.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, 41100 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, 41100 Larissa, Greece
| | - Antonios Garas
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41100 Larissa, Greece
| | | | - Maria Kyrgiou
- Department of Surgery and Cancer, IRDB, Imperial College London, London W120NN, UK.,West London Gynaecological Cancer Centre, Imperial Healthcare NHS Trust, London W120HS, UK
| | - Georgia Xiromerisiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, 41100 Larissa, Greece
| | - Efthimios Deligeoroglou
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, 'Aretaieion' Hospital, 11528 Athens, Greece
| | - Georgios Galazios
- Department of Obstetrics/Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics/Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41100 Larissa, Greece
| |
Collapse
|
10
|
Moccia F, Fotia V, Tancredi R, Della Porta MG, Rosti V, Bonetti E, Poletto V, Marchini S, Beltrame L, Gallizzi G, Da Prada GA, Pedrazzoli P, Riccardi A, Porta C, Zambelli A, D'Incalci M. Breast and renal cancer—Derived endothelial colony forming cells share a common gene signature. Eur J Cancer 2017; 77:155-164. [DOI: 10.1016/j.ejca.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022]
|
11
|
Yang XP, Liu L, Wang P, Ma SL. Human Sulfatase-1 Improves the Effectiveness of Cytosine Deaminase Suicide Gene Therapy with 5-Fluorocytosine Treatment on Hepatocellular Carcinoma Cell Line HepG2 In Vitro and In Vivo. Chin Med J (Engl) 2016; 128:1384-90. [PMID: 25963362 PMCID: PMC4830321 DOI: 10.4103/0366-6999.156800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Human sulfatase-1 (Hsulf-1) is an endosulfatase that selectively removes sulfate groups from heparan sulfate proteoglycans (HSPGs), altering the binding of several growth factors and cytokines to HSPG to regulate cell proliferation, cell motility, and apoptosis. We investigated the role of combined cancer gene therapy with Hsulf-1 and cytosine deaminase/5-fluorocytosine (CD/5-FC) suicide gene on a hepatocellular carcinoma (HCC) cell line, HepG2, in vitro and in vivo. METHODS Reverse transcription polymerase chain reaction and immunohistochemistry were used to determine the expression of Hsulf-1 in HCC. Cell apoptosis was observed through flow cytometry instrument and mechanism of Hsulf-1 to enhance the cytotoxicity of 5-FC against HCC was analyzed in HCC by confocal microscopy. We also establish a nude mice model of HCC to address the effect of Hsulf-1 expression on the CD/5-FC suicide gene therapy in vivo. RESULTS A significant decrease in HepG2 cell proliferation and an increase in HepG2 cell apoptosis were observed when Hsulf-1 expression was combined with the CD/5-FC gene suicide system. A noticeable bystander effect was observed when the Hsulf-1 and CD genes were co-expressed. Intracellular calcium was also increased after HepG2 cells were infected with the Hsulf-1 gene. In vivo studies showed that the suppression of tumor growth was more pronounced in animals treated with the Hsulf-1 plus CD than those treated with either gene therapy alone, and the combined treatment resulted in a significant increase in survival. CONCLUSIONS Hsulf-1 expression combined with the CD/5-FC gene suicide system could be an effective treatment approach for HCC.
Collapse
Affiliation(s)
| | | | | | - Sheng-Lin Ma
- Department of General Surgery, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
12
|
|
13
|
Xu G, Ji W, Su Y, Xu Y, Yan Y, Shen S, Li X, Sun B, Qian H, Chen L, Fu X, Wu M, Su C. Sulfatase 1 (hSulf-1) reverses basic fibroblast growth factor-stimulated signaling and inhibits growth of hepatocellular carcinoma in animal model. Oncotarget 2015; 5:5029-39. [PMID: 24970807 PMCID: PMC4148119 DOI: 10.18632/oncotarget.2078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human sulfatase 1 (hSulf-1) gene encodes an endosulfatase that functions to inhibit the heparin-binding growth factor signaling, including the basic fibroblast growth factor (bFGF)-mediated pathway, by desulfating the cell surface heparan sulfate proteoglycans (HSPGs). bFGF could stimulate cell cycle progression and inhibit cell apoptosis, this biological effect can be reversed by hSulf-1. However, molecular mechanisms have not been fully reported. In the current study, by reactivation of hSulf-1 expression and function in the hSulf-1-negative hepatocellular carcinoma (HCC) cell lines and HCC xenograft tumors, we found that hSulf-1 blocked the bFGF effect on the promotion of cell cycle and inhibition of apoptosis. The bFGF-stimulated activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways was suppressed by hSulf-1, which led to a decreased expression of the target genes Cyclin D1 and Survivin, then finally induced cell cycle arrest and apoptosis in HCC cells. Our data suggested that hSulf-1 may be a suitable target for cancer therapy.
Collapse
Affiliation(s)
- Gaoya Xu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China. Department of Pathogen Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Yinghan Su
- Department of Biology, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yang Xu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Shuwen Shen
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Xiaoya Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Haihua Qian
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Lei Chen
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Xiaohui Fu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Mengchao Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center of Liver Cancer, The Second Military Medical University, Shanghai, China. Department of Pathogen Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Ohta N, Ishiguro S, Kawabata A, Uppalapati D, Pyle M, Troyer D, De S, Zhang Y, Becker KG, Tamura M. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS One 2015; 10:e0123756. [PMID: 25942583 PMCID: PMC4420498 DOI: 10.1371/journal.pone.0123756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/24/2015] [Indexed: 12/25/2022] Open
Abstract
Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.
Collapse
Affiliation(s)
- Naomi Ohta
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Susumu Ishiguro
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Atsushi Kawabata
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Deepthi Uppalapati
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Marla Pyle
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Deryl Troyer
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
| | - Supriyo De
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, NIH Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD, 21224, United States of America
| | - Masaaki Tamura
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66506, United States of America
- * E-mail:
| |
Collapse
|
15
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
16
|
Liu L, Ding F, Chen J, Wang B, Liu Z. hSulf-1 inhibits cell proliferation and migration and promotes apoptosis by suppressing stat3 signaling in hepatocellular carcinoma. Oncol Lett 2014; 7:963-969. [PMID: 24944651 PMCID: PMC3961425 DOI: 10.3892/ol.2014.1848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022] Open
Abstract
Human sulfatase-1 (hSulf-1) has been shown to desulfate cellular heparin sulfate proteoglycans and modulate several growth factors and cytokines. However, hSulf-1 has not been previously shown to mediate the signal transducer and activator of transcription 3 (stat3) signaling pathway, which is known to regulate cell proliferation, motility and apoptosis. The present study investigated the role of hSulf-1 in stat3 signaling in hepatocellular cancer. hSulf-1 expression vector and stat3 small interfering RNA (siRNA) were constructed to control the expression of hSulf-1 and stat3 in HepG2 cells. hSulf-1 was found to inhibit the phosphorylation of stat3 and downregulate its targeted protein. MTT and Transwell chamber assays, as well as Annexin V/propidium iodide double-staining methods, were used to examine the effects of hSulf-1 on stat3-mediated motility, proliferation and apoptosis in HepG2 cells. Transfection with hSulf-1 cDNA and/or stat3 siRNA inhibited cell proliferation and motility, concurrent with G0/G1 and G2/M phase cell cycle arrest and apoptosis. Overall, the results of the current study suggested that hSulf-1 functions as a negative regulator of proliferation and migration and as a positive regulator of apoptosis in hepatocellular carcinoma, at least partly via the downregulation of stat3 signaling.
Collapse
Affiliation(s)
- Ling Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Feng Ding
- Department of Clinical Laboratory, Wuhan Puai Hospital, Wuhan, Hubei 430033, P.R. China
| | - Jiwei Chen
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Boyong Wang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhisu Liu
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
17
|
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:5287-98. [PMID: 23891937 DOI: 10.1016/j.bbagen.2013.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD). METHODS Affinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction. RESULTS Full-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force-distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD. CONCLUSIONS Specific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell-surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains. GENERAL SIGNIFICANCE HD confers a novel and highly dynamic mode of protein interaction with HS.
Collapse
|
18
|
Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G, Zeng Y, Sun B, Qian H, Chen L, Wu M, Su C, Chen J. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 2013; 337:226-36. [PMID: 23684551 DOI: 10.1016/j.canlet.2013.05.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/27/2013] [Accepted: 05/04/2013] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been believed to associate with malignant progression including cancer cell proliferation, apoptosis, differentiation, angiogenesis, invasion and metastasis. However, the functions of miRNAs are intricate, one miRNA can directly or indirectly target multiple genes and function as oncogene or tumor suppressor gene. In this study, we found that miR-21 inhibits PTEN and human sulfatase-1 (hSulf-1) expression in hepatocellular carcinoma (HCC) cells. The hSulf-1 is a heparin-degrading endosulfatase, which can inhibit the heparin binding growth factor-mediated signaling transduction into cells. Therefore, miR-21-mediated suppression of both hSulf-1 and PTEN led to activation of AKT/ERK pathways and epithelial-mesenchymal transition (EMT) in HCC cells, and finally enhance the activity of HCC cell proliferation and movement and promote HCC xenograft tumor growth in mouse models. These findings may provide candidate targets for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Longlong Bao
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu H, Fu X, Ji W, Liu K, Bao L, Yan Y, Wu M, Yang J, Su C. Human sulfatase-1 inhibits the migration and proliferation of SMMC-7721 hepatocellular carcinoma cells by downregulating the growth factor signaling. Hepatol Res 2013; 43:516-25. [PMID: 22900980 DOI: 10.1111/j.1872-034x.2012.01080.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The human sulfatase-1 (hSulf-1) gene regulates the sulfation of heparan sulfate proteoglycans (HSPG) and suppresses tumorigenesis and angiogenesis by inhibiting several growth factor signaling pathways. Because the serine-threonine protein kinase (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways are critical in cell survival, proliferation, migration and angiogenesis, the possible correlation between hSulf-1 and AKT/ERK signaling in hepatocellular carcinoma (HCC) cells needs further exploration. METHODS Adenovirus Ad5-hSulf1 carrying the hSulf-1 gene, and vectors carrying hSulf-1 shRNA, AKT shRNA and ERK shRNA were constructed and used to manipulate the expression of hSulf-1, AKT and ERK in SMMC-7721 cells. The scarification test, transwell and 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assays were used to examine the cellular migration and proliferation, and the expression of hSulf-1 and signaling factors, including the total and phosphorylated AKT and ERK, was analyzed by western blot in SMMC-7721 cells. RESULTS After infection with Ad5-hSulf1, the expression of hSulf-1 was increased with viral multiplicity of infection in SMMC-7721 cells. Compared with the control adenovirus Ad5-EGFP and blank control groups, cells in the Ad5-hSulf1 group were showed that the phosphorylation of AKT and ERK was decreased. Meanwhile, the cell migration and cell viability were obviously suppressed. CONCLUSION The expression of hSulf-1 mediated by adenovirus in HCC cells could downregulate the activity of AKT and ERK signaling pathways, and inhibit HCC cell migration and proliferation. The hSulf-1 gene may be considered as a candidate of antitumor factor for cancer gene therapy.
Collapse
Affiliation(s)
- Hu Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and Institute Department of Laparoscopic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Weng YR, Kong X, Yu YN, Wang YC, Hong J, Zhao SL, Fang JY. The role of ERK2 in colorectal carcinogenesis is partly regulated by TRAPPC4. Mol Carcinog 2013; 53 Suppl 1:E72-84. [DOI: 10.1002/mc.22031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/03/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Rong Weng
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Xuan Kong
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Ya-Nan Yu
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Ying-Chao Wang
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Jie Hong
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Shu-Liang Zhao
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Renji Hospital,Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Genes; Shanghai China
| |
Collapse
|
21
|
Zhang Y, Fang L, Zhang Q, Zheng Q, Tong J, Fu X, Jiang X, Su C, Zheng J. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma. Mol Oncol 2012. [PMID: 23182495 DOI: 10.1016/j.molonc.2012.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cancer Radiotherapy, Nanjing Second Hospital and Second Affiliated Hospital of Southeast University, Nanjing 210003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zheng X, Gai X, Han S, Moser CD, Hu C, Shire AM, Floyd RA, Roberts LR. The human sulfatase 2 inhibitor 2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor effect in hepatocellular carcinoma mediated via suppression of TGFB1/SMAD2 and Hedgehog/GLI1 signaling. Genes Chromosomes Cancer 2012; 52:225-36. [PMID: 23109092 DOI: 10.1002/gcc.22022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023] Open
Abstract
Human sulfatase 2 (SULF2) functions as an oncoprotein in hepatocellular carcinoma (HCC) development by promoting tumor growth and metastasis via enhancement of fibroblast growth factor-2/extracellular signal-regulated kinase and WNT/β-catenin signaling. Recent results implicate that SULF2 activates the transforming growth factor beta (TGFB) and Hedgehog/GLI1 pathways in HCC. OKN-007 is a novel phenyl-sulfonyl compound that inhibits the enzymatic activity of SULF2. To investigate the antitumor effect of OKN-007 in HCC, we treated Huh7 cells, which express high levels of SULF2, with OKN-007 and found that it significantly promoted tumor cell apoptosis and inhibited cell proliferation, viability, and migration. To understand the action of OKN-007 on SULF2, we used Huh7 cells which normally express SULF2 and Hep3B cells that do not normally express SULF2. Utilizing Huh7 cells transfected with short hairpin RNA targeting SULF2 and transfection of Hep3B cells with a SULF2 plasmid to enhance SULF2 expression, we showed that the antitumor activity of OKN-007 was more pronounced in cells expressing SULF2. Furthermore, in vivo experiments verified that OKN-007 repressed tumor growth significantly. These results identify SULF2 as an important target of the antitumor effect of OKN-007. To determine the molecular mechanism of the antitumor effect of OKN-007, both TGFB1/SMAD and Hedgehog/GLI1 signaling pathway activity were measured by Western blot and SMAD- or GLI-reporter luciferase assays. We found that both signaling pathways were inhibited by OKN-007. Together, these results show that OKN-007 can suppress TGFB1/SMAD and Hedgehog/GLI1 signaling via its inhibition of SULF2 enzymatic activity. We conclude that OKN-007 or more potent derivatives may be promising agents for the treatment of HCC.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Newman DR, Sannes PL. HSULF-1 inhibits ERK and AKT signaling and decreases cell viability in vitro in human lung epithelial cells. Respir Res 2012; 13:69. [PMID: 22873647 PMCID: PMC3514195 DOI: 10.1186/1465-9921-13-69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/31/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs) modulate the binding and activation of signaling pathways of specific growth factors, such as fibroblast growth factor-2 (FGF-2). Human endosulfatase 1 (HSULF-1) is an enzyme that selectively removes 6-O sulfate groups from HS side chains and alter their level and pattern of sulfation and thus biological activity. It is known that HSULF-1 is expressed at low levels in some cancer cell lines and its enhanced expression can inhibit cancer cell growth or induce apoptosis, but the mechanism(s) involved has not been identified. METHODS HSULF-1 mRNA expression was assessed in five normal cells (primary human lung alveolar type 2 (hAT2) cells, adult lung fibroblasts (16Lu), fetal lung fibroblasts (HFL), human bronchial epithelial cells (HBE), and primary human lung fibroblasts (HLF)) and five lung cancer cell lines (A549, H292, H1975, H661, and H1703) using quantitative real time polymerase chain reaction (qRT-PCR). H292 and hAT2 cells over-expressing HSULF-1 were analyzed for cell viability, apoptosis, and ERK/Akt signaling, by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, and Western Blot, respectively. Apoptosis pathway activation was confirmed by PCR array in hAT2, H292, and A549 cells. RESULTS HSULF-1 was expressed at a significantly lower level in epithelial cancer cell lines compared to normal cells. Infection with recombinant adenovirus for HSULF-1 over-expression resulted in decreased cell viability in H292 cells, but not in normal hAT2 cells. HSULF-1 over-expression induced apoptosis in H292 cells, but not in hAT2 cells. In addition, apoptosis pathways were activated in both H292 and A549 cells, but not in hAT2 cells. HSULF-1 over-expression reduced ERK and Akt signaling activation in H292 cells, which further demonstrated its inhibitory effects on signaling related to proliferation. CONCLUSIONS These results indicate that HSULF-1 is expressed at lower levels in H292 lung cancer cells than in normal human alveolar cells and that its over-expression reduced cell viability in H292 cells by inducing apoptotic pathways, at least in part by inhibiting ERK/Akt signaling. We hypothesize that HSULF-1 plays important roles in cancer cells and functions to modify cell signaling, inhibit cancer proliferation, and promote cancer cell death.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of Molecular Biomedical Sciences, Center for Comparative Molecular Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|