1
|
Nogueira JDS, Gomes TR, Secco DA, de Almeida IS, da Costa ASMF, Cobas RA, Costa Dos Santos G, Gomes MB, Porto LC. Type 1 Diabetes Brazilian patients exhibit reduced frequency of recent thymic emigrants in regulatory CD4 +CD25 +Foxp3 +T cells. Immunol Lett 2024; 267:106857. [PMID: 38604551 DOI: 10.1016/j.imlet.2024.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thamires Rodrigues Gomes
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Danielle Angst Secco
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Inez Silva de Almeida
- Nursing Faculty, Department of Nursing Fundamentals, Ambulatory of the Adolescent Health Studies Center (NESA), Pedro Ernesto University Hospital, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Roberta Arnoldi Cobas
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Laboratory of Metabolomics (LabMet), IBRAG, Rio de Janeiro State University, Rio de Janeiro RJ Brazil
| | - Marília Brito Gomes
- Ambulatory of Diabetes, Piquet Carneiro Polyclinic, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís Cristóvão Porto
- Immunogenetic and Histocompatibility Laboratory (HLA-UERJ), Technologic core in Tissue Repair and Histocompatibility (TIXUS), Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Shen M, Zhang L, Chen C, Wei X, Ma Y, Ma Y. Investigating the causal relationship between immune cell and Alzheimer's disease: a mendelian randomization analysis. BMC Neurol 2024; 24:98. [PMID: 38500057 PMCID: PMC10946133 DOI: 10.1186/s12883-024-03599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Complex interactions between the immune system and the brain may affect neural development, survival, and function, with etiological and therapeutic implications for neurodegenerative diseases. However, previous studies investigating the association between immune inflammation and Alzheimer's disease (AD) have yielded inconsistent results. METHODS We applied Mendelian randomization (MR) to examine the causal relationship between immune cell traits and AD risk using genetic variants as instrumental variables. MR is an epidemiological study design based on genetic information that reduces the effects of confounding and reverse causation. We analyzed the causal associations between 731 immune cell traits and AD risk based on publicly available genetic data. RESULTS We observed that 5 immune cell traits conferred protection against AD, while 7 immune cell traits increased the risk of AD. These immune cell traits mainly involved T cell regulation, monocyte activation and B cell differentiation. Our findings suggest that immune regulation may influence the development of AD and provide new insights into potential targets for AD prevention and treatment. We also conducted various sensitivity analyses to test the validity and robustness of our results, which revealed no evidence of pleiotropy or heterogeneity. CONCLUSION Our research shows that immune regulation is important for AD and provides new information on potential targets for AD prevention and treatment. However, this study has limitations, including the possibility of reverse causality, lack of validation in independent cohorts, and potential confounding by population stratification. Further research is needed to validate and amplify these results and to elucidate the potential mechanisms of the immune cell-AD association.
Collapse
Affiliation(s)
- Min Shen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Linlin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chen Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaocen Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuning Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| | - Yuxia Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
3
|
Caiati C, Jirillo E. Pathogenesis of the Left Ventricular Diastolic Dysfunction: The Immune System Keeps Playing at the Backstage. Endocr Metab Immune Disord Drug Targets 2024; 24:173-177. [PMID: 37694788 DOI: 10.2174/1871530323666230911141418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Carlo Caiati
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Abstract
ABSTRACT Inflammation is a major underlying mechanism in the progression of numerous cardiovascular diseases (CVDs). Regulatory T cells (Tregs) are typical immune regulatory cells with recognized immunosuppressive properties. Despite the immunosuppressive properties, researchers have acknowledged the significance of Tregs in maintaining tissue homeostasis and facilitating repair/regeneration. Previous studies unveiled the heterogeneity of Tregs in the heart and aorta, which expanded in CVDs with unique transcriptional phenotypes and reparative/regenerative function. This review briefly summarizes the functional principles of Tregs, also including the synergistic effect of Tregs and other immune cells in CVDs. We discriminate the roles and therapeutic potential of Tregs in CVDs such as atherosclerosis, hypertension, abdominal arterial aneurysm, pulmonary arterial hypertension, Kawasaki disease, myocarditis, myocardial infarction, and heart failure. Tregs not only exert anti-inflammatory effects but also actively promote myocardial regeneration and vascular repair, maintaining the stability of the local microenvironment. Given that the specific mechanism of Tregs functioning in CVDs remains unclear, we reviewed previous clinical and basic studies and the latest findings on the function and mechanism of Tregs in CVDs.
Collapse
Affiliation(s)
- Wangling Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
5
|
Deng G, Tang Y, Xiao J, Chen X, Chu YH, Shang K, Zhou LQ, Qin C, Wang F, Tian DS. Naïve-memory regulatory T cells ratio is a prognostic biomarker for patients with acute ischemic stroke. Front Aging Neurosci 2023; 15:1072980. [PMID: 36909948 PMCID: PMC9995800 DOI: 10.3389/fnagi.2023.1072980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background Regulatory T cells (Treg) have been identified as a key modulator of neuroinflammation in stroke. However, little is known about the association of Treg subpopulations with clinical outcome in patients with acute ischemic stroke (AIS). Methods Patients within 1 week from stroke onset were prospectively enrolled in this study. Healthy controls were sex-and age-matched 1:1 to AIS patients. The frequencies of Treg and Treg subsets were analyzed by flow cytometry and compared with nonstroke control. Univariate and multivariate logistic regression analysis was performed to investigate the prognostic value of Treg subsets in stroke outcomes. Results A total of 328 patients and 328 controls were included in the study. Compared with controls, patients with AIS had higher levels of Treg frequency and memory Treg (mTreg) frequency, but lower levels of naïve Treg (nTreg) frequency and nTreg/mTreg ratio. One hundred twenty-six (38.4%) patients experienced unfavorable outcome (modified Rankin score 2-6). Multivariate regression analysis showed that nTreg/mTreg ratio was negatively associated with unfavorable 90-day outcome (the highest tertile versus the lowest tertile: odds ratio 0.13, 95% confidential interval [CI] 0.05-0.35). The risk estimation of unfavorable 90 day outcome can be significantly improved by adding nTreg/mTreg ratio to the conventional clinical parameters (continuous net reclassification improvement 91.26, 95% CI 69.04-113.5%, p < 0.001; integrated discrimination improvement 22.38, 95% CI 17.16-27.59%, p < 0.001). Conclusion This study showed that patients with AIS had elevated Treg frequency and mTreg frequency, but reduced nTreg frequency and nTreg/mTreg ratio. Admission nTreg/mTreg ratio was an independent predictor of unfavorable 90 day outcome in AIS. However, large sample-size cohort studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Liu SY, Huang CC, Yang YY, Huang SF, Lee TY, Li TH, Hou MC, Lin HC. Obeticholic acid treatment ameliorates the cardiac dysfunction in NASH mice. PLoS One 2022; 17:e0276717. [PMID: 36490253 PMCID: PMC9733885 DOI: 10.1371/journal.pone.0276717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Suppression of cardiac iinflammasome, which can be inhibited by Farnesoid X receptor (FXR) agonist, can ameliorate cardiac inflammation and fibrosis. Increased cardiac inflammasome decrease the abundance of regulatory T (Treg) cells and exacerbate cardiac dysfunction. Interaction between cardiomyocytes and Treg cells is involved in the development of nonalcoholic steatohepatitis (NASH)-related cardiac dysfunction. AIMS This study evaluates whether the FXR agonist obeticholic acid (OCA) treatment improves NASH-associated cardiac dysfunction. METHODS The in vivo and in vitro mechanisms and effects of two weeks of OCA treatment on inflammasome and Treg dysregulation-related cardiac dysfunction in NASH mice (NASH-OCA) at systemic, tissue and cellular levels were investigated. RESULTS The OCA treatment suppressed the serum and cardiac inflammasome levels, reduced the cardiac infiltrated CD3+ T cells, increased the cardiac Treg-represented anti-inflammatory cytokines (IL-10/IL-10R) and improved cardiac inflammation, fibrosis and function [decreased left ventricle (LV) mass and increased fractional shortening (FS)] in NASH-OCA mice. The percentages of OCA-decreased cardiac fibrosis and OCA-increased FS were positively correlated with the percentage of OCA-increased levels of cardiac FXR and IL-10/IL-10R. In the Treg cells from NASH-OCA mice spleen, in comparison with the Treg cells of the NASH group, higher intracellular FXR but lower inflammasome levels, and more proliferative/active and less apoptotic cells were observed. Incubation of H9c2 cardiomyoblasts with Treg-NASHcm [supernatant of Treg from NASH mice as condition medium (cm)], increased inflammasome levels, decreased the proliferative/active cells, suppressed the intracellular FXR, and downregulated differentiation/contraction marker. The Treg-NASHcm-induced hypocontractility of H9c2 can be attenuated by co-incubation with OCA, and the OCA-related effects were abolished by siIL-10R pretreatment. CONCLUSIONS Chronic FXR activation with OCA is a potential strategy for activating IL-10/IL-10R signalling, reversing cardiac regulatory T cell dysfunction, and improving inflammasome-mediated NASH-related cardiac dysfunction.
Collapse
Affiliation(s)
- Szu-Yu Liu
- Department of Medical Education, Clinical Innovation Center, Medical Innovation and Research Office, Taipei Veterans General Hospital, Taipei, Taiwan,Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Chang Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,Faculty of Medicine, Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Clinical Innovation Center, Medical Innovation and Research Office, Taipei Veterans General Hospital, Taipei, Taiwan,Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,* E-mail: (Y-YY); (H-CL)
| | - Shiang-Fen Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Guang Memorial Hospital, Linkou, Taiwan
| | - Tzu-Hao Li
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,Faculty of Medicine, Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Foundation, Taipei, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan,Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Taipei Veterans General Hospital, Taipei, Taiwan,* E-mail: (Y-YY); (H-CL)
| |
Collapse
|
7
|
Feng J, Wu Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int Immunopharmacol 2022; 110:108938. [PMID: 35759811 DOI: 10.1016/j.intimp.2022.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
The immune response is of great significance in the initiation and progression of a diversity of cardiovascular diseases involving pro-and anti-inflammatory cytokines. Interleukin-35 (IL-35), a cytokine of the interleukin-12 family, is a novel anti-inflammation and immunosuppressive cytokine, maintaining inflammatory suppression and regulating immune homeostasis. The role of IL-35 in cardiovascular diseases (CVDs) has aroused enthusiastic attention, a diversity of experimental or clinical evidence has indicated that IL-35 potentially has a pivot role in protecting against cardiovascular diseases, especially atherosclerosis and myocarditis. In this review, we initiate an overview of the relationship between Interleukin-35 and cardiovascular diseases, including atherosclerosis, acute coronary syndrome, pulmonary hypertension, abdominal aortic aneurysm, heart failure, myocardial ischemia-reperfusion, aortic dissection and myocarditis. Although the specific molecular mechanisms entailing the protective effects of IL-35 remain an unsolved issue, targeted therapies with IL-35 might provide a promising and effective solution to prevent and cure cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
8
|
Lu Y, Xia N, Cheng X. Regulatory T Cells in Chronic Heart Failure. Front Immunol 2021; 12:732794. [PMID: 34630414 PMCID: PMC8493934 DOI: 10.3389/fimmu.2021.732794] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Heart failure is a global problem with high hospitalization and mortality rates. Inflammation and immune dysfunction are involved in this disease. Owing to their unique function, regulatory T cells (Tregs) have reacquired attention recently. They participate in immunoregulation and tissue repair in the pathophysiology of heart failure. Tregs are beneficial in heart by suppressing excessive inflammatory responses and promoting stable scar formation in the early stage of heart injury. However, in chronic heart failure, the phenotypes and functions of Tregs changed. They transformed into an antiangiogenic and profibrotic cell type. In this review, we summarized the functions of Tregs in the development of chronic heart failure first. Then, we focused on the interactions between Tregs and their target cells. The target cells of Tregs include immune cells (such as monocytes/macrophages, dendritic cells, T cells, and B cells) and parenchymal cells (such as cardiomyocytes, fibroblasts, and endothelial cells). Next-generation sequencing and gene editing technology make immunotherapy of heart failure possible. So, prospective therapeutic approaches based on Tregs in chronic heart failure had also been evaluated.
Collapse
Affiliation(s)
- Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
You Y, Huang S, Liu H, Fan C, Liu K, Wang Z. Soluble fibrinogen‑like protein 2 levels are decreased in patients with ischemic heart failure and associated with cardiac function. Mol Med Rep 2021; 24:559. [PMID: 34109427 PMCID: PMC8188637 DOI: 10.3892/mmr.2021.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Soluble fibrinogen‑like protein 2 (sFGL2), as a novel effector of regulatory T cells (Tregs), exhibits immune regulatory activity in several inflammatory diseases. Immune activation and persistent inflammation participate in the progression of ischemic heart failure (IHF). The present study aimed to determine serum sFGL2 levels in patients with IHF and explore the relationship between sFGL2 levels and cardiac function. A total of 104 patients with IHF and 32 healthy controls were enrolled. patients with IHF were further split into subgroups according to the New York Heart Association functional classification or left ventricular ejection fraction (LVEF). Serum sFGL2 levels and peripheral Tregs frequencies were analyzed by ELISA and flow cytometry, respectively. The suppressive function of Tregs was measured by proliferation and functional suppression assays. Serum levels of sFGL2 and circulating Tregs frequencies were significantly decreased in patients with IHF compared with healthy controls. In patients with IHF, sFGL2 levels and Tregs frequencies were decreased with the deterioration of cardiac function. Tregs from patients with IHF exhibited compromised ability to suppress CD4+CD25‑ T cells proliferation and inflammatory cytokines secretion. Specifically, sFGL2 levels and Tregs frequencies positively correlated with LVEF, whereas negatively correlated with left ventricular end‑diastolic dimension and N‑terminal pro‑brain natriuretic peptide. sFGL2 levels were positively correlated with Tregs frequencies. In conclusion, the reduction of serum sFGL2 levels are associated with the progression of IHF and sFGL2 could be used as a potential indicator for predicting disease severity.
Collapse
Affiliation(s)
- Ya You
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
10
|
Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol 2021; 12:695047. [PMID: 34276413 PMCID: PMC8281681 DOI: 10.3389/fphys.2021.695047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Antiretroviral therapy-treated HIV-infected adults with coronary artery disease are characterized by a distinctive regulatory T-cell signature. AIDS 2021; 35:1003-1014. [PMID: 33587446 DOI: 10.1097/qad.0000000000002842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Despite the success of antiretroviral therapy (ART) to control viral replication, people living with HIV (PWH) have high levels of chronic systemic inflammation and immune dysregulation which drives accelerated co-morbidities including coronary artery disease (CAD). Regulatory T cells (Tregs) and ectonucleotidases CD39/CD73 are known to be athero-protective via their immunosuppressive and anti-inflammatory functions. DESIGN We assessed the dynamics of Treg subsets in ART-treated PWH with or without CAD vs. HIV-uninfected individuals. METHODS Blood specimens were obtained from 142 participants including ART-treated HIV-infected adults with (n = 43) or without CAD (n = 41), as well as HIV-uninfected controls with (n = 31) or without CAD (n = 27). CAD was determined by the presence of atherosclerotic features on computed tomography angiography of the coronary arteries performed on all study participants. Treg subsets frequencies were assessed by flow cytometry. RESULTS Regardless of statin treatment or ART regimen, HIV+CAD+ individuals had the highest total Treg frequencies and increased thymic generation and output of Tregs (Helios/CD31 expression), while athero-protective CD39+/CD73+ Tregs were significantly depleted in this group. Tregs from PWH had higher expression of CCR6/CXCR3 than uninfected individuals regardless of CAD, while in HIV+CAD+ individuals Tregs expressed the highest levels of CCR4, which limits their maintenance. The lowest levels of CD4+ and CD8+ T-cell immune activation has been observed in HIV+CAD+ within study groups. CONCLUSION ART-treated PWH with diagnosed CAD are characterized by profound alterations in populations of anti-inflammatory and athero-protective Treg subsets. These changes may contribute to atherosclerotic plaque formation and progression during chronic HIV infection in the ART era.
Collapse
|
12
|
An overview of human pericardial space and pericardial fluid. Cardiovasc Pathol 2021; 53:107346. [PMID: 34023529 DOI: 10.1016/j.carpath.2021.107346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
The pericardium is a double-layered fibro-serous sac that envelops the majority of the surface of the heart as well as the great vessels. Pericardial fluid is also contained within the pericardial space. Together, the pericardium and pericardial fluid contribute to a homeostatic environment that facilitates normal cardiac function. Different diseases and procedural interventions may disrupt this homeostatic space causing an imbalance in the composition of immune mediators or by mechanical stress. Inflammatory cells, cytokines, and chemokines are present in the pericardial space. How these specific mediators contribute to different diseases is the subject of debate and research. With the advent of highly specialized assays that can identify and quantify various mediators we can potentially establish specific and sensitive biomarkers that can be used to differentiate pathologies, and aid clinicians in improving clinical outcomes for patients.
Collapse
|
13
|
Haybar H, Maleki Behzad M, Shahrabi S, Ansari N, Saki N. Expression of Blood Cells Associated CD Markers and Cardiovascular Diseases: Clinical Applications in Prognosis. Lab Med 2020; 51:122-142. [PMID: 31340048 DOI: 10.1093/labmed/lmz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a major cause of mortality worldwide. The results of various studies have shown that abnormality in the frequency and function of blood cells can be involved in CVD complications. In this review, we have focused on abnormalities in the expression of the CD (cluster of differentiation) markers of blood cells to assess the association of these abnormalities with CVD prognosis. METHODS We identified the relevant literature through a PubMed search (1990-2018) of English-language articles using the terms "Cardiovascular diseases", "CD markers", "leukocytes", "platelets", and "endothelial cells". RESULTS There is a variety of mechanisms for the effect of CD-marker expressions on CVDs prognosis, ranging from proinflammatory processes to dysfunctional effects in blood cells. CONCLUSION Considering the possible effects of CD-marker expression on CVDs prognosis, particularly prognosis of acute myocardial infarction and atherosclerosis, long-term studies in large cohorts are required to identify the prognostic value of CD markers and to target them with appropriate therapeutic agents.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
15
|
Wang J, Duan Y, Sluijter JPG, Xiao J. Lymphocytic subsets play distinct roles in heart diseases. Am J Cancer Res 2019; 9:4030-4046. [PMID: 31281530 PMCID: PMC6592175 DOI: 10.7150/thno.33112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
Heart diseases are one of the leading causes of death for humans in the world. Increasing evidence has shown that myocardial injury induced innate and adaptive immune responses upon early cellular damage but also during chronic phases post-injury. The immune cells can not only aggravate the injury but also play an essential role in the induction of wound healing responses, which means they play a complex role throughout the acute inflammatory response and reparative response after cardiac injury. This review will summarize the current experimental and clinical evidence of lymphocytes, one of the major types of immune cells, participate in heart diseases and try to explain the possible role of these immune cells following cardiac injury.
Collapse
|
16
|
Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol 2019; 317:H124-H140. [PMID: 31074651 DOI: 10.1152/ajpheart.00028.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial inflammation can lead to lethal acute or chronic heart failure (HF). T lymphocytes (T cells), have been reported in the inflamed heart in different etiologies of HF, and more recent studies support that different T-cell subsets play distinct roles in the heart depending on the inflammation-triggering event. T cells follow sequential steps to extravasate into tissues, but their specific recruitment to the heart is determined by several factors. These include differences in T-cell responsiveness to specific chemokines in the heart environment, as well as differences in the expression of adhesion molecules in response to distinct stimuli, which regulate T-cell recruitment to the heart and have consequences in cardiac remodeling and function. This review focuses on recent advances in our understanding of the role T cells play in the heart, including its critical role for host defense to virus and myocardial healing postischemia, and its pathogenic role in chronic ischemic and nonischemic HF. We discuss a variety of mechanisms that contribute to the inflammatory damage to the heart, as well as regulatory mechanisms that limit the magnitude of T-cell-mediated inflammation. We also highlight areas in which further research is needed to understand the role T cells play in the heart and distinguish the findings reported in experimental animal models and how they may translate to clinical observations in the human heart.
Collapse
Affiliation(s)
- Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Infection, Oxidative Stress, and Changes in Circulating Regulatory T Cells of Heart Failure Patients Supported by Continuous-Flow Ventricular Assist Devices. ASAIO J 2018; 63:128-133. [PMID: 27922883 DOI: 10.1097/mat.0000000000000487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the changes in oxidative stress (OS) and circulating regulatory T cells (Tregs) of the immune system in patients supported by continuous-flow ventricular assist device (CF-VAD) with or without infection. We recruited 16 CF-VAD patients (5 with infection and 11 without infection) and 7 healthy volunteers. Generation of reactive oxygen species (ROS) from lymphocytes, superoxide dismutase (SOD) in erythrocyte, total antioxidant capacity (TAC), and oxidized low-density lipoprotein (oxLDL) in plasma were measured. Circulating Tregs were evaluated by flow cytometry. Heart failure (HF) patients had elevated OS than healthy volunteers as evident from higher lymphocyte ROS, elevated oxLDL, as well as depleted SOD and TAC levels. At baseline, HF patients had decreased percentage of Tregs (5.12 ± 1.5% vs. 8.14 ± 3.01%, p < 0.01) when compared with healthy volunteers. Postimplant patients with infection illustrated 35% and 44% rise in ROS and oxLDL, respectively, 31% decrease in TAC, and marked rise in percentage of Tregs (14.27 ± 3.17% vs. 9.38 ± 3.41%, p < 0.01) when compared with the patients without infection. Elevated OS and rise in Tregs were more prominent in CF-VAD patients with infection. In conclusion, OS and compromised immune system may be important indicators of systemic response of the body to CF-VAD among HF patients with infection.
Collapse
|
18
|
Adair PR, Kim YC, Zhang AH, Yoon J, Scott DW. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision. Front Immunol 2017; 8:1117. [PMID: 28983300 PMCID: PMC5613123 DOI: 10.3389/fimmu.2017.01117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022] Open
Abstract
Human regulatory CD4+ T cells (Tregs) are potent immunosuppressive lymphocytes responsible for immune tolerance and homeostasis. Since the seminal reports identifying Tregs, vast research has been channeled into understanding their genesis, signature molecular markers, mechanisms of suppression, and role in disease. This research has opened the doors for Tregs as a potential therapeutic for diseases and disorders such as multiple sclerosis, type I diabetes, transplantation, and immune responses to protein therapeutics, like factor VIII. Seminal clinical trials have used polyclonal Tregs, but the frequency of antigen-specific Tregs among polyclonal populations is low, and polyclonal Tregs may risk non-specific immunosuppression. Antigen-specific Treg therapy, which uses genetically modified Tregs expressing receptors specific for target antigens, greatly mitigates this risk. Building on the principles of T-cell receptor cloning, chimeric antigen receptors (CARs), and a novel CAR derivative, called B-cell antibody receptors, our lab has developed different types of antigen-specific Tregs. This review discusses the current research and optimization of gene-modified antigen-specific human Tregs in our lab in several disease models. The preparations and considerations for clinical use of such Tregs also are discussed.
Collapse
Affiliation(s)
- Patrick R Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ai-Hong Zhang
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeongheon Yoon
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
19
|
Sánchez-Trujillo L, Vázquez-Garza E, Castillo EC, García-Rivas G, Torre-Amione G. Role of Adaptive Immunity in the Development and Progression of Heart Failure: New Evidence. Arch Med Res 2017; 48:1-11. [PMID: 28577862 DOI: 10.1016/j.arcmed.2016.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
Heart failure (HF) is considered the endpoint of a variety of cardiac diseases, which are the leading cause of death in adults and considered a growing pandemic worldwide. Independent of the initial form of cardiac injury, there is evidence linking the involvement of the immune system. In HF there is evidence of the participation of TH1, and TH17 cells, which account for sustained pathological chronic inflammation, cell migration, and the induction of specific pathological phenotypes of mononuclear cells. Of equal or even higher relevance are the B lymphocyte activation mechanisms that include production of pro-inflammatory cytokines, chemokines, and cardiac autoantibodies with or without activation of the complement proteins. Both of these unbalanced T- and B-cell pathways of the adaptive immune system are associated with cardiomyocyte death and tissue remodeling by fibrosis leading to a dysfunctional heart. At this time, therapy with neutralizing antibodies and the use of anti-cytokine immunomodulators to counteract the immune system effects have reached a plateau of mixed results in clinical trials. Nevertheless, recent evidence showed promising results in animal models that suggest that modulation of the adaptive immune system cells more than some of their effector molecules could have benefits in HF patients. This review summarizes the role of the adaptive immunity cells in HF, considering the sustained activation of adaptive immune system as a potential contributor to disease progression in humans and experimental models where its regulation provides a new therapeutic target.
Collapse
Affiliation(s)
- Luis Sánchez-Trujillo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, México; Hospital General de Zona No. 4, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Eduardo Vázquez-Garza
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, México
| | - Elena C Castillo
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, México
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, México; Centro de Investigación Biomédica, Hospital Zambrano Hellion, Tecnologico de Monterrey, San Pedro Garza-García, México.
| | - Guillermo Torre-Amione
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, México; Centro de Investigación Biomédica, Hospital Zambrano Hellion, Tecnologico de Monterrey, San Pedro Garza-García, México; Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, Texas
| |
Collapse
|
20
|
Iskandar R, Liu S, Xiang F, Chen W, Li L, Qin W, Huang F, Chen X. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure. Exp Ther Med 2017; 13:1850-1858. [PMID: 28565777 PMCID: PMC5443183 DOI: 10.3892/etm.2017.4202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Pericardial fluid, as a biochemical indicator of heart status, directly indicates pathological alteration to the heart. The accumulation of pericardial fluid can be attributed to an underlying systemic or local inflammatory process. However, the pericardial fluid expression of cellular surface markers, as well as several cytokines in chronic heart failure (CHF), remain unclear. In order to evaluate these issues further the pericardial fluid expression of several cytokines and the surface expression of activity markers between CHF patients and non-heart failure (NHF) patients were analyzed. The pericardial fluid expression of cytokines was measured by immunofluorescence and biomarker of plasma N-terminal propeptide of B-type natriuretic peptide (NT-proBNP), while pericardial fluid levels of soluble glycoprotein 130 (sgp130) were analyzed by ELISA in 50 CHF and 24 NHF patients. In addition, the surface expression of activation markers for T-cells was measured by immunohistochemistry. Patients with CHF demonstrated increased levels of plasma NT-proBNP and pericardial fluid sgp130. Surface expression of cellular activation markers CD25 and Foxp3 in the pericardial fluid was increased in patients with CHF. Moreover, the pro- and anti-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-6 and IL-10 in patients with CHF also demonstrated an increased expression within its pericardial fluid. In addition, there was infiltration of inflammatory cells and enhanced expression of inflammatory cytokines in the pericardial fluid of patients with CHF, which may reflect T cell activation, suggesting that systemic inflammation is important in the progression of CHF. This evidence could indicate a possible novel target for future therapeutics and prevention of CHF.
Collapse
Affiliation(s)
- Reinard Iskandar
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shengchen Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Fei Xiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wei Qin
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
21
|
Liao Y, Wang Y. Cardiovascular Immunology Research in Wuhan Union Hospital: Over the Past 25 years. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2017. [DOI: 10.15212/cvia.2016.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Sun DP, Jin H, Ding CY, Liang JH, Wang L, Fan L, Wu YJ, Xu W, Li JY. Thymic hyperplasia after chemotherapy in adults with mature B cell lymphoma and its influence on thymic output and CD4(+) T cells repopulation. Oncoimmunology 2016; 5:e1137417. [PMID: 27467956 PMCID: PMC4910735 DOI: 10.1080/2162402x.2015.1137417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/16/2015] [Accepted: 12/28/2015] [Indexed: 11/24/2022] Open
Abstract
To investigate the thymic regenerative potential in adults accepting chemotherapy for lymphoma. The dynamics of thymic activity in 54 adults from baseline to 12 mo post-chemotherapy was analyzed by assessing thymic structural changes with serial computed tomography (CT) scans, and correlating these with measurements of thymic output by concurrent analysis of single-joint (sj) T-cell receptor excision circles (sjTREC) and CD31+ recent thymic emigrants (RTE) in peripheral blood. Furthermore, the consequence of thymic renewal on peripheral CD4+ T cell recovery after chemotherapy was evaluated. Time-dependent changes of thymic size and thymic output assessed by both sjTREC levels and CD31+ RTE counts in peripheral blood were observed during and after chemotherapy. Enlargement of thymus over baseline following chemotherapy regarded as rebound thymic hyperplasia (TH) was identified in 20 patients aged 18−53 y (median 33 y). By general linear models repeated measure analysis, it was found that, patients with TH (n = 20) had a faster recovery of sjTREC levels and CD31+ RTE counts after chemotherapy than patients with comparable age, gender, diagnosis, disease stage, thymic volume and output function at baseline but without TH (n = 18) (p = 0.035, 0.047); besides, patients with TH had a faster repopulation of both naïve CD4+ T cell and natural regulatory CD4+ T cell subsets than those without TH (p = 0.042, 0.038). These data suggested that adult thymus retains the capacity of regeneration after chemotherapy, especially in young adults. The presence of TH could contribute to the renewal of thymopoiesis and the replenishment of peripheral CD4+ T cell pool following chemotherapy in adults.
Collapse
Affiliation(s)
- Dao-Ping Sun
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China; Department of Hematology, Jining No.1 People's Hospital, Jining, China
| | - Hui Jin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin, China
| | - Chong-Yang Ding
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Yu-Jie Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital , Nanjing, China
| |
Collapse
|
23
|
Abstract
Inflammation is essential in the initial development and progression of many cardiovascular diseases involving innate and adaptive immune responses. The role of CD4(+)CD25(+)FOXP3(+) regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology. A wealth of evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm. In this Review, we provide an overview of the roles of TREG cells in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure. Although the exact molecular mechanisms underlying the cardioprotective effects of TREG cells are still to be elucidated, targeted therapies with TREG cells might provide a promising and novel future approach to the prevention and treatment of cardiovascular diseases.
Collapse
|
24
|
Zhu ZF, Tang TT, Dong WY, Li YY, Xia N, Zhang WC, Zhou SF, Yuan J, Liao MY, Li JJ, Jiao J, Nie SF, Wang Q, Tu X, Xu CQ, Liao YH, Shi GP, Cheng X. Defective circulating CD4+LAP+ regulatory T cells in patients with dilated cardiomyopathy. J Leukoc Biol 2015; 97:797-805. [PMID: 25722319 DOI: 10.1189/jlb.5a1014-469rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There has been increasing evidence that chronic immune activation plays critical roles in the pathogenesis of DCM. CD4(+) LAP(+) Tregs are a newly identified T cell subset with suppressive function on the immune response. This study was designed to investigate whether the circulating frequency and function of CD4(+)LAP(+) Tregs would be impaired in patients with DCM. The results demonstrated that DCM patients had a significantly lower frequency of circulating CD4(+)LAP(+) Tregs compared with control donors. CD4(+)LAP(+) Tregs from DCM patients showed compromised function to suppress proliferation of CD4(+) LAP(-)CD25(int/low) T cells and proliferation and IgG production of B cells. Moreover, B cell proliferation and IgG subset production could be directly suppressed by CD4(+) LAP(+) Tregs. TGF-β and contact-dependent mechanisms were involved in CD4(+)LAP(+) Treg-mediated suppression. Correlation analysis suggested that CD4(+)LAP(+) Treg frequency was positively correlated with LVEF and negatively correlated with serum IgG3 and NT-proBNP concentration in patients with DCM. Our results are the first to demonstrate that the frequencies of CD4(+)LAP(+) Tregs in patients with DCM are reduced and that their suppressive function is compromised. Defective CD4(+) LAP(+) Tregs may be an underlying mechanism of immune activation in DCM patients.
Collapse
Affiliation(s)
- Zheng-Feng Zhu
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ting-Ting Tang
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen-Yong Dong
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan-Yuan Li
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ni Xia
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wen-Cai Zhang
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Su-Feng Zhou
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Yuan
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meng-Yang Liao
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jing-Jing Li
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jiao Jiao
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shao-Fang Nie
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Wang
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Tu
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cheng-Qi Xu
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Liao
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guo-Ping Shi
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiang Cheng
- *Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Yu K, Dong Q, Mao X, Meng K, Zhao X, Ji Q, Wu B, Zhong Y, Zhu Z, Liu Y, Zhang W, Tony H, Shi H, Zeng Q. Disruption of the TSLP-TSLPR-LAP signaling between epithelial and dendritic cells through hyperlipidemia contributes to regulatory T-Cell defects in atherosclerotic mice. Atherosclerosis 2014; 238:278-88. [PMID: 25544178 DOI: 10.1016/j.atherosclerosis.2014.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
Regulatory T-Cells (Tregs) play a protective role against the development of atherosclerosis. Moreover, thymic stromal lymphopoietin (TSLP)/thymic stromal lymphopoietin receptor (TSLPR) signaling in myeloid dendritic cells (DCs) promote Treg differentiation. Here, we examined the potential role of TSLP/TSLPR on Treg homeostasis in atherosclerosis. The frequencies of both latency-associated peptide (LAP)(+) and Foxp3(+) Tregs were reduced in the thymus and spleen of ApoE(-/-) mice compared with C57BL/6 mice, and this effect was associated with decreased thymic output. The tolerogenic function of DCs obtained from ApoE(-/-) mice was compromised compared with those from C57BL/6 mice. The expression of TSLP and TSLPR was also inhibited in ApoE(-/-) mice. In addition, we found that ox-LDL attenuated TSLP expression in cultured thymic epithelial cells (TECs) through the activation of retinoid X receptor alpha (RXRA) and IL-1β and decreased LAP and PD-L1 expression in oxLDL-activated DCs while both were up-regulated in TSLP-activated DCs. We also observed that the TSLP-DCs mediated differentiation of Tregs was abrogated through LAP neutralization. Furthermore, TSLP injection rescued Treg defects in ApoE(-/-) mice. These findings suggest that Treg defects in ApoE(-/-) mice might partially be attributed to the disruption of TSLP-TSLPR-LAP signaling in epithelial cells (ECs) and DCs.
Collapse
Affiliation(s)
- Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Meng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Zhao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qingwei Ji
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yucheng Zhong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Liu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hasahya Tony
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huairui Shi
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Impaired circulating CD4+ LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study. PLoS One 2014; 9:e88775. [PMID: 24558424 PMCID: PMC3928284 DOI: 10.1371/journal.pone.0088775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) are a newly discovered T cell subset in humans and the role of these cells in patients with acute coronary syndrome (ACS) has not been explored. We designed to investigate whether circulating frequency and function of CD4(+)LAP(+) Tregs are defective in ACS. METHODS One hundred eleven ACS patients (acute myocardial infarction and unstable angina) and 117 control patients were enrolled in the study. The control patients consisted of chronic stable angina (CSA) and chest pain syndrome (CPS). The frequencies of circulating CD4(+)LAP(+) Tregs and the expression of the transmembrane protein glycoprotein-A repetitions predominant (GARP) on CD4(+) T cells were determined by flow cytometry. The function of CD4(+)LAP(+) Tregs was detected using thymidine uptake. Serum interleukin-10 (IL-10) and transforming growth factor-β protein (TGF-β) levels were detected using ELISA and expression of GARP mRNA in peripheral blood mononuclear cells (PBMCs) was measured by real time-polymerase chain reaction. RESULTS We found ACS patients had a significantly lower frequency of circulating CD4(+)LAP(+) Tregs, and the function of these cells was reduced compared to controls. The expression of GARP in CD4(+) T cells and the serum levels of TGF-β in ACS patients were lower than those of control patients. The serum levels of IL-10 were similar between the two cohorts. CONCLUSIONS A novel regulatory T cell subset, defined as CD4(+)LAP(+) T cells is defective in ACS patients.
Collapse
|
27
|
Schlossberger V, Schober L, Rehnitz J, Schaier M, Zeier M, Meuer S, Schmitt E, Toth B, Strowitzki T, Steinborn A. The success of assisted reproduction technologies in relation to composition of the total regulatory T cell (Treg) pool and different Treg subsets. Hum Reprod 2013; 28:3062-73. [DOI: 10.1093/humrep/det316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Zhu ZF, Li JJ, Liu J, Tang TT, Ding YJ, Liao YH, Cheng X, Wang X. Circulating Th17 cells are not elevated in patients with chronic heart failure. SCAND CARDIOVASC J 2012; 46:295-300. [PMID: 22655909 DOI: 10.3109/14017431.2012.699096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Increasing evidences have been obtained that immune activation and inflammation play critical roles in the pathogenesis of chronic heart failure (CHF). T helper (Th) 17 cells are a newly found pro-inflammatory T cell subtype. We therefore assessed the hypothesis that circulating Th17 cells increased in patients with CHF. Hypothesis. Th17 cells and its cytokine might be elevated in patients with CHF. METHODS A total of 92 patients with CHF and 59 healthy donors were enrolled in the study. The frequencies of circulating Th17 cells were determined by flow cytometry. The interleukin (IL)-17 protein levels in the serum and supernatant of phytohemagglutinin (PHA)-stimulated periphery blood mononuclear cells (PBMCs) were detected using ELISA and the mRNA expression of retinoic acid-related orphan receptor (ROR)γt, which is the key transcription factor of Th17 cells was measured by RT-PCR. RESULTS There were no significant differences in the frequency of circulating Th17 cells, serum level of IL-17, and expression of RORγt in PBMCs between CHF patients and healthy controls. IL-17 protein level in the supernatants of PHA-stimulated PBMCs was also comparable between CHF patients and health donors. CONCLUSIONS Circulating Th17 cells are not elevated in patients with CHF.
Collapse
Affiliation(s)
- Zheng-Feng Zhu
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|