1
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021; 11:metabo11090572. [PMID: 34564387 PMCID: PMC8467939 DOI: 10.3390/metabo11090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
A theory that can best explain the facts of a phenomenon is more likely to advance knowledge than a theory that is less able to explain the facts. Cancer is generally considered a genetic disease based on the somatic mutation theory (SMT) where mutations in proto-oncogenes and tumor suppressor genes cause dysregulated cell growth. Evidence is reviewed showing that the mitochondrial metabolic theory (MMT) can better account for the hallmarks of cancer than can the SMT. Proliferating cancer cells cannot survive or grow without carbons and nitrogen for the synthesis of metabolites and ATP (Adenosine Triphosphate). Glucose carbons are essential for metabolite synthesis through the glycolysis and pentose phosphate pathways while glutamine nitrogen and carbons are essential for the synthesis of nitrogen-containing metabolites and ATP through the glutaminolysis pathway. Glutamine-dependent mitochondrial substrate level phosphorylation becomes essential for ATP synthesis in cancer cells that over-express the glycolytic pyruvate kinase M2 isoform (PKM2), that have deficient OxPhos, and that can grow in either hypoxia (0.1% oxygen) or in cyanide. The simultaneous targeting of glucose and glutamine, while elevating levels of non-fermentable ketone bodies, offers a simple and parsimonious therapeutic strategy for managing most cancers.
Collapse
|
3
|
Soon BH, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, Thanabalan J, Mohd Haspani MS, Toh CJ, Mohd Tamil A, Harun R, Wan Ngah WZ, Jamal R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 2017; 8:231. [PMID: 28484394 PMCID: PMC5399085 DOI: 10.3389/fphys.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.
Collapse
Affiliation(s)
- Bee Hong Soon
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Sue-Mian Then
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,The University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Azizi Abu Bakar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Farizal Fadzil
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | | | - Charng Jeng Toh
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Wan Z Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
4
|
Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017; 14:19. [PMID: 28250801 PMCID: PMC5324220 DOI: 10.1186/s12986-017-0178-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of "Press-Pulse" disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred. METHODS This general concept can be applied to the management of cancer by creating chronic metabolic stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress. RESULTS The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells. CONCLUSIONS Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the non-toxic management of most cancers.
Collapse
Affiliation(s)
| | - George Yu
- George Washington University Medical Center Washington DC, and Aegis Medical & Research Associates Annapolis, Maryland, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh, PA USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida USA
| |
Collapse
|
5
|
Szczesny B, Marcatti M, Zatarain JR, Druzhyna N, Wiktorowicz JE, Nagy P, Hellmich MR, Szabo C. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci Rep 2016; 6:36125. [PMID: 27808278 PMCID: PMC5093586 DOI: 10.1038/srep36125] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic manipulation of the gasotransmitter hydrogen sulfide (H2S) has recently been proposed as a novel targeted anticancer approach. Here we show that human lung adenocarcinoma tissue expresses high levels of hydrogen sulfide (H2S) producing enzymes, namely, cystathionine beta-synthase (CBS), cystathionine gamma lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), in comparison to adjacent lung tissue. In cultured lung adenocarcinoma but not in normal lung epithelial cells elevated H2S stimulates mitochondrial DNA repair through sulfhydration of EXOG, which, in turn, promotes mitochondrial DNA repair complex assembly, thereby enhancing mitochondrial DNA repair capacity. In addition, inhibition of H2S-producing enzymes suppresses critical bioenergetics parameters in lung adenocarcinoma cells. Together, inhibition of H2S-producing enzymes sensitize lung adenocarcinoma cells to chemotherapeutic agents via induction of mitochondrial dysfunction as shown in in vitro and in vivo models, suggesting a novel mechanism to overcome tumor chemoresistance.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Michela Marcatti
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - John R Zatarain
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Nadiya Druzhyna
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest 1122, Hungary
| | - Mark R Hellmich
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|
6
|
Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016; 173:649-65. [PMID: 25800044 PMCID: PMC4742299 DOI: 10.1111/bph.13139] [Citation(s) in RCA: 1336] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Microglia are critical nervous system-specific immune cells serving as tissue-resident macrophages influencing brain development, maintenance of the neural environment, response to injury and repair. As influenced by their environment, microglia assume a diversity of phenotypes and retain the capability to shift functions to maintain tissue homeostasis. In comparison with peripheral macrophages, microglia demonstrate similar and unique features with regards to phenotype polarization, allowing for innate immunological functions. Microglia can be stimulated by LPS or IFN-γ to an M1 phenotype for expression of pro-inflammatory cytokines or by IL-4/IL-13 to an M2 phenotype for resolution of inflammation and tissue repair. Increasing evidence suggests a role of metabolic reprogramming in the regulation of the innate inflammatory response. Studies using peripheral immune cells demonstrate that polarization to an M1 phenotype is often accompanied by a shift in cells from oxidative phosphorylation to aerobic glycolysis for energy production. More recently, the link between polarization and mitochondrial energy metabolism has been considered in microglia. Under these conditions, energy demands would be associated with functional activities and cell survival and thus, may serve to influence the contribution of microglia activation to various neurodegenerative conditions. This review examines the polarization states of microglia and their relationship to mitochondrial metabolism. Additional supporting experimental data are provided to demonstrate mitochondrial metabolic shifts in primary microglia and the BV-2 microglia cell line induced under LPS (M1) and IL-4/IL-13 (M2) polarization.
Collapse
Affiliation(s)
- Ruben Orihuela
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christopher A McPherson
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gaylia Jean Harry
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Abstract
Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease.
Collapse
|
8
|
Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res 2015; 1595:127-42. [DOI: 10.1016/j.brainres.2014.10.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/17/2014] [Accepted: 10/26/2014] [Indexed: 12/25/2022]
|
9
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
10
|
Kong D, Shi S, Li Y, Li R, Li M. Single nucleotide polymorphisms in the mitochondrial displacement loop and age-at-onset of epithelial ovarian cancer. ACTA ACUST UNITED AC 2014; 27:1141-3. [DOI: 10.3109/19401736.2014.936320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Muftuoglu M, Mori MP, de Souza-Pinto NC. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion 2014; 17:164-81. [PMID: 24704805 DOI: 10.1016/j.mito.2014.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Department of Molecular Biology and Genetics, Acibadem University, Atasehir, 34752 Istanbul, Turkey
| | - Mateus P Mori
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil.
| |
Collapse
|
12
|
Yeung KY, Dickinson A, Donoghue JF, Polekhina G, White SJ, Grammatopoulos DK, McKenzie M, Johns TG, John JCS. The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun 2014; 2:1. [PMID: 24383468 PMCID: PMC3912901 DOI: 10.1186/2051-5960-2-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes key proteins of the electron transfer chain (ETC), which produces ATP through oxidative phosphorylation (OXPHOS) and is essential for cells to perform specialised functions. Tumor-initiating cells use aerobic glycolysis, a combination of glycolysis and low levels of OXPHOS, to promote rapid cell proliferation and tumor growth. Glioblastoma multiforme (GBM) is an aggressively malignant brain tumor and mitochondria have been proposed to play a vital role in GBM tumorigenesis. RESULTS Using next generation sequencing and high resolution melt analysis, we identified a large number of mtDNA variants within coding and non-coding regions of GBM cell lines and predicted their disease-causing potential through in silico modeling. The frequency of variants was greatest in the D-loop and origin of light strand replication in non-coding regions. ND6 was the most susceptible coding gene to mutation whilst ND4 had the highest frequency of mutation. Both genes encode subunits of complex I of the ETC. These variants were not detected in unaffected brain samples and many have not been previously reported. Depletion of HSR-GBM1 cells to varying degrees of their mtDNA followed by transplantation into immunedeficient mice resulted in the repopulation of the same variants during tumorigenesis. Likewise, de novo variants identified in other GBM cell lines were also incorporated. Nevertheless, ND4 and ND6 were still the most affected genes. We confirmed the presence of these variants in high grade gliomas. CONCLUSIONS These novel variants contribute to GBM by rendering the ETC. partially dysfunctional. This restricts metabolism to anaerobic glycolysis and promotes cell proliferation.
Collapse
|
13
|
Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. Curr Genomics 2013; 14:195-203. [PMID: 24179442 PMCID: PMC3664469 DOI: 10.2174/1389202911314030005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial genome and functional alterations are related to various diseases including cancer. In all cases, the role of these organelles is associated with defects in oxidative energy metabolism and control of tumor-induced oxidative stress. The present study examines the involvement of mitochondrial DNA in cancer and in particular in breast cancer. Furthermore, since mitochondrial DNA is maternally inherited, hereditary breast cancer has been focused on.
Collapse
Affiliation(s)
- Stefania Weigl
- National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari-Italy
| | | | | |
Collapse
|
14
|
Moreno-Loshuertos R, Pérez-Martos A, Fernández-Silva P, Enríquez JA. Length variation in the mouse mitochondrial tRNA(Arg) DHU loop size promotes oxidative phosphorylation functional differences. FEBS J 2013; 280:4983-98. [PMID: 23910637 DOI: 10.1111/febs.12466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023]
Abstract
The efficiency of the cellular oxidative phosphorylation system was recently shown to be modulated by common mitochondrial tRNA(A) (rg) haplotypes. The molecular mechanism by which some mt-Tr haplotypes induce these functional differences remains undetermined. Common polymorphisms in mouse mt-Tr genes affect the size of the dihydrouridine loop in the mature tRNA, producing loops of between five and seven nucleotides, the largest being a rare variant among mammals. Here, we analyzed a new mt-Tr variant identified in C3H mice, and found that it is mitochondrial tRNA loop size, but not the specific sequence, that is responsible for the observed differences in cellular respiration. We further found that the sensitivity of mitochondrial protein synthesis to specific inhibitors is dependent on the mt-Tr gene haplotype, and confirmed that the differences in oxidative phosphorylation performance are masked by a reactive oxygen species-induced compensatory increase in mitochondrial biogenesis.
Collapse
|
15
|
Soini HK, Moilanen JS, Vilmi-Kerälä T, Finnilä S, Majamaa K. Mitochondrial DNA variant m.15218A > G in Finnish epilepsy patients who have maternal relatives with epilepsy, sensorineural hearing impairment or diabetes mellitus. BMC MEDICAL GENETICS 2013; 14:73. [PMID: 23870133 PMCID: PMC3726289 DOI: 10.1186/1471-2350-14-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 07/17/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mitochondrial diseases caused by mutations in mitochondrial DNA (mtDNA) affect tissues with high energy demand. Epilepsy is one of the manifestations of mitochondrial dysfunction when the brain is affected. We have studied here 79 Finnish patients with epilepsy and who have maternal first- or second-degree relatives with epilepsy, sensorineural hearing impairment or diabetes mellitus. METHODS The entire mtDNA was studied by using conformation sensitive gel electrophoresis and PCR fragments that differed in mobility were directly sequenced. RESULTS We found a common nonsynonymous variant m.15218A > G (p.T158A, MTCYB) that occurs in haplogroup U5a1 to be more frequent in patients with epilepsy. The m.15218A > G variant was present in five patients with epilepsy and in four out of 403 population controls (p = 0.0077). This variant was present in two branches in the phylogenetic network constructed on the basis of mtDNA variation among the patients. Three algorithms predicted that m.15218A > G is damaging in effect. CONCLUSIONS We suggest that the m.15218A > G variant is mildly deleterious and that mtDNA involvement should be considered in patients with epilepsy and who have a maternal history of epilepsy, sensorineural hearing impairment or diabetes mellitus.
Collapse
Affiliation(s)
- Heidi K Soini
- Department of Neurology, Oulu University Hospital, P.O. Box 20, Oulu FI-90029, OYS, Finland
- Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Clinical Research Center, Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Jukka S Moilanen
- Department of Clinical Genetics, Oulu University Hospital and University of Oulu P.O. Box 23, FI-90029, OYS, Oulu, Finland
| | - Tiina Vilmi-Kerälä
- Department of Neurology, Oulu University Hospital, P.O. Box 20, Oulu FI-90029, OYS, Finland
- Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Clinical Research Center, Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Saara Finnilä
- Department of Neurology, Oulu University Hospital, P.O. Box 20, Oulu FI-90029, OYS, Finland
- Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Clinical Research Center, Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Kari Majamaa
- Department of Neurology, Oulu University Hospital, P.O. Box 20, Oulu FI-90029, OYS, Finland
- Department of Clinical Medicine, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
- Clinical Research Center, Oulu University Hospital, P.O. Box 5000, FI-90014, Oulu, Finland
| |
Collapse
|
16
|
Cardoso S, Valverde L, Alfonso-Sánchez MA, Palencia-Madrid L, Elcoroaristizabal X, Algorta J, Catarino S, Arteta D, Herrera RJ, Zarrabeitia MT, Peña JA, de Pancorbo MM. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques. PLoS One 2013; 8:e67835. [PMID: 23844106 PMCID: PMC3700859 DOI: 10.1371/journal.pone.0067835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre-Neolithic origin to ≈35%, further supporting the notion of a predominant Paleolithic genetic substrate in extant European populations.
Collapse
Affiliation(s)
- Sergio Cardoso
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miguel A. Alfonso-Sánchez
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Xabier Elcoroaristizabal
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jaime Algorta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Susana Catarino
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - David Arteta
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Rene J. Herrera
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, Florida, United States of America
| | | | - José A. Peña
- Departmento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
- * E-mail:
| |
Collapse
|
17
|
Gupta C, Tikoo K. High glucose and insulin differentially modulates proliferation in MCF-7 and MDA-MB-231 cells. J Mol Endocrinol 2013; 51:119-29. [PMID: 23690508 DOI: 10.1530/jme-13-0062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Various preclinical and clinical studies have linked diabetes and breast cancer, but little is known regarding the molecular mechanism involved. This study aimed to investigate the effect of high glucose and insulin in breast cancer cells (MCF-7: non-invasive, hormone dependent, and MDA-MB-231: invasive, hormone independent). In contrast to MCF-7 cells, high glucose augmented proliferation of MDA-MB-231 cells as observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine assays. The high-glucose condition led to increased expression of cyclin D1, de-phosphorylation of p38, and increased phosphorylation of ERK in MDA-MB-231 cells but not in MCF-7 cells. Interestingly, we observed increased phosphorylation of GSK-3β, NF-κB, and ERα only in MCF-7 cells, highlighting their role as potential targets in prevention of progression of breast cancer under a high-glucose and insulin condition. Furthermore, insulin treatment under a high-glucose condition resulted in increased histone H3 phosphorylation and de-acetylation only in MDA-MB-231 cells. Taken together, we provide the first evidence that high glucose and insulin promotes proliferation of MDA-MB-231 cells by differential alteration of GSK-3β, NF-κB, and ERα expression and histone H3 modifications, which may directly or indirectly modulate the expression of genes involved in its proliferation.
Collapse
Affiliation(s)
- Chanchal Gupta
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Sector 67, S.A.S. Nagar, Mohali, Punjab-160062, India
| | | |
Collapse
|
18
|
Iglesias P, Salas A, Costoya JA. The maintenance of mitochondrial genetic stability is crucial during the oncogenic process. Commun Integr Biol 2012; 5:34-8. [PMID: 22482007 DOI: 10.4161/cib.18160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The main energetic resources of the cell are the mitochondria. As such, these organelles control a number of processes related to the life and death of the cell and also have a prominent function in the maintenance of tumor cells. In the last years, several authors have proposed an active role for mitochondria in tumorigenesis, more specifically concerning somatic mutations in mitochondrial DNA (mtDNA). Here, we wanted to evaluate this hypothesis based on the conclusions obtained in a model of gliomagenesis with elevated levels of ROS (reactive oxygen species), a toxic by-product of tumor metabolism. According to our findings, none of the mtDNA variants were found relevant to the tumoral process or suggest the involvement of mitochondria in tumorigenesis beyond the metabolic requirements of the tumoral cell. We conclude that there is not enough evidence to support the claim that mitochondrial instability holds any relevant role in the tumoral process.
Collapse
|
19
|
Wright NA. Stem cell identification-in vivo
lineage analysis versus in vitro
isolation and clonal expansion. J Pathol 2012; 227:255-66. [DOI: 10.1002/path.4018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
20
|
Genetic continuity in the Franco-Cantabrian region: new clues from autochthonous mitogenomes. PLoS One 2012; 7:e32851. [PMID: 22442672 PMCID: PMC3307710 DOI: 10.1371/journal.pone.0032851] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background The Late Glacial Maximum (LGM), ∼20 thousand years ago (kya), is thought to have forced the people inhabiting vast areas of northern and central Europe to retreat to southern regions characterized by milder climatic conditions. Archaeological records indicate that Franco-Cantabria might have been the major source for the re-peopling of Europe at the beginning of the Holocene (11.5 kya). However, genetic evidence is still scarce and has been the focus of an intense debate. Methods/Principal Findings Based on a survey of more than 345,000 partial control region sequences and the analysis of 53 mitochondrial DNA (mtDNA) genomes, we identified an mtDNA lineage, HV4a1a, which most likely arose in the Franco-Cantabrian area about 5.4 kya and remained confined to northern Iberia. Conclusions/Significance The HV4a1a lineage and several of its younger branches reveal for the first time genetic continuity in this region and long-term episodes of isolation. This, in turn, could at least in part explain the unique linguistic and cultural features of the Basque region.
Collapse
|