1
|
Dai C, Zhang Y, Gong Y, Bradley A, Tang Z, Sellick K, Shrestha S, Spears E, Covington BA, Stanley J, Jenkins R, Richardson TM, Brantley RA, Coate K, Saunders DC, Wright JJ, Brissova M, Dean ED, Powers AC, Chen W. Hyperaminoacidemia from interrupted glucagon signaling increases pancreatic acinar cell proliferation and size via mTORC1 and YAP pathways. iScience 2024; 27:111447. [PMID: 39720531 PMCID: PMC11667045 DOI: 10.1016/j.isci.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/28/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mechanisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish, we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hypertrophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin complex 1 (mTORC1) signaling, acinar cell proliferation required slc38a5, the most highly expressed amino acid transporter gene in both species. Transcriptomics data revealed the activation signature of yes-associated protein (YAP) in acinar cells of mice with hyperaminoacidemia, consistent with the observed increase in YAP-expressing acinar cells. Yap1 activation also occurred in acinar cells in gcgr-/- zebrafish, which was reversed by rapamycin. Knocking down yap1 in gcgr-/- zebrafish decreased mTORC1 activity and acinar cell proliferation and hypertrophy. Thus, the study discovered a previously unrecognized role of the YAP/Taz pathway in hyperaminoacidemia-induced acinar cell hypertrophy and hyperplasia.
Collapse
Affiliation(s)
- Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amber Bradley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shristi Shrestha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brittney A. Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jade Stanley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Regina Jenkins
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tiffany M. Richardson
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rebekah A. Brantley
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katie Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan J. Wright
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E. Danielle Dean
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Cidade-Rodrigues C, Santos AP, Calheiros R, Santos S, Matos C, Moreira AP, Inácio I, Souteiro P, Oliveira J, Jácome M, Pereira SS, Henrique R, Torres I, Monteiro MP. Non-functional alpha-cell hyperplasia with glucagon-producing NET: a case report. Front Endocrinol (Lausanne) 2024; 15:1405835. [PMID: 39309109 PMCID: PMC11412808 DOI: 10.3389/fendo.2024.1405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Alpha-cell hyperplasia (ACH) is a rare pancreatic endocrine condition. Three types of ACH have been described: functional or nonglucagonoma hyperglucagonemic glucagonoma syndrome, reactive or secondary to defective glucagon signaling, and non-functional. Few cases of ACH with concomitant pancreatic neuroendocrine tumors (pNETs) have been reported and its etiology remains poorly understood. A case report of non-functional ACH with glucagon-producing NET is herein presented. Case report A 72-year-old male was referred to our institution for a 2 cm single pNET incidentally found during imaging for acute cholecystitis. The patient's past medical history included type 2 diabetes (T2D) diagnosed 12 years earlier, for which he was prescribed metformin, dapagliflozin, and semaglutide. The pNET was clinically and biochemically non-functioning, apart from mildly elevated glucagon 217 pg/ml (<209), and 68Ga-SSTR PET/CT positive uptake was only found at the pancreatic tail (SUVmax 11.45). The patient underwent a caudal pancreatectomy and the post-operative 68Ga-SSTR PET/CT was negative. A multifocal well-differentiated NET G1, pT1N0M0R0 (mf) strongly staining for glucagon on a background neuroendocrine alpha-cell hyperplasia with some degree of acinar fibrosis was identified on pathology analysis. Discussion and conclusion This case reports the incidental finding of a clinically non-functioning pNET in a patient with T2D and elevated glucagon levels, unexpectedly diagnosed as glucagon-producing NET and ACH. A high level of suspicion was required to conduct the glucagon immunostaining, which is not part of the pathology routine for a clinically non-functioning pNET, and was key for the diagnosis that otherwise would have been missed. This case highlights the need to consider the diagnosis of glucagon-producing pNET on an ACH background even in the absence of glucagonoma syndrome.
Collapse
Affiliation(s)
| | - Ana Paula Santos
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Research Center of IPO Porto (CI-IPOP), RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (P.CCC), Porto, Portugal
| | - Raquel Calheiros
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sara Santos
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Catarina Matos
- Hospital de Braga, Unidade Local de Saúde de Braga, Braga, Portugal
| | - Ana Paula Moreira
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Inácio
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro Souteiro
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Joana Oliveira
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel Jácome
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia S. Pereira
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Laboratory of Integrative and Translocation Research in Population Health (ITR), Porto, Portugal
| | - Rui Henrique
- Research Center of IPO Porto (CI-IPOP), RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (P.CCC), Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Isabel Torres
- Department of Endocrinology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Mariana P. Monteiro
- Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Laboratory of Integrative and Translocation Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
3
|
Xu Y, Liu Q, Chen CW, Wang Q, Du T, Yu R, Zhou Q, Yang D, Wang MW. Absence of PNET formation and normal longevity in a mouse model of Mahvash disease. Heliyon 2024; 10:e35362. [PMID: 39170309 PMCID: PMC11336617 DOI: 10.1016/j.heliyon.2024.e35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.
Collapse
Affiliation(s)
- Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chuan-Wei Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Qiuying Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyuan Du
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| |
Collapse
|
4
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
5
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
6
|
Hvid H, Brand CL, Hummelshøj T, Jensen S, Bouman SD, Bowler A, Poulsen BR, Tiainen P, Åkertröm T, Demozay D, Hoeg-Jensen T, Ingvorsen C, Pedersen TÅ, McGuire J, Egebjerg T, Cappelen KA, Eliasen IP, Hansen BF, Hennen S, Stidsen CE, Olsen GS, Roed NK. Preclinical exploration of combined glucagon inhibition and liver-preferential insulin for treatment of diabetes using in vitro assays and rat and mouse models. Diabetologia 2023; 66:376-389. [PMID: 36404376 PMCID: PMC9807490 DOI: 10.1007/s00125-022-05828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
AIMS/HYPOTHESIS Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA1c. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.e. improved glycaemic control), but also have effects that are potential safety risks (i.e. alpha cell hyperplasia in response to glucagon receptor antagonists and increased levels of liver triacylglycerols and plasma alanine aminotransferase activity in response to glucagon receptor antagonists and liver-preferential insulin). We hypothesised that a combination of glucagon inhibition and liver-preferential insulin action in a dual-acting molecule would widen the therapeutic window. By correcting two pathogenic mechanisms (dysregulated glucagon signalling and non-physiological distribution of conventional insulin administered s.c.), we hypothesised that lower doses of each component would be required to obtain sufficient reduction of hyperglycaemia, and that the undesirable effects that have previously been observed for monotreatment with glucagon antagonists and liver-preferential insulin could be avoided. METHODS A dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule was designed and tested in rodent models (normal rats, rats with streptozotocin-induced hyperglycaemia, db/db mice and mice with diet-induced obesity and streptozotocin-induced hyperglycaemia), allowing detailed characterisation of the pharmacokinetic and pharmacodynamic properties of the dual-acting molecule and relevant control compounds, as well as exploration of how the dual-acting molecule influenced glucagon-induced recovery and spontaneous recovery from acute hypoglycaemia. RESULTS This molecule normalised blood glucose in diabetic models, and was markedly less prone to induce hypoglycaemia than conventional insulin treatment (approximately 4.6-fold less potent under hypoglycaemic conditions than under normoglycaemic conditions). However, compared to treatment with conventional long-acting insulin, this dual-acting molecule also increased triacylglycerol levels in the liver (approximately 60%), plasma alanine aminotransferase levels (approximately twofold) and alpha cell mass (approximately twofold). CONCLUSIONS/INTERPRETATION While the dual-acting glucagon receptor inhibitor and liver-preferential insulin molecule showed markedly improved regulation of blood glucose, effects that are potential safety concerns persisted in the pharmacologically relevant dose range.
Collapse
Affiliation(s)
- Henning Hvid
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Tina Hummelshøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Sanne Jensen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Andrew Bowler
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
- QC Laboratories, Syntese A/S, Hvidovre, Denmark
| | | | - Peter Tiainen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Damien Demozay
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | - Jim McGuire
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
- Catalyst Biosciences, San Francisco, CA, USA
| | - Thomas Egebjerg
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | | | - Ina P Eliasen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Bo F Hansen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Stephanie Hennen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
- Grünethal GmbH, Aachen, Germany
| | | | - Grith S Olsen
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Nikolaj K Roed
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark.
| |
Collapse
|
7
|
Wang Y, Wang F, Qin Y, Lou X, Ye Z, Zhang W, Gao H, Chen J, Xu X, Yu X, Ji S. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 2023; 80:266-282. [PMID: 36648608 DOI: 10.1007/s12020-023-03299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Gong Y, Yang B, Zhang D, Zhang Y, Tang Z, Yang L, Coate KC, Yin L, Covington BA, Patel RS, Siv WA, Sellick K, Shou M, Chang W, Danielle Dean E, Powers AC, Chen W. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat Commun 2023; 14:235. [PMID: 36646689 PMCID: PMC9842633 DOI: 10.1038/s41467-022-35705-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.
Collapse
Affiliation(s)
- Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Dingdong Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Liu Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Ravi S Patel
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Walter A Siv
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Wenhan Chang
- University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, 94158, USA
| | - E Danielle Dean
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
10
|
Jacenik D, Lebish EJ, Beswick EJ. MK2 Promotes the Development and Progression of Pancreatic Neuroendocrine Tumors Mediated by Macrophages and Metabolomic Factors. Int J Mol Sci 2022; 23:13561. [PMID: 36362348 PMCID: PMC9658113 DOI: 10.3390/ijms232113561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/24/2023] Open
Abstract
Cases of pancreatic neuroendocrine tumors (PNETs) are growing in number, and new treatment options are needed in order to improve patient outcomes. The mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a crucial regulator of cytokine/chemokine production. The significance of MK2 expression and signaling pathway mediated by MK2 in PNETs has not been investigated. To characterize the impact of MK2 on PNET growth, we used the RipTag2 transgenic murine model of PNETs, and we developed a primary PNET cell line for both in vitro and in vivo studies. In the transgenic murine model of PNETs, we found that MK2 inhibition improves survival of mice and prevents PNET progression. MK2 blockade abolished cytokine/chemokine production, which was related to macrophage function. A role for MK2 in the regulation of metabolic factor secretion in PNETs was identified, making this the first study to identify a potential role for the MK2 pathway in regulation of tumor metabolism. Moreover, using an in vitro approach and allograft model of PNETs, we were able to show that macrophages with MK2 depletion exhibit increased cytotoxicity against PNET cells and substantially decreased production of pro-inflammatory cytokines and chemokines, as well as metabolic factors. Taken together, our work identifies MK2 as a potent driver of immune response and metabolic effectors in PNETs, suggesting it is a potential therapeutic target for patients with PNETs.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Eric J. Lebish
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Ellen J. Beswick
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Rhyu J, Yu R. Newly discovered endocrine functions of the liver. World J Hepatol 2021; 13:1611-1628. [PMID: 34904032 PMCID: PMC8637678 DOI: 10.4254/wjh.v13.i11.1611] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine functions, such as direct hormone and hepatokine production, hormone metabolism, synthesis of binding proteins, and processing and redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of the liver have been discovered. Advances in the classical endocrine functions include delineation of mechanisms of liver production of endocrine hormones [including 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], hepatic metabolism of hormones (including thyroid hormones, glucagon-like peptide-1, and steroid hormones), and actions of specific binding proteins to glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered insight into cirrhosis-associated endocrinopathies, such as hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and lipid homeostasis, and controversially relative adrenal insufficiency. Several novel endocrine functions of the liver have also been unraveled, elucidating the liver’s key negative feedback regulatory role in the pancreatic α cell-liver axis, which regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth factor 21, have also been discovered to play important endocrine roles in modulating insulin sensitivity, lipid metabolism, and body weight. It is expected that more endocrine functions of the liver will be revealed in the near future.
Collapse
Affiliation(s)
- Jane Rhyu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Run Yu
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, United States
| |
Collapse
|
12
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
14
|
An C, Zhang K, Zhu W, Bi Y, Wu T, Tao C, Wang Y, Yang S. Molecular cloning, sequence characteristics, and tissue expression analysis of glucagon receptor gene in Bama minipig. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that the glucagon receptor (GCGR) plays an important role in the development of type 2 diabetes mellitus. Both pigs and humans exhibit significantly similar behaviors in their glucose and lipid metabolism. In this study, the obtained Bama minipig GCGR coding sequence was 1437 bp encoding 479 amino acids (AA), which demonstrated higher sequence homology with humans than other species. It showed the highest expression profile in the liver, followed by the lung and kidney. In addition, the three-dimensional structure analysis showed that the porcine GCGR protein also had a classic sevenfold transmembrane region and a stalk region at the N-terminus for ligand binding. The stalk region of GCGR possessed five AA variations. The ligand binding pocket of GCGR has one AA variation in the key region, none of which affected the glucagon binding verified by the crystal structure mutagenesis in humans. There was no variation found in the region of membrane anchoring, hydrophobic bond, salt bridge, and hydrogen bond. However, the Gly40Ser mutation in mice resulted in major diseases, meaning that pigs are more suitable for the evaluation of GCGR-related drugs than mice.
Collapse
Affiliation(s)
- Cuiping An
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanzhen Bi
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, People’s Republic of China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| |
Collapse
|
15
|
Li E, Shan H, Chen L, Long A, Zhang Y, Liu Y, Jia L, Wei F, Han J, Li T, Liu X, Deng H, Wang Y. OLFR734 Mediates Glucose Metabolism as a Receptor of Asprosin. Cell Metab 2019; 30:319-328.e8. [PMID: 31230984 DOI: 10.1016/j.cmet.2019.05.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/09/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Asprosin is a fasting-induced hormone that promotes glucose production in the liver and stimulates appetite in the hypothalamus by activating the cAMP signaling pathway via an unknown G protein-coupled receptor (GPCR). However, the bona fide receptor of Asprosin is unclear. Here, we have identified that the olfactory receptor OLFR734 acts as a receptor of Asprosin to modulate hepatic glucose production. Olfr734 knockout mice show a blunted response to Asprosin, including attenuated cAMP levels and hepatic glucose production, and improved insulin sensitivity. As Olfr734 deficiency dramatically attenuates both fasting and high-fat-diet-induced glucose production, our results demonstrate a critical role of OLFR734 as a receptor of Asprosin to maintain glucose homeostasis during fasting and in obesity.
Collapse
Affiliation(s)
- Erwei Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Haili Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Liqun Chen
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Aijun Long
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yuanyuan Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Liangjie Jia
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Fangchao Wei
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jinbo Han
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Tong Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, 100084 Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
16
|
Briganti V, Cuccurullo V, Di Stasio GD, Mansi L. Gamma Emitters in Pancreatic Endocrine Tumors Imaging in the PET Era: Is there a Clinical Space for 99mTc-peptides? Curr Radiopharm 2019; 12:156-170. [DOI: 10.2174/1874471012666190301122524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/15/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Pancreatic Neuroendocrine Tumors (PNETs) are rare neoplasms, sporadic or
familial, even being part of a syndrome. Their diagnosis is based on symptoms, hormonal disorders or
may be fortuitous. The role of Nuclear Medicine is important, mainly because of the possibility of a
theranostic strategy. This approach is allowed by the availability of biochemical agents, which may be
labeled with radionuclides suitable for diagnostic or therapeutic purposes, showing almost identical
pharmacokinetics. The major role for radiopharmaceuticals is connected with radiolabeled Somatostatin
Analogues (SSA), since somatostatin receptors are highly expressed on some of the neoplastic
cell types.
Discussion:
Nowadays, in the category of radiolabeled SSA, although 111In-pentetreotide, firstly
commercially proposed, is still used, the best choice for diagnosis is related to the so called DOTAPET
radiotracers labeled with 68-Gallium (Ga), such as 68Ga-DOTATATE, 68Ga-DOTANOC, and
68Ga-DOTATOC. More recently, labeling with 64-Copper (Cu) (64Cu-DOTATATE) has also been
proposed. In this review, we discuss the clinical interest of a SAA (Tektrotyd©) radiolabeled with
99mTc, a gamma emitter with better characteristics, with respect to 111Indium, radiolabeling Octreoscan
©. By comparing both pharmacokinetics and pharmacodynamics of Octreoscan©, Tektrotyd©
and PET DOTA-peptides, on the basis of literature data and of our own experience, we tried to highlight
these topics to stimulate further studies, individuating actual clinical indications for all of these
radiotracers.
Conclusion:
In our opinion, Tektrotyd© could already find its applicative dimension in the daily practice
of NETs, either pancreatic or not, at least in centers without a PET/CT or a 68Ga generator. Because
of wider availability, a lower cost, and a longer decay, compared with respect to peptides labeled
with 68Ga, it could be also proposed, in a theranostic context, for a dosimetry evaluation of patients
undergoing Peptide Receptor Radionuclide Therapy (PRRT), and for non-oncologic indications
of radiolabelled SSA. In this direction, and for a more rigorous cost/effective evaluation, more precisely
individuating its clinical role, further studies are needed.
Collapse
Affiliation(s)
- Vittorio Briganti
- Nuclear Medicine Unit - Azienda Ospedaliero Universitaria Careggi Firenze, Italy
| | - Vincenzo Cuccurullo
- Nuclear Medicine Unit, Department of Clinical and Experimental Medicine "F.Magrassi, A.Lanzara" – Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppe Danilo Di Stasio
- Nuclear Medicine Unit, Department of Clinical and Experimental Medicine "F.Magrassi, A.Lanzara" – Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Luigi Mansi
- Health and Development Section, Interuniversitary Research Center for Sustainable Development, Napoli-Roma, Italy
| |
Collapse
|
17
|
Gild ML, Tsang V, Samra J, Clifton-Bligh RJ, Tacon L, Gill AJ. Hypercalcemia in Glucagon Cell Hyperplasia and Neoplasia (Mahvash Syndrome): A New Association. J Clin Endocrinol Metab 2018; 103:3119-3123. [PMID: 30032256 DOI: 10.1210/jc.2018-01074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022]
Abstract
CONTEXT Hyperglucagonemia in the absence of glucagonomas is rare. Biallelic-inactivating mutations in the glucagon receptor gene (GCGR) cause glucagon cell hyperplasia and neoplasia (GCHN), also termed Mahvash syndrome. Here, we report the first case to our knowledge of GCHN presenting with hypercalcemia and demonstrate a unique relationship between calcium and α-cell hyperplasia. CASE DESCRIPTION A 47-year-old man presented with severe PTH-independent hypercalcemia, 13.95 mg/dL (3.48 mmol/L). Imaging and extensive pathology tests yielded no conclusive cause. Glucagon levels >300 times the upper limit of normal were discovered. Subtotal pancreatectomy identified α-cell hyperplasia and neoplasia with metastatic disease in lymph nodes. Genomic analysis confirmed a homozygous missense variant in GCGR (Asp63Asn). This is a previously described pathologic variant and has a known association with GCHN. CONCLUSIONS Inactivating mutations of the glucagon receptor gene lead to nonfunctional hyperglucagonemia and are associated with GCHN. Homozygous or compound heterozygous GCGR mutations are associated with α-cell hyperplasia, a known precursor to pancreatic neuroendocrine tumors that can metastasize. Hypercalcemia is an unreported consequence of GCHN with an unclear mechanism.
Collapse
Affiliation(s)
- Matti L Gild
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Venessa Tsang
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Jaswinder Samra
- University of Sydney, Sydney, New South Wales, Australia
- Department of Surgery, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Roderick J Clifton-Bligh
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Lyndal Tacon
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Anthony J Gill
- University of Sydney, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
18
|
Zhou W, Gong L, Li X, Wan Y, Wang X, Li H, Jiang B. Screening key candidate genes and pathways involved in insulinoma by microarray analysis. Medicine (Baltimore) 2018; 97:e10826. [PMID: 29851790 PMCID: PMC6392920 DOI: 10.1097/md.0000000000010826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.
Collapse
Affiliation(s)
- Wuhua Zhou
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Shiyan City, Hubei Province, China
| | - Xuefeng Li
- Department of Endocrinology, Taihe Hospital, Shiyan City, Hubei Province, China
| | - Yunyan Wan
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital
| | - Xiangfei Wang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital
| | - Huili Li
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital
| |
Collapse
|
19
|
Waldum HL, Öberg K, Sørdal ØF, Sandvik AK, Gustafsson BI, Mjønes P, Fossmark R. Not only stem cells, but also mature cells, particularly neuroendocrine cells, may develop into tumours: time for a paradigm shift. Therap Adv Gastroenterol 2018; 11:1756284818775054. [PMID: 29872453 PMCID: PMC5974566 DOI: 10.1177/1756284818775054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/03/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells are considered the origin of neoplasms in general, and malignant tumours in particular, and the stage at which the stem cells stop their differentiation determines the degree of malignancy. However, there is increasing evidence supporting an alternative paradigm. Tumours may develop by dedifferentiation from mature cells able to proliferate. Studies of gastric carcinogenesis demonstrate that mature neuroendocrine (NE) cells upon long-term overstimulation may develop through stages of hyperplasia, dysplasia, and rather benign tumours, into highly malignant carcinomas. Dedifferentiation of cells may change the histological appearance and impede the identification of the cellular origin, as seen with gastric carcinomas, which in many cases are dedifferentiated neuroendocrine tumours. Finding the cell of origin is important to identify risk factors for cancer, prevent tumour development, and tailor treatment. In the present review, we focus not only on gastric tumours, but also evaluate the role of neuroendocrine cells in tumourigenesis in two other foregut-derived organs, the lungs and the pancreas, as well as in the midgut-derived small intestine.
Collapse
Affiliation(s)
- Helge L. Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, N-7491, Norway Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjell Öberg
- Department of Endocrine Oncology Uppsala University and University Hospital, Uppsala, Sweden
| | - Øystein F. Sørdal
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn I. Gustafsson
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Patricia Mjønes
- epartment of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | - Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
|
21
|
Kawasaki K, Fujii M, Sato T. Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. Dis Model Mech 2018; 11:11/2/dmm029595. [PMID: 29590641 PMCID: PMC5894937 DOI: 10.1242/dmm.029595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) refer to a group of heterogeneous cancers of neuroendocrine cell phenotype that mainly fall into one of two subtypes: gastroenteropancreatic neuroendocrine tumors (GEP-NETs; well differentiated) or gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs; poorly differentiated). Although originally defined as orphan cancers, their steadily increasing incidence highlights the need to better understand their etiology. Accumulating epidemiological and clinical data have shed light on the pathological characteristics of these diseases. However, the relatively low number of patients has hampered conducting large-scale clinical trials and hence the development of novel treatment strategies. To overcome this limitation, tractable disease models that faithfully reflect clinical features of these diseases are needed. In this Review, we summarize the current understanding of the genetics and biology of these diseases based on conventional disease models, such as genetically engineered mouse models (GEMMs) and cell lines, and discuss the phenotypic differences between the models and affected humans. We also highlight the emerging disease models derived from human clinical samples, including patient-derived xenograft models and organoids, which may provide biological and therapeutic insights into GEP-NENs.
Collapse
Affiliation(s)
- Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
22
|
Fielitz K, Althoff K, De Preter K, Nonnekens J, Ohli J, Elges S, Hartmann W, Klöppel G, Knösel T, Schulte M, Klein-Hitpass L, Beisser D, Reis H, Eyking A, Cario E, Schulte JH, Schramm A, Schüller U. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells. Oncotarget 2018; 7:74415-74426. [PMID: 27769070 PMCID: PMC5342675 DOI: 10.18632/oncotarget.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/13/2016] [Indexed: 01/28/2023] Open
Abstract
Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.
Collapse
Affiliation(s)
- Kathrin Fielitz
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katleen De Preter
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Julie Nonnekens
- Genetics and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasmin Ohli
- Center for Neuropathology, Ludwig-Maximilians University, Munich, Germany
| | - Sandra Elges
- Department of Pathology, University Hospital, Münster, Germany
| | | | - Günter Klöppel
- Department of Pathology, Technical University, Munich, Germany
| | - Thomas Knösel
- Department of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Marc Schulte
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Cell Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Genome Informatics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Department of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking
- Division of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Division of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians University, Munich, Germany.,Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Childrens Cancer Center, Hamburg, Germany.,Department of Pediatric Oncology and Hematology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Dean ED, Li M, Prasad N, Wisniewski SN, Von Deylen A, Spaeth J, Maddison L, Botros A, Sedgeman LR, Bozadjieva N, Ilkayeva O, Coldren A, Poffenberger G, Shostak A, Semich MC, Aamodt KI, Phillips N, Yan H, Bernal-Mizrachi E, Corbin JD, Vickers KC, Levy SE, Dai C, Newgard C, Gu W, Stein R, Chen W, Powers AC. Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metab 2017; 25:1362-1373.e5. [PMID: 28591638 PMCID: PMC5572896 DOI: 10.1016/j.cmet.2017.05.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing.
Collapse
Affiliation(s)
- E Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Scott N Wisniewski
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alison Von Deylen
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jason Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisette Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anthony Botros
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leslie R Sedgeman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nadejda Bozadjieva
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Health System, Ann Arbor, MI 48103, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27701, USA
| | - Anastasia Coldren
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael C Semich
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristie I Aamodt
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami, Miami, FL 33146, USA
| | - Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27701, USA
| | - Wei Gu
- Amgen, Thousand Oaks, CA 91320, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA.
| |
Collapse
|
24
|
Zhou H, Chen Q, Tan W, Qiu Z, Li S, Song Y, Gao S. Integrated clinicopathological features and gene microarray analysis of pancreatic neuroendocrine tumors. Gene 2017; 625:72-77. [PMID: 28479381 DOI: 10.1016/j.gene.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023]
Abstract
Pancreatic neuroendocrine tumors are relatively rare pancreatic neoplasms over the world. Investigations about molecular biology of PNETs are insufficient for nowadays. We aimed to explore the expression of messenger RNA and regulatory processes underlying pancreatic neuroendocrine tumors from different views. The expression profile of GSE73338 were downloaded, including samples with pancreatic neuroendocrine tumors. First, the Limma package was utilized to distinguish the differentially expressed messenger RNA. Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to explore the functions and pathways of target genes. In addition, we constructed a protein-protein interaction network. NEK2, UBE2C, TOP2A and PPP1R1A were revealed with continuous genomic alterations in higher tumor stage. 91 up-regulated and 36 down-regulated genes were identified to be differentially expressed in malignant PNETs. Locomotory behavior was significantly enriched for biological processes of metastasis PNETs. GCGR and GNAS were identified as the hub of proteins in the protein-protein interaction sub-network of malignant PNETs. We showed the gene expression differences in PNETs according to different clinicopathological aspects. NEK2, UBE2C, TOP2A are positively associated with high tumor grade, and PPP1R1A negatively. GCGR and GNAS are regarded as the hub of the PPI sub-network. CXCR4 may affect the progression of PNETs via the CXCR4-CXCL12-CXCR7 chemokine receptor axis. However, more studies are required.
Collapse
Affiliation(s)
- Huaqiang Zhou
- Department of Anesthesia, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Qinchang Chen
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Wulin Tan
- Department of Anesthesia, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeting Qiu
- Department of Anesthesia, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Si Li
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Yiyan Song
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Shaowei Gao
- Department of Anesthesia, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Maddison LA, Chen W. Modeling Pancreatic Endocrine Cell Adaptation and Diabetes in the Zebrafish. Front Endocrinol (Lausanne) 2017; 8:9. [PMID: 28184214 PMCID: PMC5266698 DOI: 10.3389/fendo.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose homeostasis is an important element of energy balance and is conserved in organisms from fruit fly to mammals. Central to the control of circulating glucose levels in vertebrates are the endocrine cells of the pancreas, particularly the insulin-producing β-cells and the glucagon producing α-cells. A feature of α- and β-cells is their plasticity, an ability to adapt, in function and number as a response to physiological and pathophysiological conditions of increased hormone demand. The molecular mechanisms underlying these adaptive responses that maintain glucose homeostasis are incompletely defined. The zebrafish is an attractive model due to the low cost, high fecundity, and amenability to genetic and compound screens, and mechanisms governing the development of the pancreatic endocrine cells are conserved between zebrafish and mammals. Post development, both β- and α-cells of zebrafish display plasticity as in mammals. Here, we summarize the studies of pancreatic endocrine cell adaptation in zebrafish. We further explore the utility of the zebrafish as a model for diabetes, a relevant topic considering the increase in diabetes in the human population.
Collapse
Affiliation(s)
- Lisette A. Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
26
|
Rhyu J, Yu R. Mahvash disease: an autosomal recessive hereditary pancreatic neuroendocrine tumor syndrome. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jane Rhyu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; current address Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,
| | - Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; current address Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|
27
|
Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, Lim CN, Fu H, Watson DE, Lewin AJ, Landschulz WH, Deeg MA, Moller DE, Hardy TA. Evaluation of Efficacy and Safety of the Glucagon Receptor Antagonist LY2409021 in Patients With Type 2 Diabetes: 12- and 24-Week Phase 2 Studies. Diabetes Care 2016; 39:1241-9. [PMID: 26681715 DOI: 10.2337/dc15-1643] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/30/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Type 2 diabetes pathophysiology is characterized by dysregulated glucagon secretion. LY2409021, a potent, selective small-molecule glucagon receptor antagonist that lowers glucose was evaluated for efficacy and safety in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS The efficacy (HbA1c and glucose) and safety (serum aminotransferase) of once-daily oral administration of LY2409021 was assessed in two double-blind studies. Phase 2a study patients were randomized to 10, 30, or 60 mg of LY2409021 or placebo for 12 weeks. Phase 2b study patients were randomized to 2.5, 10, or 20 mg LY2409021 or placebo for 24 weeks. RESULTS LY2409021 produced reductions in HbA1c that were significantly different from placebo over both 12 and 24 weeks. After 12 weeks, least squares (LS) mean change from baseline in HbA1c was -0.83% (10 mg), -0.65% (30 mg), and -0.66% (60 mg) (all P < 0.05) vs. placebo, 0.11%. After 24 weeks, LS mean change from baseline in HbA1c was -0.45% (2.5 mg), -0.78% (10 mg, P < 0.05), -0.92% (20 mg, P < 0.05), and -0.15% with placebo. Increases in serum aminotransferase, fasting glucagon, and total fasting glucagon-like peptide-1 (GLP-1) were observed; levels returned to baseline after drug washout. Fasting glucose was also lowered with LY2409021 at doses associated with only modest increases in aminotransferases (mean increase in alanine aminotransferase [ALT] ≤10 units/L). The incidence of hypoglycemia in the LY2409021 groups was not statistically different from placebo. CONCLUSIONS In patients with type 2 diabetes, glucagon receptor antagonist treatment significantly lowered HbA1c and glucose levels with good overall tolerability and a low risk for hypoglycemia. Modest, reversible increases in serum aminotransferases were observed.
Collapse
Affiliation(s)
| | - Ying Ding
- Eli Lilly and Company, Indianapolis, IN
| | - Ronan P Kelly
- Lilly-NUS Centre for Clinical Pharmacology, Singapore
| | | | | | | | - Haoda Fu
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | | | | | | | |
Collapse
|
28
|
Neumann UH, Ho JSS, Mojibian M, Covey SD, Charron MJ, Kieffer TJ. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol Metab 2016; 5:731-736. [PMID: 27656411 PMCID: PMC5021664 DOI: 10.1016/j.molmet.2016.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE It has been thought that the depletion of insulin is responsible for the catabolic consequences of diabetes; however, evidence suggests that glucagon also plays a role in diabetes pathogenesis. Glucagon suppression by glucagon receptor (Gcgr) gene deletion, glucagon immunoneutralization, or Gcgr antagonist can reverse or prevent type 1 diabetes in rodents suggesting that dysregulated glucagon is also required for development of diabetic symptoms. However, the models used in these studies were rendered diabetic by chemical- or immune-mediated β-cell destruction, in which insulin depletion is incomplete. Therefore, it is unclear whether glucagon suppression could overcome the consequence of the complete lack of insulin. METHODS To directly test this we characterized mice that lack the Gcgr and both insulin genes (GcgrKO/InsKO). RESULTS In both P1 pups and mice that were kept alive to young adulthood using insulin therapy, blood glucose and plasma ketones were modestly normalized; however, mice survived for only up to 6 days, similar to GcgrHet/InsKO controls. In addition, Gcgr gene deletion was unable to normalize plasma leptin levels, triglycerides, fatty acids, or hepatic cholesterol accumulation compared to GcgrHet/InsKO controls. CONCLUSION Therefore, the metabolic manifestations associated with a complete lack of insulin cannot be overcome by glucagon receptor gene inactivation.
Collapse
Affiliation(s)
- Ursula H Neumann
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jessica S S Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada; Department of Surgery, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
29
|
Yu R. Animal models of spontaneous pancreatic neuroendocrine tumors. Mol Cell Endocrinol 2016; 421:60-7. [PMID: 26261055 DOI: 10.1016/j.mce.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/10/2015] [Accepted: 08/04/2015] [Indexed: 01/20/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) are usually low-grade neoplasms derived from the endocrine pancreas. PNETs can be functioning and cause well-described hormonal hypersecretion syndromes or non-functioning and cause only tumor mass effect. PNETs appear to be more common recently likely due to incidental detection by imaging. Although the diagnosis and management of PNETs have been evolving rapidly, much remains to be studied in the areas of molecular pathogenesis, molecular markers of tumor behavior, early detection, and targeted drug therapy. Unique challenges facing PNETs studies are long disease course, the deep location of pancreas and difficult access to pancreatic tissue, and the variety of tumors, which make animal models valuable tools for PNETs studies. Existing animal models of PNETs have provided insights into the pathogenesis and natural history of human PNETs. Future studies on animal models of PNETs should address early tumor detection, molecular markers of tumor behavior, and novel targeted therapies.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Synchronous Nesidioblastosis, Endocrine Microadenoma, and Intraductal Papillary Mucinous Neoplasia in a Man Presenting With Hyperinsulinemic Hypoglycemia. Pancreas 2016; 45:154-9. [PMID: 26658039 DOI: 10.1097/mpa.0000000000000430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Herein, we report the first case of concomitant nesidioblastosis, pancreatic neuroendocrine tumor, and intraductal papillary mucinous neoplasia. The combination is significant as each of these pathological entities is independently very rare. The patient was a 33-year-old man who presented with symptomatic hyperinsulinemic hypoglycemia and no risk factors for pancreatic disease. Abdominal imaging showed an isolated 12 mm pancreatic lesion, whilst selective arterial calcium stimulation testing demonstrated multiple territories of insulin excess. He proceeded to subtotal pancreatectomy. Histopathology revealed an endocrine microadenoma, α and β cell nesidioblastosis, and multifocal intraductal papillary mucinous neoplasia. The endocrine microadenoma and nesidioblastosis stained for insulin, suggesting both likely contributed to hypoglycemia. Glucagon immunohistochemistry was also positive, though there were no clinical features of glucagon excess. Hypoglycemia resolved postoperatively. This case and other evidence from the literature suggest that hyperplasia and neoplasia may occur sequentially in the pancreas, and that endocrine and exocrine tumorigenesis may be linked in some individuals. Further study is required to identify a unifying mechanism, and to elucidate potential ramifications in the management of patients with pancreatic neoplasms.
Collapse
|
31
|
Abstract
The alpha cells that co-occupy the islets in association with beta cells have been long recognized as the source of glucagon, a hyperglycemia-producing and diabetogenic hormone. Although the mechanisms that control the functions of alpha cells, glucagon secretion, and the role of glucagon in diabetes have remained somewhat enigmatic over the fifty years since their discovery, seminal findings during the past few years have moved alpha cells into the spotlight of scientific discovery. These findings obtained largely from studies in mice are: Alpha cells have the capacity to trans-differentiate into insulin-producing beta cells. Alpha cells contain a GLP-1 generating system that produces GLP-1 locally for paracrine actions within the islets that likely promotes beta cell growth and survival and maintains beta cell mass. Impairment of glucagon signaling both prevents the occurrence of diabetes in conditions of the near absence of insulin and expands alpha cell mass. Alpha cells appear to serve as helper cells or guardians of beta cells to ensure their health and well-being. Of potential relevance to the possibility of promoting the transformation of alpha to beta cells is the observation that impairment of glucagon signaling leads to a marked increase in alpha cell mass in the islets. Such alpha cell hyperplasia provides an increased supply of alpha cells for their transdifferentiation into new beta cells. In this review we discuss these recent discoveries from the perspective of their potential relevance to the treatment of diabetes.
Collapse
Affiliation(s)
- Violeta Stanojevic
- Laboratory of Molecular Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joel F Habener
- Laboratory of Molecular Endocrinology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Yu R, Zheng Y, Lucas MB, Tong YG. Elusive liver factor that causes pancreatic α cell hyperplasia: A review of literature. World J Gastrointest Pathophysiol 2015; 6:131-139. [PMID: 26600971 PMCID: PMC4644877 DOI: 10.4291/wjgp.v6.i4.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Tumors and cancers of the gastrointestinal tract and pancreas are commonly derived from precursor lesions so that understanding the physiological, cellular, and molecular mechanisms underlying the pathogenesis of precursor lesions is critical for the prevention and treatment of those neoplasms. Pancreatic neuroendocrine tumors (PNETs) can also be derived from precursor lesions. Pancreatic α cell hyperplasia (ACH), a specific and overwhelming increase in the number of α cells, is a precursor lesion leading to PNET pathogenesis. One of the 3 subtypes of ACH, reactive ACH is caused by glucagon signaling disruption and invariably evolves into PNETs. In this article, the existing work on the mechanisms underlying reactive ACH pathogenesis is reviewed. It is clear that the liver secretes a humoral factor regulating α cell numbers but the identity of the liver factor remains elusive. Potential approaches to identify the liver factor are discussed.
Collapse
|
33
|
Li M, Dean ED, Zhao L, Nicholson WE, Powers AC, Chen W. Glucagon receptor inactivation leads to α-cell hyperplasia in zebrafish. J Endocrinol 2015; 227:93-103. [PMID: 26446275 PMCID: PMC4598637 DOI: 10.1530/joe-15-0284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucagon antagonism is a potential treatment for diabetes. One potential side effect is α-cell hyperplasia, which has been noted in several approaches to antagonize glucagon action. To investigate the molecular mechanism of the α-cell hyperplasia and to identify the responsible factor, we created a zebrafish model in which glucagon receptor (gcgr) signaling has been interrupted. The genetically and chemically tractable zebrafish, which provides a robust discovery platform, has two gcgr genes (gcgra and gcgrb) in its genome. Sequence, phylogenetic, and synteny analyses suggest that these are co-orthologs of the human GCGR. Similar to its mammalian counterparts, gcgra and gcgrb are mainly expressed in the liver. We inactivated the zebrafish gcgra and gcgrb using transcription activator-like effector nuclease (TALEN) first individually and then both genes, and assessed the number of α-cells using an α-cell reporter line, Tg(gcga:GFP). Compared to WT fish at 7 days postfertilization, there were more α-cells in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish and there was an increased rate of α-cell proliferation in the gcgra-/-;gcgrb-/- fish. Glucagon levels were higher but free glucose levels were lower in gcgra-/-, gcgrb-/-, and gcgra-/-;gcgrb-/- fish, similar to Gcgr-/- mice. These results indicate that the compensatory α-cell hyperplasia in response to interruption of glucagon signaling is conserved in zebrafish. The robust α-cell hyperplasia in gcgra-/-;gcgrb-/- larvae provides a platform to screen for chemical and genetic suppressors, and ultimately to identify the stimulus of α-cell hyperplasia and its signaling mechanism.
Collapse
Affiliation(s)
- Mingyu Li
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - E Danielle Dean
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Liyuan Zhao
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wendell E Nicholson
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Alvin C Powers
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Light Hall, Room 711, 2215 Garland Avenue, Nashville, Tennessee 37232, USADivision of DiabetesEndocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USAThird Institute of OceanographyState Oceanic Administration, Xiamen 361005, ChinaVeterans Affairs Tennessee Valley Healthcare SystemNashville, Tennessee 37212, USA
| |
Collapse
|
34
|
Takano Y, Kasai K, Takagishi Y, Kikumori T, Imai T, Murata Y, Hayashi Y. Pancreatic Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides. PLoS One 2015; 10:e0133812. [PMID: 26192435 PMCID: PMC4508046 DOI: 10.1371/journal.pone.0133812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/29/2015] [Indexed: 12/25/2022] Open
Abstract
Animal models with defective glucagon action show hyperplasia of islet α-cells, however, the regulatory mechanisms underlying the proliferation of islet endocrine cells remain largely to be elucidated. The Gcggfp/gfp mice, which are homozygous for glucagon/green fluorescent protein knock-in allele (GCGKO), lack all proglucagon-derived peptides including glucagon and GLP-1. The present study was aimed to characterize pancreatic neuroendocrine tumors (panNETs), which develop in the GCGKO mice. At 15 months of age, macroscopic GFP-positive tumors were identified in the pancreas of all the GCGKO mice, but not in that of the control heterozygous mice. The tumor manifested several features that were consistent with pancreatic neuroendocrine tumors (panNETs), such as organoid structures with trabecular and cribriform patterns, and the expression of chromogranin A and synaptophysin. Dissemination of GFP-positive cells was observed in the liver and lungs in 100% and 95%, respectively, of 15-month-old GCGKO mice. To elucidate the regulatory mechanism for tumor growth, PanNET grafts were transplanted into subrenal capsules in GCGKO and control mice. Ki-67 positive cells were identified in panNET grafts transplanted to GCGKO mice 1 month after transplantation, but not in those to control mice. These results suggest that humoral factors or conditions specific to GCGKO mice, are involved in the proliferation of panNETs. Taken together, GCGKO mice are novel animal model for studying the development, pathogenesis, and metastasis panNETs.
Collapse
Affiliation(s)
- Yuko Takano
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464–8601, Nagoya, Aichi, Japan
- Department of Transplantation and Endocrine Surgery, Nagoya University Graduate School of Medicine, 466–8550, Nagoya, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University, 480–1195, Nagakute, Aichi, Japan
| | - Yoshiko Takagishi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464–8601, Nagoya, Aichi, Japan
| | - Toyone Kikumori
- Department of Transplantation and Endocrine Surgery, Nagoya University Graduate School of Medicine, 466–8550, Nagoya, Aichi, Japan
| | - Tsuneo Imai
- Department of Transplantation and Endocrine Surgery, Nagoya University Graduate School of Medicine, 466–8550, Nagoya, Aichi, Japan
- Department of Breast and Endocrine Surgery, Aichi Medical University, 480–1195, Nagakute, Aichi, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464–8601, Nagoya, Aichi, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464–8601, Nagoya, Aichi, Japan
| |
Collapse
|
35
|
Miller HC, Kidd M, Modlin IM, Cohen P, Dina R, Drymousis P, Vlavianos P, Klöppel G, Frilling A. Glucagon receptor gene mutations with hyperglucagonemia but without the glucagonoma syndrome. World J Gastrointest Surg 2015; 7:60-66. [PMID: 25914784 PMCID: PMC4390892 DOI: 10.4240/wjgs.v7.i4.60] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neoplasms producing exclusively glucagon associated with glucagon cell hyperplasia of the islets and not related to hereditary endocrine syndromes have been recently described. They represent a novel entity within the panel of non-syndromic disorders associated with hyperglucagonemia. This case report describes a 36-year-old female with a 10 years history of non-specific abdominal pain. No underlying cause was evident despite extensive diagnostic work-up. More recently she was diagnosed with gall bladder stones. Abdominal ultrasound, computerised tomography and magnetic resonance imaging revealed no pathologic findings apart from cholelithiasis. Endoscopic ultrasound revealed a 5.5 mm pancreatic lesion. Fine needle aspiration showed cells focally expressing chromogranin, suggestive but not diagnostic of a low grade neuroendocrine tumor. OctreoScan® was negative. Serum glucagon was elevated to 66 pmol/L (normal: 0-50 pmol/L). Other gut hormones, chromogranin A and chromogranin B were normal. Cholecystectomy and enucleation of the pancreatic lesion were undertaken. Postoperatively, abdominal symptoms resolved and serum glucagon dropped to 7 pmol/L. Although H and E staining confirmed normal pancreatic tissue, immunohistochemistry was initially thought to be suggestive of alpha cell hyperplasia. A count of glucagon positive cells from 5 islets, compared to 5 islets from 5 normal pancreata indicated that islet size and glucagon cell ratios were increased, however still within the wide range of normal physiological findings. Glucagon receptor gene (GCGR) sequencing revealed a heterozygous deletion, K349_G359del and 4 missense mutations. This case may potentially represent a progenitor stage of glucagon cell adenomatosis with hyperglucagonemia in the absence of glucagonoma syndrome. The identification of novel GCGR mutations suggests that these may represent the underlying cause of this condition.
Collapse
|
36
|
Li F, Su Y, Cheng Y, Jiang X, Peng Y, Li Y, Lu J, Gu Y, Zhang C, Cao Y, Wang W, Ning G. Conditional deletion of Men1 in the pancreatic β-cell leads to glucagon-expressing tumor development. Endocrinology 2015; 156:48-57. [PMID: 25343275 DOI: 10.1210/en.2014-1433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor menin is recognized as a key regulator of β-cell proliferation. To induce tumorigenesis within the pancreatic β-cells, floxed alleles of Men1 were selectively ablated using Cre-recombinase driven by the insulin promoter. Despite the β-cell specificity of the RipCre, glucagon-expressing tumors as well as insulinomas developed in old mutant mice. These glucagon-expressing tumor cells were menin deficient and expressed the mature α-cell-specific transcription factors Brain-specific homeobox POU domain protein 4 (Brn4) and v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MafB). Moreover, the inactivation of β-cell-specific transcription factors was observed in mutant β-cells. Our work shows that Men1 ablation in the pancreatic β-cells leads to the inactivation of specific transcription factors, resulting in glucagon-expressing tumor development, which sheds light on the mechanisms of islet tumorigenesis.
Collapse
Affiliation(s)
- Feng Li
- Department of Endocrinology and Metabolism (F.L., Y.S., Y.Ch., X.J., Y.P., Y.L., J.L., Y.G., Y.Ca., W.W., G.N.), Shanghai Clinical Center for Endocrine and Metabolic Diseases and Shanghai Institute of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, and Laboratory of Endocrinology and Metabolism (G.N.), Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Laboratoire Génétique Moléculaire, Signalisation et Cancer (C.Z.), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5201, Faculté de Médecine, Université Claude Bernard Lyon, Centre Leon-Berard, Lyon69366, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lu J, Jaafer R, Bonnavion R, Bertolino P, Zhang CX. Transdifferentiation of pancreatic α-cells into insulin-secreting cells: From experimental models to underlying mechanisms. World J Diabetes 2014; 5:847-853. [PMID: 25512786 PMCID: PMC4265870 DOI: 10.4239/wjd.v5.i6.847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/10/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Pancreatic insulin-secreting β-cells are essential regulators of glucose metabolism. New strategies are currently being investigated to create insulin-producing β cells to replace deficient β cells, including the differentiation of either stem or progenitor cells, and the newly uncovered transdifferentiation of mature non-β islet cell types. However, in order to correctly drive any cell to adopt a new β-cell fate, a better understanding of the in vivo mechanisms involved in the plasticity and biology of islet cells is urgently required. Here, we review the recent studies reporting the phenomenon of transdifferentiation of α cells into β cells by focusing on the major candidates and contexts revealed to be involved in adult β-cell regeneration through this process. The possible underlying mechanisms of transdifferentiation and the interactions between several key factors involved in the process are also addressed. We propose that it is of importance to further study the molecular and cellular mechanisms underlying α- to β-cell transdifferentiation, in order to make β-cell regeneration from α cells a relevant and realizable strategy for developing cell-replacement therapy.
Collapse
|
38
|
Yu R. The Dr Pheo Blog and virtual counselling for rare diseases. J Telemed Telecare 2014; 21:54-7. [PMID: 25059244 DOI: 10.1177/1357633x14545434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with suspected or diagnosed rare diseases face challenges. Their own physicians usually do not have a large experience in a particular rare disease, specialists may not be easily accessible, and medical knowledge on rare diseases is either not readily available or too general to be applied to the patients' individual situations. As a specialist with experience in pheochromocytoma, I therefore started a blog to disseminate knowledge about the tumour and to discuss readers' questions about it (http://drpheo.blogspot.com/). Between 2009 and 2014, the blog was viewed 81,223 times and received 1286 comments during the 5-year period. About half of the comments contained mostly questions (questioning comments), including 429 directly on pheochromocytoma (7.5/month). The majority of the questioning comments were about the diagnosis (62%) and natural history (21%) of pheochromocytoma, with the remainder on management (14%) and follow-up or prognosis (4%). Many readers' comments started with encouraging words about the blog and remarked how difficult it was to find useful information on pheochromocytoma elsewhere. Experience with the Dr Pheo Blog suggests that physician specialist-written blogs are potentially an effective and convenient way of providing pertinent knowledge on rare diseases to the public.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology and Carcinoid and Neuroendocrine Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
39
|
Klöppel G, Anlauf M, Perren A, Sipos B. Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol 2014; 25:181-5. [PMID: 24718881 DOI: 10.1007/s12022-014-9317-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperplastic changes of the neuroendocrine cell system may have the potential to evolve into neoplastic diseases. This is particularly the case in the setting of genetically determined and hereditary neuroendocrine tumor syndromes such as MEN1. The review discusses the MEN1-associated hyperplasia-neoplasia sequence in the development of gastrinomas in the duodenum and glucagon-producing tumors in the pancreas. It also presents other newly described diseases (e.g., glucagon cell adenomatosis and insulinomatosis) in which the tumors are (or most likely) also preceded by islet cell hyperplasia. Finally, the pseudohyperplasia of PP-rich islets in the pancreatic head is defined as a physiologic condition clearly differing from other hyperplastic-neoplastic neuroendocrine diseases.
Collapse
Affiliation(s)
- Günter Klöppel
- Department of Pathology, Technical University, Ismaningerstr. 22, 81675, München, Germany,
| | | | | | | |
Collapse
|
40
|
Jones HB, Reens J, Brocklehurst SR, Betts CJ, Bickerton S, Bigley AL, Jenkins RP, Whalley NM, Morgan D, Smith DM. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Int J Exp Pathol 2014; 95:29-48. [PMID: 24456331 DOI: 10.1111/iep.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 01/24/2023] Open
Abstract
Antagonism of the effects of glucagon as an adjunct therapy with other glucose-lowering drugs in the chronic treatment of diabetes has been suggested to aggressively control blood glucose levels. Antagonism of glucagon effects, by targeting glucagon secretion or disabling the glucagon receptor, is associated with α-cell hyperplasia. We evaluated the influence of total glucagon withdrawal on islets of Langerhans using prohormone convertase-2 knockout mice (PC2-ko), in which α-cell hyperplasia is present from a young age and persists throughout life, in order to understand whether or not sustained glucagon deficit would lead to islet tumorigenesis. PC2-ko and wild-type (WT) mice were maintained drug-free, and cohorts of these groups sampled at 3, 12 and 18 months for plasma biochemical and morphological (histological, immunohistochemical, electron microscopical and image analytical) assessments. WT mice showed no islet tumours up to termination of the study, but PC2-ko animals displayed marked changes in islet morphology from α-cell hypertrophy/hyperplasia/atypical hyperplasia, to adenomas and carcinomas, these latter being first encountered at 6-8 months. Islet hyperplasias and tumours primarily consisted of α-cells associated to varying degrees with other islet endocrine cell types. In addition to substantial increases in islet neoplasia, increased α-cell neogenesis associated primarily with pancreatic duct(ule)s was present. We conclude that absolute blockade of the glucagon signal results in tumorigenesis and that the PC2-ko mouse represents a valuable model for investigation of islet tumours and pancreatic ductal neogenesis.
Collapse
Affiliation(s)
- Huw B Jones
- Department of Pathological Sciences, AstraZeneca Pharmaceuticals, Macclesfield, Cheshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
CONTEXT Pancreatic α-cell hyperplasia (ACH) was once an esoteric pathological entity, but it has become an important differential diagnosis of hyperglucagonemia after inactivating glucagon receptor (GCGR) genomic mutations were found in patients with ACH. Recently, the controversy over the pancreatic effects of incretins has stimulated much discussion of ACH that often includes inaccurate statements not supported by the literature. DATA ACQUISITION Literature related to ACH was reviewed. EVIDENCE SYNTHESIS ACH is defined as a diffuse and specific increase in the number of α-cells. A dozen cases have been reported and fall into three clinical types: reactive, functional, and nonfunctional. Characterized by remarkable hyperglucagonemia without glucagonoma syndrome, reactive ACH is caused by inactivating GCGR mutations, and its main clinical significance is pancreatic neuroendocrine tumors diagnosed at middle age. The Gcgr(-/-) mice, a model of reactive ACH, exhibit a multistage tumorigenesis in their pancreata. Pharmacological agents that inhibit glucagon signaling also cause reactive ACH in animals and possibly in humans as well. The pancreata of incretin-treated humans and those of reactive ACH murine models share similarities. Functional ACH features hyperglucagonemia with glucagonoma syndrome. Nonfunctional ACH is associated with normal glucagon levels. The causes of functional and nonfunctional ACH are unknown as yet. CONCLUSIONS ACH is a histological diagnosis and clinically heterogeneous. Caused by GCGR mutations, reactive ACH is a preneoplastic lesion giving rise to slow-developing pancreatic neuroendocrine tumors. The effects of treatments targeting glucagon signaling in this regard remain controversial. The strong negative feedback control of glucagon signaling conserved in all mammals studied, including humans, makes long-term pancreatic tumor surveillance advisable for the glucagon signaling-targeting therapies.
Collapse
Affiliation(s)
- Run Yu
- Division of Endocrinology and Carcinoid and Neuroendocrine Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Neuroendocrine tumours (NETs) of the luminal gastrointestinal tract and pancreas are increasing in incidence and prevalence. Prior assumptions about the benign nature of 'carcinoids' and the clinical importance of distinguishing functional vs. nonfunctional tumours are being overturned through greater understanding of disease behaviour and heterogeneity. This review highlights the most contemporary genetic and molecular insights into gastroenteropancreatic NETs. RECENT FINDINGS Biomarkers such as neuron-specific enolase or chromogranin A could be supplemented or supplanted by PCR-based analysis of NET genes detectable in the blood transcriptome. Conventional pathology, including Ki67 testing, could be enhanced with immunohistochemistry and exome analysis. Prognostic markers and/or putative therapeutic targets uncovered through recent studies include heparanase, Id, ATM, SRC, EGFR, hsp90 and PDGFR. SUMMARY After a long-standing paucity of options for conventional cytotoxic therapy, the comprehension and treatment of gastroenteropancreatic NETs has been enriched by advancements in taxonomy, molecular pathology and genetic/epigenetic testing.
Collapse
Affiliation(s)
- Mark A Lewis
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
43
|
|
44
|
Harja E, Lord J, Skyler JS. An analysis of characteristics of subjects examined for incretin effects on pancreatic pathology. Diabetes Technol Ther 2013; 15:609-18. [PMID: 23927624 DOI: 10.1089/dia.2013.0177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A recent autopsy analysis asserted that incretin drugs have the potential of increasing the risk for pancreatic cancer and for pancreatic neuroendocrine tumors. We examined the Network for Pancreatic Organ Donors with Diabetes (nPOD) database from which that analysis was derived. Our findings raise important questions about the comparability of the two groups of diabetes patients used for the analysis. Our review of the data available on the nPOD Web site and our reading of the earlier article lead us to the conclusion that the data, and the implications of the data, as expressed by the authors of the autopsy analysis are vastly overstated and are a misrepresentation of the information available.
Collapse
Affiliation(s)
- Evis Harja
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
45
|
Abstract
Pancreatic neuroendocrine tumors (PNETs), also known as islet cell tumors, are mostly indolent neoplasms that probably arise from a network of endocrine cells that includes islet cells and pluripotent precursors in the pancreatic ductal epithelium. The incidence and prevalence of PNETs continue to rise in recent years because of more sensitive detection. The molecular pathogenesis, early detection, molecular predictors of tumor behavior, and targeted drug therapy of PNETs are not well understood and require additional basic and translational research. The rarity and indolent nature of these tumors, difficulty of access to appropriate patient tissue samples, and varying histopathology and secreted hormones pose particular challenges to PNET researchers. Animal models and cell lines are indispensable tools for investigating the pathogenesis, pathophysiology, mechanisms for tumor invasion and metastasis, and therapeutics of PNETs. This review summarizes currently available animal models and cell lines of PNETs, which have provided valuable insights into the pathogenesis and natural history of human PNETs. In the future, animal models and cell lines of PNETs should also be used to study early tumor detection and molecular predictors of tumor behavior and to test the responses to, and mechanisms for, novel targeted drug therapies.
Collapse
|
46
|
Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 2013; 62:2595-604. [PMID: 23524641 PMCID: PMC3712065 DOI: 10.2337/db12-1686] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Controversy exists regarding the potential regenerative influences of incretin therapy on pancreatic β-cells versus possible adverse pancreatic proliferative effects. Examination of pancreata from age-matched organ donors with type 2 diabetes mellitus (DM) treated by incretin therapy (n = 8) or other therapy (n = 12) and nondiabetic control subjects (n = 14) reveals an ∼40% increased pancreatic mass in DM treated with incretin therapy, with both increased exocrine cell proliferation (P < 0.0001) and dysplasia (increased pancreatic intraepithelial neoplasia, P < 0.01). Pancreata in DM treated with incretin therapy were notable for α-cell hyperplasia and glucagon-expressing microadenomas (3 of 8) and a neuroendocrine tumor. β-Cell mass was reduced by ∼60% in those with DM, yet a sixfold increase was observed in incretin-treated subjects, although DM persisted. Endocrine cells costaining for insulin and glucagon were increased in DM compared with non-DM control subjects (P < 0.05) and markedly further increased by incretin therapy (P < 0.05). In conclusion, incretin therapy in humans resulted in a marked expansion of the exocrine and endocrine pancreatic compartments, the former being accompanied by increased proliferation and dysplasia and the latter by α-cell hyperplasia with the potential for evolution into neuroendocrine tumors.
Collapse
Affiliation(s)
- Alexandra E Butler
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, Washington, USA.
| |
Collapse
|
48
|
Abstract
Pancreatic cancer is critical for developed countries, where its rate of diagnosis has been increasing steadily annually. In the past decade, the advances of pancreatic cancer research have not contributed to the decline in mortality rates from pancreatic cancer-the overall 5-year survival rate remains about 5% low. This number only underscores an obvious urgency for us to better understand the biological features of pancreatic carcinogenesis, to develop early detection methods, and to improve novel therapeutic treatments. To achieve these goals, animal modeling that faithfully recapitulates the whole process of human pancreatic cancer is central to making the advancements. In this review, we summarize the currently available animal models for pancreatic cancer and the advances in pancreatic cancer animal modeling. We compare and contrast the advantages and disadvantages of three major categories of these models: (1) carcinogen-induced; (2) xenograft and allograft; and (3) genetically engineered mouse models. We focus more on the genetically engineered mouse models, a category which has been rapidly expanded recently for their capacities to mimic human pancreatic cancer and metastasis, and highlight the combinations of these models with various newly developed strategies and cell-lineage labeling systems.
Collapse
Affiliation(s)
- Wanglong Qiu
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Medical Center, 1130 St. Nicholas Ave, ICRC 10-04, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
49
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
50
|
|