1
|
Rocha MDCP, Araújo D, Carvalho F, Vale N, Pazzini JM, Feliciano MAR, De Nardi AB, Amorim I. Canine Multicentric Lymphoma: Diagnostic, Treatment, and Prognostic Insights. Animals (Basel) 2025; 15:391. [PMID: 39943162 PMCID: PMC11816192 DOI: 10.3390/ani15030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Lymphoma accounts for 24% of all documented canine neoplasms and 85% of hematological malignancies, while multicentric lymphoma corresponds to 84% of all canine lymphomas. Canine lymphomas of B-cell origin account for 60% to 80% of lymphomas. Similar to humans, the histologic grade, architecture, as well as immunophenotype determination, are crucial. These lesions are the most prevalent spontaneous tumors in dogs and this species may be a valuable animal model for the study of human non-Hodgkin's lymphoma. Therefore, it is important to investigate and assess therapeutic responses and to seek predictive and prognostic factors in order to allow for the development of an individualized and more effective therapy that increases survival. This review aims to describe current knowledge on the diagnosis, treatment, and prognostic factors of canine multicentric lymphoma.
Collapse
Affiliation(s)
- Michelle do Carmo Pereira Rocha
- Department of Small Animal Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Jaboticabal 01049-010, SP, Brazil; (M.d.C.P.R.); (A.B.D.N.)
| | - Diana Araújo
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.A.); (F.C.)
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
| | - Fátima Carvalho
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.A.); (F.C.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | | | | | - Andrigo Barboza De Nardi
- Department of Small Animal Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP) “Júlio de Mesquita Filho”, Jaboticabal 01049-010, SP, Brazil; (M.d.C.P.R.); (A.B.D.N.)
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (D.A.); (F.C.)
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol 2022; 13:954936. [PMID: 36159874 PMCID: PMC9493130 DOI: 10.3389/fimmu.2022.954936] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
B cells have been long studied for their role and function in the humoral immune system. Apart from generating antibodies and an antibody-mediated memory response against pathogens, B cells are also capable of generating cell-mediated immunity. It has been demonstrated by several groups that B cells can activate antigen-specific CD4 and CD8 T cells, and can have regulatory and cytotoxic effects. The function of B cells as professional antigen presenting cells (APCs) to activate T cells has been largely understudied. This, however, requires attention as several recent reports have demonstrated the importance of B cells within the tumor microenvironment, and B cells are increasingly being evaluated as cellular therapies. Antigen presentation through B cells can be through antigen-specific (B cell receptor (BCR) dependent) or antigen non-specific (BCR independent) mechanisms and can be modulated by a variety of intrinsic and external factors. This review will discuss the pathways and mechanisms by which B cells present antigens, and how B cells differ from other professional APCs.
Collapse
|
6
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
8
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1131] [Impact Index Per Article: 282.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
9
|
Limonin modulated immune and inflammatory responses to suppress colorectal adenocarcinoma in mice model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1907-1915. [PMID: 34009457 DOI: 10.1007/s00210-021-02101-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammation and compromised immune responses often increase colorectal cancer (CRC) risk. The immune-modulating effects of limonin on carcinogen/inflammation-induced colorectal cancer (CRC) were studied in mice. Male Balb/c mice were randomly assorted into three groups (n = 6): healthy control, non-treated CRC-induced (azoxymethane/dextran-sulfate-sodium AOM/DSS) control, and CRC-induced + 50 mg limonin/kg body weight. The CRC developments were monitored via macroscopic, histopathological, ELISA, and mRNA expression analyses. Limonin downregulated inflammation (TNF-α, tumor necrosis factor-α), enhanced the adaptive immune responses (CD8, CD4, and CD19), and upregulated antioxidant defense (Nrf2, SOD2) mRNA expressions. Limonin reduced serum malondialdehyde (MDA, lipid peroxidation biomarker), prostaglandin E2, and histopathology inflammation scores, while increasing reduced glutathione (GSH) in CRC-induced mice. Limonin significantly (p < 0.05) increased T cells (CD4 and CD8) and B cells (CD19) in spleen tissues. The CD335 (natural killer cells) were increased in the CRC-induced mice and limonin treatment restored them to normal levels suggesting reinstatement to normal colon conditions. Limonin apparently mitigated CRC development, by ameliorating adaptive immune responses (CD8, CD4, and CD19), reducing inflammation (serum prostaglandin E2; TNF-α, innate immune responses) and oxidative stress, and enhancing the endogenous anti-oxidation defense reactions (GSH) in CRC-induced mice.
Collapse
|
10
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
11
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
12
|
Martin-Lluesma S, Graciotti M, Grimm AJ, Boudousquié C, Chiang CL, Kandalaft LE. Are dendritic cells the most appropriate therapeutic vaccine for patients with ovarian cancer? Curr Opin Biotechnol 2020; 65:190-196. [DOI: 10.1016/j.copbio.2020.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
|
13
|
Parachini-Winter C, Bracha S, Ramsey SA, Yang L, Ho E, Leeper HJ, Curran KM. Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. J Vet Intern Med 2020; 34:2036-2047. [PMID: 32926463 PMCID: PMC7517837 DOI: 10.1111/jvim.15898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic‐targeting compound, has recently gained interest in relation to cancer prevention and therapy. Objective Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. Animals Seven client‐owned dogs with multicentric LSA. Methods Prospective, nonrandomized, noncontrolled study in treatment‐naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label‐free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. Results There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2‐fold (range, 2‐100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. Conclusions and Clinical Importance Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.
Collapse
Affiliation(s)
- Cyril Parachini-Winter
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Liping Yang
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute and College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
14
|
Poorebrahim M, Abazari MF, Sadeghi S, Mahmoudi R, Kheirollahi A, Askari H, Wickström SL, Poortahmasebi V, Lundqvist A, Kiessling R, Cid-Arregui A. Genetically modified immune cells targeting tumor antigens. Pharmacol Ther 2020; 214:107603. [PMID: 32553789 DOI: 10.1016/j.pharmthera.2020.107603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy approaches consisting of genetically modified immune cells have become a promising platform for cancer treatment. Such 'living' therapies targeting tumor antigens have shown success in many cancer patients in the form of durable responses in a growing number of clinical studies. Besides, a large number of ongoing studies have been designed to introduce reliable methods for identification of tumor antigens. In addition, technical and biotechnological developments are being applied to the generation and expansion of genetically modified immune cells. In this review, we summarize and discuss the latest progress and current challenges in the tumor antigen landscape and in the generation of genetically modified immune cells in view of their clinical efficacy, either as monotherapy or combinational therapy.
Collapse
Affiliation(s)
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahmoudi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Askari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vahdat Poortahmasebi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Department of Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Thamm DH. Canine Cancer: Strategies in Experimental Therapeutics. Front Oncol 2019; 9:1257. [PMID: 31803625 PMCID: PMC6873901 DOI: 10.3389/fonc.2019.01257] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death in adult dogs. Many features of spontaneously developing tumors in pet dogs contribute to their potential utility as a human disease model. These include similar environmental exposures, similar clonal evolution as it applies to important factors such as immune avoidance, a favorable body size for imaging and serial biopsy, and a relatively contracted time course of disease progression, which makes evaluation of temporal endpoints such as progression free or overall survival feasible in a comparatively short time frame. These criteria have been leveraged to evaluate novel local therapies, demonstrate proof of tumor target inhibition or tumor localization, evaluate potential antimetastatic approaches, and assess the efficacy, safety and immune effects of a variety of immune-based therapeutics. Some of these canine proof of concept studies have been instrumental in informing subsequent human clinical trials. This review will cover key aspects of clinical trials in dogs with spontaneous neoplasia, with examples of how these studies have contributed to human cancer therapeutic development.
Collapse
Affiliation(s)
- Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
16
|
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol 2019; 9:1185. [PMID: 31788448 PMCID: PMC6854022 DOI: 10.3389/fonc.2019.01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complex ecosystem in which tumor cells reside and interact, termed the tumor microenvironment (TME), encompasses all cells and components associated with a neoplasm that are not transformed cells. Interactions between tumor cells and the TME are complex and fluid, with each facet coercing the other, largely, into promoting tumor progression. While the TME in humans is relatively well-described, a compilation and comparison of the TME in our canine counterparts has not yet been described. As is the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated in laboratory animal models, although the current level of knowledge on similarities and differences in the TME between dogs and humans, and the practical implications of that information, require further investigation. This review summarizes some of the complexities of the human and mouse TME and interjects with what is known in the dog, relaying the information in the context of the temporo-spatial organization of the TME. To the authors' knowledge, the development of the TME over space and time has not been widely discussed, and a comprehensive review of the canine TME has not been done. The specific topics covered in this review include cellular invasion and interactions within the TME, metabolic derangements in the TME and vascular invasion, and the involvement of the TME in tumor spread and metastasis.
Collapse
Affiliation(s)
- Kendall L Langsten
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, NC, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Abstract
The enhanced understanding of immunology experienced over the last 4 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies that will hopefully expand the veterinary oncology treatment toolkit over time.
Collapse
|
18
|
Marconato L, Aresu L, Stefanello D, Comazzi S, Martini V, Ferrari R, Riondato F, Rouquet N, Frayssinet P, Sabattini S. Opportunities and challenges of active immunotherapy in dogs with B-cell lymphoma: a 5-year experience in two veterinary oncology centers. J Immunother Cancer 2019; 7:146. [PMID: 31174615 PMCID: PMC6554898 DOI: 10.1186/s40425-019-0624-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pet dogs spontaneously develop lymphoma. An anthracycline-based multidrug chemotherapy regimen represents the treatment cornerstone; however, cure is rarely achieved. We have been treating dogs with B-cell lymphoma with an autologous vaccine (APAVAC®) and CHOP-based chemotherapy since 2011. METHODS To better characterize the safety and efficacy of APAVAC®, and to find the best candidates for immunotherapy, we designed a retrospective study on all dogs treated with chemo-immunotherapy to date and compared them with those dogs treated with chemotherapy only. All dogs were completely staged and re-staged at the end of treatment. The primary endpoint was the effectiveness of chemo-immunotherapy, measured as time to progression (TTP), lymphoma-specific survival (LSS), and 1-, 2-, and 3-year survival rates. The secondary objective was safety. RESULTS Three hundred dogs were included: 148 (49.3%) received chemotherapy and 152 (50.7%) chemo-immunotherapy. Overall, the latter survived significantly longer (median LSS, 401 vs 220; P < 0.001). Among dogs with diffuse large B-cell lymphoma, the 1-, 2- and 3-year survival rates were 20, 13 and 8% for chemotherapy, and 51, 19 and 10% for chemo-immunotherapy. The benefit of chemo-immunotherapy was particularly relevant in dogs with concurrent high serum LDH, stage V, substage a disease and not previously treated with steroids (median LSS, 480 vs 85 days; P < 0.001). Among dogs with nodal marginal zone lymphoma, those having at least 3 of the aforementioned characteristics significantly benefited from chemo-immunotherapy (median LSS, 680 vs 160 days, P < 0.001). The 1-, 2- and 3-year survival rates were 30, 16 and 10% for chemotherapy, and 55, 28 and 10% for chemo-immunotherapy. Among dogs with follicular lymphoma, lack of immunotherapy administration was the only variable significantly associated with increased risk of tumor-related death. Chemo-immunotherapy was remarkably well tolerated, with no local or systemic adverse events. CONCLUSIONS Overall, the addition of immunotherapy to a traditional CHOP protocol is associated with improved outcome in dogs with B-cell lymphoma, regardless of histotype and evaluated prognostic factors. Moreover, the identikit of the best candidate for immune-therapy was delineated for the most common histotypes. The study also confirms the excellent tolerability of the vaccine.
Collapse
Affiliation(s)
- Laura Marconato
- Centro Oncologico Veterinario, Sasso Marconi, via San Lorenzo ¼, 40037 Sasso Marconi, Bologna, Italy.
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| | | | - Stefano Comazzi
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valeria Martini
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Roberta Ferrari
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Fulvio Riondato
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| | | | | | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Largeot A, Pagano G, Gonder S, Moussay E, Paggetti J. The B-side of Cancer Immunity: The Underrated Tune. Cells 2019; 8:cells8050449. [PMID: 31086070 PMCID: PMC6562515 DOI: 10.3390/cells8050449] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-infiltrating lymphocytes are known to be critical in controlling tumor progression. While the role of T lymphocytes has been extensively studied, the function of B cells in this context is still ill-defined. In this review, we propose to explore the role of B cells in tumor immunity. First of all we define their dual role in promoting and inhibiting cancer progression depending on their phenotype. To continue, we describe the influence of different tumor microenvironment factors such as hypoxia on B cells functions and differentiation. Finally, the role of B cells in response to therapy and as potential target is examined. In accordance with the importance of B cells in immuno-oncology, we conclude that more studies are required to throw light on the precise role of B cells in the tumor microenvironment in order to have a better understanding of their functions, and to design new strategies that efficiently target these cells by immunotherapy.
Collapse
Affiliation(s)
- Anne Largeot
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Giulia Pagano
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| |
Collapse
|
20
|
Wennhold K, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. B Cell-Based Cancer Immunotherapy. Transfus Med Hemother 2019; 46:36-46. [PMID: 31244580 PMCID: PMC6558332 DOI: 10.1159/000496166] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
B cells are not only producers of antibodies, but also contribute to immune regulation or act as potent antigen-presenting cells. The potential of B cells for cellular therapy is still largely underestimated, despite their multiple diverse effector functions. The CD40L/CD40 signaling pathway is the most potent activator of antigen presentation capacity in B lymphocytes. CD40-activated B cells are potent antigen-presenting cells that induce specific T-cell responses in vitro and in vivo. In preclinical cancer models in mice and dogs, CD40-activated B cell-based cancer immunotherapy was able to induce effective antitumor immunity. So far, there have been only few early-stage clinical studies involving B cell-based cancer vaccines. These trials indicate that B cell-based immunotherapy is generally safe and associated with little toxicity. Furthermore, these studies suggest that B-cell immunotherapy can elicit antitumor T-cell responses. Alongside the recent advances in cellular therapies in general, major obstacles for generation of good manufacturing practice-manufactured B-cell immunotherapies have been overcome. Thus, a first clinical trial involving CD40-activated B cells might be in reach.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Michael von Bergwelt-Baildon
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Center Munich, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
|
22
|
|
23
|
Hartley G, Elmslie R, Dow S, Guth A. Checkpoint molecule expression by B and T cell lymphomas in dogs. Vet Comp Oncol 2018; 16:352-360. [PMID: 29380929 DOI: 10.1111/vco.12386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Immunotherapies targeting checkpoint molecule programmed cell death 1 (PD-1) protein were shown to be effective for treatment of non-Hodgkin lymphoma in people, but little is known about the expression of PD-1 or its ligand PD-L1 by canine lymphoma. Therefore, flow cytometry was used to analyse expression of PD-1 and PD-L1 in canine lymphoma, using fine-needle aspirates of lymph nodes from 34 dogs with B cell lymphoma (BCL), 6 dogs with T cell lymphoma (TCL) and 11 dogs that had relapsed. Furthermore, fine-needle aspirates were obtained from 17 healthy dogs for comparison. Lastly, the impact of chemotherapy resistance on expression of PD-1 and PD-L1 was assessed in vitro. These studies revealed increased expression of PD-L1 by malignant B cells compared to normal B cells. In the case of TCL, tumour cells and normal T cells both showed low to negative expression of PD-1 and PD-L1. In addition, tumour infiltrating lymphocytes from both BCL and TCL had increased expression of both PD-1 and PD-L1 expression compared to B and T cells from lymph nodes of healthy animals. In vitro, chemotherapy-resistant BCL and TCL cell lines exhibited increases in both PD-1 and PD-L1 expression, compared to non-chemotherapy selected tumour cells. These findings indicate that canine lymphomas exhibit upregulated checkpoint molecule expression, though the impact of checkpoint molecule expression on tumour biological behaviour remains unclear.
Collapse
Affiliation(s)
- G Hartley
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - R Elmslie
- Veterinary Referral Center of Colorado, Englewood, Colorado
| | - S Dow
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - A Guth
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
24
|
Huang Y, Zou Y, Lin L, Zheng R. Ginsenoside Rg1 Activates Dendritic Cells and Acts as a Vaccine Adjuvant Inducing Protective Cellular Responses Against Lymphomas. DNA Cell Biol 2017; 36:1168-1177. [PMID: 29058460 DOI: 10.1089/dna.2017.3923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
25
|
Wennhold K, Weber TM, Klein-Gonzalez N, Thelen M, Garcia-Marquez M, Chakupurakal G, Fiedler A, Schlösser HA, Fischer R, Theurich S, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. CD40-activated B cells induce anti-tumor immunity in vivo. Oncotarget 2017; 8:27740-27753. [PMID: 26934557 PMCID: PMC5438605 DOI: 10.18632/oncotarget.7720] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
The introduction of checkpoint inhibitors represents a major advance in cancer immunotherapy. Some studies on checkpoint inhibition demonstrate that combinatorial immunotherapies with secondary drivers of anti-tumor immunity provide beneficial effects for patients that do not show a strong endogenous immune response. CD40-activated B cells (CD40B cells) are potent antigen presenting cells by activating and expanding naïve and memory CD4+ and CD8+ and homing to the secondary lymphoid organs. In contrast to dendritic cells, the generation of highly pure CD40B cells is simple and time efficient and they can be expanded almost limitlessly from small blood samples of cancer patients. Here, we show that the vaccination with antigen-loaded CD40B cells induces a specific T-cell response in vivo comparable to that of dendritic cells. Moreover, we identify vaccination parameters, including injection route, cell dose and vaccination repetitions to optimize immunization and demonstrate that application of CD40B cells is safe in terms of toxicity in the recipient. We furthermore show that preventive immunization of tumor-bearing mice with tumor antigen-pulsed CD40B cells induces a protective anti-tumor immunity against B16.F10 melanomas and E.G7 lymphomas leading to reduced tumor growth. These results and our straightforward method of CD40B-cell generation underline the potential of CD40B cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Tanja M. Weber
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nela Klein-Gonzalez
- Department of Hematology, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Martin Thelen
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Geothy Chakupurakal
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Anne Fiedler
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Hans A. Schlösser
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Rieke Fischer
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Laboratory for Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research Cologne, Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology (CII), Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Mathieu M, Odagiu L, Gaudot L, Daudelin JF, Melichar HJ, Lapointe R, Labrecque N. Inflammation enhances the vaccination potential of CD40-activated B cells in mice. Eur J Immunol 2016; 47:269-279. [PMID: 27873323 DOI: 10.1002/eji.201646568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
Vaccination with antigen-pulsed CD40-activated B (CD40-B) cells can efficiently lead to the in vivo differentiation of naive CD8+ T cells into fully functional effectors. In contrast to bone marrow-derived dendritic cell (BMDC) vaccination, CD40-B cell priming does not allow for memory CD8+ T-cell generation but the reason for this deficiency is unknown. Here, we show that compared to BMDCs, murine CD40-B cells induce lower expression of several genes regulated by T-cell receptor signaling, costimulation, and inflammation (signals 1-3) in mouse T cells. The reduced provision of signals 1 and 2 by CD40-B cells can be explained by a reduction in the quality and duration of the interactions with naive CD8+ T cells as compared to BMDCs. Furthermore, CD40-B cells produce less inflammatory mediators, such as IL-12 and type I interferon, and increasing inflammation by coadministration of polyriboinosinic-polyribocytidylic acid with CD40-B-cell immunization allowed for the generation of long-lived and functional CD8+ memory T cells. In conclusion, it is possible to manipulate CD40-B-cell vaccination to promote the formation of long-lived functional CD8+ memory T cells, a key step before translating the use of CD40-B cells for therapeutic vaccination.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada
| | - Léa Gaudot
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | | | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Medicine, University of Montreal, Montréal, Québec, Canada
| | - Réjean Lapointe
- Department of Medicine, University of Montreal, Montréal, Québec, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montreal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada.,Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, Montréal, Québec, Canada.,Department of Medicine, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Marconato L, Polton GA, Sabattini S, Dacasto M, Garden OA, Grant I, Hendrickx T, Henriques J, Lubas G, Morello E, Stefanello D, Comazzi S. Conformity and controversies in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature. Vet Comp Oncol 2016; 15:1029-1040. [DOI: 10.1111/vco.12244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - G. A. Polton
- North Downs Specialist Referrals; Bletchingley UK
| | - S. Sabattini
- Department of Veterinary Medical Sciences; University of Bologna; Bologna Italy
| | - M. Dacasto
- Department of Comparative Biomedicine and Food Science; University of Padua; Padua Italy
| | - O. A. Garden
- Department of Clinical Science and Services; Immune Regulation Laboratory, Royal Veterinary College; London UK
- Queen Mother Hospital for Animals; Royal Veterinary College; Hatfield UK
| | - I. Grant
- Small Animal Clinical Sciences; School of Veterinary Medicine, University of Glasgow; Glasgow UK
| | | | - J. Henriques
- Hospital Veterinário Berna, OnevetGroup; Lisboa Portugal
| | - G. Lubas
- Department of Veterinary Sciences; University of Pisa; Pisa Italy
| | - E. Morello
- Department of Veterinary Sciences; University of Turin; Turin Italy
| | - D. Stefanello
- Department of Veterinary Medicine; University of Milan; Milan Italy
| | - S. Comazzi
- Department of Veterinary Medicine; University of Milan; Milan Italy
| | | |
Collapse
|
28
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
29
|
|
30
|
Riondato F, Miniscalco B, Poggi A, Aricò A, Aresu L, Comazzi S, Martini V. Analytical and diagnostic validation of a flow cytometric strategy to quantify blood and marrow infiltration in dogs with large B-cell lymphoma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 90:525-530. [PMID: 26663674 DOI: 10.1002/cyto.b.21353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lymph node (LN), peripheral blood (PB), and bone marrow (BM) samples are commonly analyzed by flow cytometry (FC) for the immunophenotyping and staging of canine lymphomas. A prognostic value for FC BM infiltration in dogs with large B-cell lymphoma (LBCL) was demonstrated. Aim of this study was to define the analytical performances of this technique, and to establish a cutoff suitable to safely discriminate between infiltrated and noninfiltrated PB and BM samples. METHODS Large B-cells were added to control PB and BM samples, to achieve twelve different large B-cells concentrations, ranging from 0 to 50%. The percentage of large B-cells was recorded for each dilution, using a BD Accuri C6 FC. Accuracy was evaluated by Passing-Bablok regression analysis. Intra-assay precision was assessed at 0%, 1, 3, and 10% dilutions evaluating the CVs of 10 repeated acquisitions. ROC curves were drawn to identify the cutoffs most suitable to discriminate between 25 infiltrated (PARR-positive) and 25 noninfiltrated (PARR-negative) PB and BM samples, respectively. RESULTS Optimal analytical accuracy and precision were achieved. Almost all CVs were <10%. Negative controls had up to 0.5% large B-cells, with 50 and 22% CV in PB and BM samples, respectively, 0.56 and 2.45% cutoffs were selected based on the ROC curves for PB and BM samples, respectively. CONCLUSIONS Quantification of large B-cells in PB and BM samples by FC is reliable and analytical performances met the acceptance criteria. Assessment of performances of different instruments and protocols is warranted. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Fulvio Riondato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Barbara Miniscalco
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Alessia Poggi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Arianna Aricò
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Luca Aresu
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Stefano Comazzi
- Department of Veterinary Sciences and Public Health, University of Milan, Italy
| | - Valeria Martini
- Department of Veterinary Sciences and Public Health, University of Milan, Italy
| |
Collapse
|
31
|
Abstract
Harnessing the ability of the immune system to eradicate cancer has been a long-held goal of oncology. Work from the last two decades has finally brought immunotherapy into the forefront for cancer treatment, with demonstrable clinical success for aggressive tumors where other therapies had failed. In this review, we will discuss a range of therapies that are in different stages of clinical or preclinical development for companion animals with cancer, and which share the common objective of eliciting adaptive, anti-tumor immune responses. Even though challenges remain, manipulating the immune system holds significant promise to create durable responses and improve outcomes in companion animals with cancer. Furthermore, what we learn from this process will inform and accelerate development of comparable therapies for human cancer patients.
Collapse
|
32
|
Regan D, Guth A, Coy J, Dow S. Cancer immunotherapy in veterinary medicine: Current options and new developments. Vet J 2015; 207:20-28. [PMID: 26545847 DOI: 10.1016/j.tvjl.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine.
Collapse
Affiliation(s)
- Daniel Regan
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Amanda Guth
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Jonathan Coy
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Steven Dow
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
33
|
Marconato L, Stefanello D, Sabattini S, Comazzi S, Riondato F, Laganga P, Frayssinet P, Pizzoni S, Rouquet N, Aresu L. Enhanced therapeutic effect of APAVAC immunotherapy in combination with dose-intense chemotherapy in dogs with advanced indolent B-cell lymphoma. Vaccine 2015; 33:5080-6. [PMID: 26296495 DOI: 10.1016/j.vaccine.2015.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
The aim of this non-randomized controlled trial was to compare time to progression (TTP), lymphoma-specific survival (LSS), and safety of an autologous vaccine (consisting of hydroxyapatite ceramic powder and Heat Shock Proteins purified from the dogs' tumors, HSPPCs-HA) plus chemotherapy versus chemotherapy alone in dogs with newly diagnosed, clinically advanced, histologically confirmed, multicentric indolent B-cell lymphoma. The vaccine was prepared from dogs' resected lymph nodes and administered as an intradermal injection. Forty-five client-owned dogs were enrolled: 20 dogs were treated with dose-intense chemotherapy, and 25 received concurrent immunotherapy. Both treatment arms were well tolerated, with no exacerbated toxicity in dogs also receiving the vaccine. TTP was significantly longer for dogs treated with chemo-immunotherapy versus those receiving chemotherapy only (median, 209 versus 85 days, respectively, P=0.015). LSS was not significantly different between groups: dogs treated with chemo-immunotherapy had a median survival of 349 days, and those treated with chemotherapy only had a median survival of 200 days (P=0.173). Among vaccinated dogs, those mounting an immune response had a significantly longer TTP and LSS than those with no detectable response (P=0.012 and P=0.003, respectively). Collectively these results demonstrate that vaccination with HSPPCs-HA may produce clinical benefits with no increased toxicity, thereby providing a strategy for enhancing chemotherapy in dogs with advanced indolent lymphoma.
Collapse
Affiliation(s)
- L Marconato
- Centro Oncologico Veterinario, Sasso Marconi, BO, Italy.
| | - D Stefanello
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - S Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - S Comazzi
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - F Riondato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - P Laganga
- Centro Oncologico Veterinario, Sasso Marconi, BO, Italy
| | | | - S Pizzoni
- Centro Oncologico Veterinario, Sasso Marconi, BO, Italy
| | | | - L Aresu
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Legnaro, Italy
| |
Collapse
|
34
|
Wei WZ, Jones RF, Juhasz C, Gibson H, Veenstra J. Evolution of animal models in cancer vaccine development. Vaccine 2015; 33:7401-7407. [PMID: 26241945 DOI: 10.1016/j.vaccine.2015.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
Abstract
Advances in cancer vaccine development are facilitated by animal models reflecting key features of human cancer and its interface with host immunity. Several series of transplantable preneoplastic and neoplastic mouse mammary lesions have been used to delineate mechanisms of anti-tumor immunity. Mimicking immune tolerance to tumor-associated antigens (TAA) such as HER2/neu, transgenic mice developing spontaneous mammary tumors are strong model systems for pre-clinical vaccine testing. In these models, HER2 DNA vaccines are easily administered, well-tolerated, and induce both humoral and cellular immunity. Although engineered mouse strains have advanced cancer immunotherapy, basic shortcomings remain. For example, multiple mouse strains have to be tested to recapitulate genetic regulation of immune tolerance in humans. Outbred domestic felines more closely parallel humans in the natural development of HER2 positive breast cancer and their varying genetic background. Electrovaccination with heterologous HER2 DNA induces robust adaptive immune responses in cats. Importantly, homologous feline HER2 DNA with a single amino acid substitution elicits unique antibodies to feline mammary tumor cells, unlocking a new vaccine principle. As an alternative approach to targeted vaccination, non-surgical tumor ablation such as cryoablation induces anti-tumor immunity via in situ immunization, particularly when combined with toll-like receptor (TLR) agonist. As strategies for vaccination advance, non-invasive monitoring of host response becomes imperative. As an example, magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning following administration of tryptophan metabolism tracer [11C]-alpha-methyl-tryptophan (AMT) provides non-invasive imaging of both tumor growth and metabolic activities. Because AMT is a substrate of indoleamine-pyrrole 2,3-dioxygenase (IDO), an enzyme that produces the immune regulatory molecule kynurenine, AMT imaging can provide novel insight of host response. In conclusion, new feline models improve the predictive power of cancer immunotherapy and real-time PET imaging enables mechanistic monitoring of host immunity. Strategic utilization of these new tools will expedite cancer vaccine development.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States.
| | - Richard F Jones
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Csaba Juhasz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Heather Gibson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Jesse Veenstra
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
35
|
Marconato L, Buracco P, Aresu L. Perspectives on the design of clinical trials for targeted therapies and immunotherapy in veterinary oncology. Vet J 2015; 205:238-43. [DOI: 10.1016/j.tvjl.2015.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 12/18/2022]
|
36
|
Gonzalez NK, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, Garcia-Marquez M, Grabbe S, Bloch W, von Bergwelt-Baildon M, Shimabukuro-Vornhagen A. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology 2015; 4:e1038684. [PMID: 26405608 DOI: 10.1080/2162402x.2015.1038684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in the use of B cells for cancer vaccines, since they have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated B (CD40B) cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. Dynamic interactions of human antigen-presenting cells (APCs) and T cells were observed by time-lapse video microscopy. The migratory and chemoattractant potential of CD40B cells was analyzed in vitro and in vivo using flow cytometry, standard transwell migration assays, and imaging of fluorescently labeled murine CD40B cells. Murine CD40B cells show migratory features similar to human CD40B cells. They express important lymph node homing receptors which were functional and induced chemotaxis of T cells in vitro. Striking differences were observed with regard to interactions of human APCs with T cells. CD40B cells differ from DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived and sequential interactions with T cells. In vivo, CD40B cells are home to the secondary lymphoid organs where they accumulate in the B cell zone before traveling to the B/T cell boundary. Moreover, intravenous (i.v.) administration of murine CD40B cells induced an antigen-specific cytotoxic T cell response. Taken together, this data show that CD40B cells home secondary lymphoid organs where they physically interact with T cells to induce antigen-specific T cell responses, thus underscoring their potential as cellular adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Nela Klein Gonzalez
- Department of Hematology; Vall d'Hebron University Hospital; VHIR; Universitat Autónoma de Barcelona ; Barcelona, Spain ; Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Sandra Balkow
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Eisei Kondo
- Department of General Medicine; Okayama University ; Okayama, Japan
| | - Birgit Bölck
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Tanja Weber
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Stephan Grabbe
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| |
Collapse
|
37
|
Toward immunotherapy with redirected T cells in a large animal model: ex vivo activation, expansion, and genetic modification of canine T cells. J Immunother 2015; 37:407-15. [PMID: 25198528 DOI: 10.1097/cji.0000000000000052] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising antitumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells, we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells, we targeted HER2(+) OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2(+) canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR, we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy before conducting studies in humans.
Collapse
|
38
|
Shimabukuro-Vornhagen A, Schlößer HA, Gryschok L, Malcher J, Wennhold K, Garcia-Marquez M, Herbold T, Neuhaus LS, Becker HJ, Fiedler A, Scherwitz P, Koslowsky T, Hake R, Stippel DL, Hölscher AH, Eidt S, Hallek M, Theurich S, von Bergwelt-Baildon MS. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget 2015; 5:4651-64. [PMID: 25026291 PMCID: PMC4148088 DOI: 10.18632/oncotarget.1701] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: A precise understanding of the mechanisms by which human immune cell subsets affect tumor biology will be critical for successful treatment of cancer using immunotherapeutic approaches. Recent evidence suggests that B cells can both promote and inhibit the development and progression of tumors. The aim of this study was to characterize the composition of the B-cell infiltrates in colorectal cancers (CRC) in order to gain further insight into the role of B cells in CRC. Experimental Design: In this study we characterized B-cell subsets in primary tumors (n=38), metastases (n=6) and blood (n=46) of 51 patients with a diagnosis of CRC and blood of 10 healthy controls. B-cell subsets were analyzed by flow cytometry or immunohistochemistry. Results: Peripheral blood of CRC patients contained a higher percentage of memory B cells than that of age-matched healthy controls. Furthermore, the percentage of B cells within tumors was higher than that in the peripheral blood of CRC patients while metastases were typically devoid of tumor-infiltrating B cells. Tumor-associated B cells were enriched for activated and terminally differentiated B cells. Relevant proportions of regulatory B cells could only be detected in advanced cancer and metastases. Conclusion: B cells constitute a significant proportion of the immune infiltrate in CRC. The B-cell infiltrate of primary CRC is characterized by an accumulation of terminally differentiated memory B cells or plasma cells suggestive of a specific immune response against the tumor. However advanced tumors and metastases are also infiltrated by a considerable number of regulatory B cells.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany. This authors contributed equally to this work
| | - Hans A Schlößer
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany. This authors contributed equally to this work
| | - Luise Gryschok
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Joke Malcher
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | - Till Herbold
- Cologne Interventional Immunology, University of Cologne, Germany. Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Laura S Neuhaus
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Hans J Becker
- Cologne Interventional Immunology, University of Cologne, Germany
| | - Anne Fiedler
- Cologne Interventional Immunology, University of Cologne, Germany
| | | | | | - Roland Hake
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Dirk L Stippel
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Arnulf H Hölscher
- Department of General, Visceral and Cancer Surgery, University of Cologne, Germany
| | - Sebastian Eidt
- Institute of Pathology, St. Elisabeth Hospital, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Sebastian Theurich
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Cologne Interventional Immunology, University of Cologne, Germany. Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Hassan GS, Stagg J, Mourad W. Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev 2015; 41:431-40. [PMID: 25843228 DOI: 10.1016/j.ctrv.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/11/2023]
Abstract
Many factors and molecules have been investigated as potential players in the pathogenesis or immunosurveillance of cancer. Among these, CD154 has been recognized as a co-stimulatory molecule with high potential for treating cancer, in addition to its contribution in the development of the disease. CD154 was initially described for its pivotal role in T cell-dependent humoral responses via an interaction with its classical receptor, CD40. Subsequent studies showed that CD154 is also implicated in cell-mediated immunity and inflammation via an interaction with CD40 alone or in combination with newly identified receptors, members of the integrin family, leading to the development of chronic inflammatory and autoimmune diseases. In the current article, we present an overview of the role of CD154 as a potential etiological factor in tumors inducing proliferation of malignant cells, their rescue from apoptosis and their invasiveness. In addition, this review describes the immuno-regulatory functions of CD154 against cancer reflected by its stimulation of antigen-presenting cells and the subsequent activation of effector cells, its enhancement of malignant cells' immunogenicity, its modulation of immune settings around tumors, and its initiation of proliferation inhibiting effects in malignant cells. In vitro as well as in vivo studies are outlined and a particular attention is given to clinical studies and progress reached at this point. Findings reviewed herein will improve our knowledge of the role of the CD154 system in cancers from causative to immunotherapeutic functions, paving the way for the identification of new targets for prevention and/or treatment of malignant disorders.
Collapse
Affiliation(s)
- Ghada S Hassan
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada
| | - John Stagg
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada
| | - Walid Mourad
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada.
| |
Collapse
|
40
|
Killick DR, Stell AJ, Catchpole B. Immunotherapy for canine cancer--is it time to go back to the future? J Small Anim Pract 2015; 56:229-41. [PMID: 25704119 DOI: 10.1111/jsap.12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/04/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022]
Abstract
Over the last 50 years, the significance of the immune system in the development and control of cancer has been much debated. However, recent discoveries provide evidence for a role of immunological mechanisms in the detection and destruction of cancer cells. Forty years ago veterinary oncologists were already investigating the feasibility of treating neoplasia by enhancing anticancer immunity. Unfortunately, this research was hindered by lack of a detailed understanding of cancer immunology, this limited the specificity and success of these early approaches. The great forward strides made in our understanding of onco-immunology in recent years have provided the impetus for a resurgence of interest in anticancer immunotherapy for canine patients. In this article both these initial trials and the exciting novel immunotherapeutics currently in development are reviewed.
Collapse
Affiliation(s)
- D R Killick
- School of Veterinary Science, University of Liverpool, Neston, CH64 7TE
| | | | | |
Collapse
|
41
|
Riccardo F, Aurisicchio L, Impellizeri JA, Cavallo F. The importance of comparative oncology in translational medicine. Cancer Immunol Immunother 2015; 64:137-48. [PMID: 25548094 PMCID: PMC11029667 DOI: 10.1007/s00262-014-1645-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
Human cancer is so complex that in vivo preclinical models are needed if effective therapies are to be developed. Naturally occurring cancers in companion animals are therefore a great resource, as shown by the remarkable growth that comparative oncology has seen over the last 30 years. Cancer has become a leading cause of death in companion animals now that more pets are living long enough to develop the disease. Furthermore, more owners are seeking advanced and novel therapies for their pets as they are very much considered family members. Living in the same environments, pets and humans are often afflicted by the same types of cancer which show similar behavior and, in some species, express the same antigen molecules. The treatment of pet tumors using novel therapies is of compelling translational significance.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| | | | | | - Federica Cavallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| |
Collapse
|
42
|
Clinical trials of immunogene therapy for spontaneous tumors in companion animals. ScientificWorldJournal 2014; 2014:718520. [PMID: 25506617 PMCID: PMC4251357 DOI: 10.1155/2014/718520] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Despite the important progress obtained in the treatment of some pets' malignancies, new treatments need to be developed. Being critical in cancer control and progression, the immune system's appropriate modulation may provide effective therapeutic options. In this review we summarize the outcomes of published immunogene therapy veterinary clinical trials reported by many research centers. A variety of tumors such as canine melanoma, soft tissue sarcomas, osteosarcoma and lymphoma, feline fibrosarcoma, and equine melanoma were subjected to different treatment approaches. Both viral and mainly nonviral vectors were used to deliver gene products as cytokines, xenogeneic tumor associated antigens, specific ligands, and proapoptotic regulatory factors. In some cases autologous, allogenic, or xenogeneic transgenic cytokine producing cells were assayed. In general terms, minor or no adverse collateral effects appeared during this kind of therapies and treated patients usually displayed a better course of the disease (longer survival, delayed or suppressed recurrence or metastatic spread, and improvement of the quality of life). This suggests the utility of these methodologies as standard adjuvant treatments. The encouraging outcomes obtained in companion animals support their ready application in veterinary clinical oncology and serve as preclinical proof of concept and safety assay for future human gene therapy trials.
Collapse
|
43
|
Johnston SA, Thamm DH, Legutki JB. The immunosignature of canine lymphoma: characterization and diagnostic application. BMC Cancer 2014; 14:657. [PMID: 25199568 PMCID: PMC4168252 DOI: 10.1186/1471-2407-14-657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cancer diagnosis in both dogs and humans is complicated by the lack of a non-invasive diagnostic test. To meet this clinical need, we apply the recently developed immunosignature assay to spontaneous canine lymphoma as clinical proof-of-concept. Here we evaluate the immunosignature as a diagnostic for spontaneous canine lymphoma at both at initial diagnosis and evaluating the disease free interval following treatment. Methods Sera from dogs with confirmed lymphoma (B cell n = 38, T cell n = 11) and clinically normal dogs (n = 39) were analyzed. Serum antibody responses were characterized by analyzing the binding pattern, or immunosignature, of serum antibodies on a non-natural sequence peptide microarray. Peptides were selected and tested for the ability to distinguish healthy dogs from those with lymphoma and to distinguish lymphoma subtypes based on immunophenotype. The immunosignature of dogs with lymphoma were evaluated for individual signatures. Changes in the immunosignatures were evaluated following treatment and eventual relapse. Results Despite being a clonal disease, both an individual immunosignature and a generalized lymphoma immunosignature were observed in each dog. The general lymphoma immunosignature identified in the initial set of dogs (n = 32) was able to predict disease status in an independent set of dogs (n = 42, 97% accuracy). A separate immunosignature was able to distinguish the lymphoma based on immunophenotype (n = 25, 88% accuracy). The individual immunosignature was capable of confirming remission three months following diagnosis. Immunosignature at diagnosis was able to predict which dogs with B cell lymphoma would relapse in less than 120 days (n = 33, 97% accuracy). Conclusion We conclude that the immunosignature can serve as a multilevel diagnostic for canine, and potentially human, lymphoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-657) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen Albert Johnston
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5901, USA.
| | | | | |
Collapse
|
44
|
White AG, Wolsic CL, Campbell KL, Lavergne SN. Canine progenitor epidermal keratinocytes express various inflammatory markers, including interleukin-8 and CD40, which are affected by certain antibiotics. Vet Dermatol 2014; 25:493-502, e81-2. [DOI: 10.1111/vde.12164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Amelia G. White
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Drive Urbana IL 61802 USA
| | - Cassandra L. Wolsic
- Comparative Biosciences; College of Veterinary Medicine; University of Illinois; 2001 South Lincoln Avenue Urbana IL 61802 USA
| | - Karen L. Campbell
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Drive Urbana IL 61802 USA
| | - Sidonie N. Lavergne
- Comparative Biosciences; College of Veterinary Medicine; University of Illinois; 2001 South Lincoln Avenue Urbana IL 61802 USA
| |
Collapse
|
45
|
Abstract
Tumor immunology and immunotherapy is one of the most exciting and rapidly expanding fields. The immune system is divided into 2 primary components: the innate immune response and the highly specific, but more slowly developing, adaptive or acquired immune response. Immune responses are separated by whether they are induced by exposure to a foreign antigen (active response) or transferred through serum or lymphocytes from an immunized individual (passive response). The ideal cancer immunotherapy agent should discriminate between cancer and normal cells (specificity), be potent enough to kill small or large numbers of tumor cells (sensitivity), and prevent recurrence of a tumor (durability).
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA, 546 Bedford Road, Bedford Hills, New York, NY 10507, USA; Department of Molecular Pharmacology & Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
46
|
O'Connor CM, Wilson-Robles H. Developing T Cell Cancer Immunotherapy in the Dog with Lymphoma. ILAR J 2014; 55:169-81. [DOI: 10.1093/ilar/ilu020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
47
|
Gavazza A, Lubas G, Fridman A, Peruzzi D, Impellizeri JA, Luberto L, Marra E, Roscilli G, Ciliberto G, Aurisicchio L. Safety and efficacy of a genetic vaccine targeting telomerase plus chemotherapy for the therapy of canine B-cell lymphoma. Hum Gene Ther 2014; 24:728-38. [PMID: 23902422 DOI: 10.1089/hum.2013.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Client-owned pet dogs represent exceptional translational models for advancement of cancer research because they reflect the complex heterogeneity observed in human cancer. We have recently shown that a genetic vaccine targeting dog telomerase reverse transcriptase (dTERT) and based on adenovirus DNA electro-gene-transfer (Ad/DNA-EGT) technology can induce strong cell-mediated immune responses against this tumor antigen and increase overall survival of dogs affected by B-cell lymphosarcoma (LSA) in comparison with historical controls when combined with a cyclophosphamide, vincristine, and prednisone (COP) chemotherapy regimen. Here, we have conducted a double-arm clinical trial with an extended number of LSA patients, measured the antigen-specific immune response, and evaluated potential toxic effects of the immunotherapy along with a follow-up of patients survival for 3.5 years. The immune response was measured by enzyme-linked immunospot assay. The expression of dTERT was quantified by quantitative polymerase chain reaction. Changes in hematological parameters, local/systemic toxicity or organic dysfunction and fever were monitored over time during the treatment. dTERT-specific cell-mediated immune responses were induced in almost all treated animals. No adverse effects were observed in any dog patient that underwent treatment. The overall survival time of vaccine/COP-treated dogs was significantly increased over the COP-only cohort (>76.1 vs. 29.3 weeks, respectively, p<0.0001). There was a significant association between dTERT expression levels in LSA cells and overall survival among vaccinated patients. In conclusion, Ad/DNA-EGT-based cancer vaccine against dTERT in combination with COP chemotherapy is safe and significantly prolongs the survival of LSA canine patients. These data confirm the therapeutic efficacy of dTERT vaccine and support the evaluation of this approach for other cancer types as well as the translation of this approach to human clinical trials.
Collapse
Affiliation(s)
- Alessandra Gavazza
- University of Pisa, Department of Veterinary Sciences, San Piero a Grado 56122, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wennhold K, Shimabukuro-Vornhagen A, Theurich S, von Bergwelt-Baildon M. CD40-activated B cells as antigen-presenting cells: the final sprint toward clinical application. Expert Rev Vaccines 2013; 12:631-7. [PMID: 23750793 DOI: 10.1586/erv.13.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Efficient antigen presentation is a prerequisite for the development of a T-cell-mediated immune response in vitro and in vivo. CD40-activated B cells (CD40B cells) are a promising alternative to dendritic cells as professional APCs for immunotherapy. CD40 activation dramatically improves antigen presentation by normal and malignant B cells, efficiently inducing naive and memory CD4(+) and CD8(+) T-cell responses. Moreover, CD40B cells do not only attract T cells by release of chemokines, but also home to secondary lymphoid organs. Furthermore, CD40B cells can be expanded exponentially over several weeks at high purity without a loss of antigen-presenting function, providing an almost unlimited source of cellular adjuvant. Vaccination with CD40B cells was shown in mice and dogs to induce a specific immune response. This article summarizes the achievements of intense research on CD40B cells over the last decade, as well as novel developments critical for a rapid translation into clinical application.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
49
|
Marconato L, Frayssinet P, Rouquet N, Comazzi S, Leone VF, Laganga P, Rossi F, Vignoli M, Pezzoli L, Aresu L. Randomized, Placebo-Controlled, Double-Blinded Chemoimmunotherapy Clinical Trial in a Pet Dog Model of Diffuse Large B-cell Lymphoma. Clin Cancer Res 2013; 20:668-77. [DOI: 10.1158/1078-0432.ccr-13-2283] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Wijewardana V, Sugiura K, Yahata M, Akazawa T, Wijesekera DPH, Imamoto S, Hatoya S, Inoue N, Inaba T. Production of canine soluble CD40 ligand to induce maturation of monocyte derived dendritic cells for cancer immunotherapy. Vet Immunol Immunopathol 2013; 156:121-7. [PMID: 24144681 DOI: 10.1016/j.vetimm.2013.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/27/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
CD40 ligand (CD40L) expressed by activated T cells is shown to induce maturation of immature dendritic cells (DCs) and this maturation is a vital part in DC based tumor immunotherapy. We constructed an expression vector by cloning the extracellular domain of canine CD40L fused to the signal sequence of canine IL-12p40. When PBMCs were incubated with canine granulocyte-macrophage (GM) -CSF and IL-4, expression of CD86 was significantly elevated, but the majority of cells displayed the morphology of immature DCs. Following addition of the expressed canine soluble CD40L (csCD40L) to the DC-inducing culture, the cell morphology shifted to that of mature DCs, and expression of CD80, CD86, MHC class II and CD1a was significantly enhanced. This morphological change and enhancement of expression was observed even when the csCD40L was present only in the second half period of the culture. Furthermore, the csCD40L caused a significant increase in IL-12 production from DCs. These results show that the csCD40L significantly promotes the maturation and activation of canine monocyte derived DCs.
Collapse
Affiliation(s)
- Viskam Wijewardana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano City, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|