1
|
Spitalny L, Falco N, England W, Allred T, Spitale RC. Novel photocrosslinking chemical probes utilized for high-resolution spatial transcriptomics. RSC Chem Biol 2025:d4cb00262h. [PMID: 39845105 PMCID: PMC11748054 DOI: 10.1039/d4cb00262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The architecture of cells and the tissue they form within multicellular organisms are highly complex and dynamic. Cells optimize their function within tissue microenvironments by expressing specific subsets of RNAs. Advances in cell tagging methods enable spatial understanding of RNA expression when merged with transcriptomics. However, these techniques are currently limited by the spatial resolution of the tagging, the number of RNAs that can be sequenced, and multiplexing to isolate spatially-distinct cells within the same tissue landscape. To address these limitations, we developed CrossSeq, which employs photocrosslinking fluorescent probes and confocal microscopy activation to demarcate user-defined regions of interest on fixed cells for multiplexed spatial transcriptomic analysis. We investigate phenyl azide and diazirine crosslinking scaffolds and define their photoactivity profiles. We then deploy the aryl azide scaffold with three fluorophores for multiplexing on glyoxal fixed cells and analyze the defined populations using flow cytometry. Finally, we apply CrossSeq to investigate an in vitro MDA-MB-231-LM2 metastatic cancer migration model to evaluate changes in gene expression at the migratory cell front versus the exterior population. We anticipate this new technology will be a valuable tool addition as it will enable easier access to spatial transcriptomic analysis for the scientific community using conventional microscopy and analysis techniques.
Collapse
Affiliation(s)
- Leslie Spitalny
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
| | - Natalie Falco
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
| | - Tyler Allred
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California Irvine California 92697 USA
- Department of Chemistry, University of California Irvine California 92697 USA
- Department of Molecular Biology & Biochemistry, University of California Irvine California 92697 USA
| |
Collapse
|
2
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
3
|
Kim SJ, Kim S, Choi YJ, Kim UJ, Kang KW. CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy. Biomol Ther (Seoul) 2022; 30:435-446. [PMID: 35794797 PMCID: PMC9424334 DOI: 10.4062/biomolther.2022.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anti-cancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - U Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Alzhanuly B, Mukhatayev ZY, Botbayev DM, Ashirbekov Y, Katkenov ND, Dzhaynakbaev NT, Sharipov KO. Modulation of Insulin Gene Expression with CRISPR/Cas9-based Transcription Factors. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The discovery and use of CRISPR/Cas9 technology have enabled researchers throughout the globe to continuously edit genomes for the benefit of science and medicine. Diabetes type I is one field of medicine where CRISPR/Cas9 has a strong potential for cell therapy development. The long-lasting paucity of healthy cells for clinical transplantation into diabetic patients has led to the search of new methods for producing β-cells from other human cell types. Embryonic stem cells are being studied worldwide as one most promising solution of this need. Aim: The aim of the study is to to check the feasibility of modulating human insulin transcription using CRISPR/Cas9-based synthetic transcription regulation factors.
Results: A new approach for creating potential therapeutic donor cells with enhanced and suppressed insulin production based on one of the latest achievements of human genome editing was developed. Both synthetic transcription activator (VP64) and transcription repressor (KRAB) proteins were shown to function adequately well as a part of the whole CRISPR/Cas9-based system. We claim that our results have a lot to offer and can bring light to many studies where numerous labs are struggling on to treat this disease.
Collapse
|
5
|
Chen R, Ning Y, Zeng G, Zhou H, Zhou L, Xiao P, Li Z, Zhou J. The miR-193a-5p/NCX2/AKT axis promotes invasion and metastasis of osteosarcoma. J Cancer 2021; 12:5903-5913. [PMID: 34476004 PMCID: PMC8408106 DOI: 10.7150/jca.60969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
MiR-193a-5p has been observed to have oncogenic or tumor suppressive functions in different kinds of cancers, but its role and molecular mechanism in osteosarcoma are elusive. Na+/Ca2+ exchangers (NCX1, NCX2 and NCX3) normally extrude Ca2+ from the cell, and deregulation of the intracellular Ca2+ homeostasis is related to several kinds of diseases, including cancer. The present study demonstrated that miR-193a-5p was upregulated in osteosarcoma tissues compared with the corresponding adjacent noncancerous tissues, and promoted colony formation, migration, invasion and epithelial-mesenchymal transition (EMT) in osteosarcoma cells (SaOS-2 and U-2OS), as well as metastasis in a murine xenograft model. Tandem mass tag-based quantitative proteomics analysis identified NCX2 as a potential target of miR-193a-5p. Luciferase activity assays and Western blotting further confirmed that miR-193a-5p recognized the 3′-untranslated region of NCX2 mRNA, and negatively regulated NCX2 expression. NCX2 was downregulated in osteosarcoma tissues, and its expression was negatively correlated with miR-193a-5p levels. Ectopic expression of NCX2 in osteosarcoma cells could reverse the oncogenicity of miR-193a-5p, indicating that miR-193a-5p exerted its effects by targeting NCX2. Further study demonstrated that NCX2 suppresses Ca2+-dependent Akt phosphorylation by decreasing intracellular Ca2+ concentration, and then inhibited EMT process. Treatment with the antagomir against miR-193a-5p sensitized osteosarcoma to the Akt inhibitor afuresertib in a murine xenograft model. In conclusion, a miR-193a-5p/NCX2/AKT signaling axis contributes to the progression of osteosarcoma, which may provide a new therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yichong Ning
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha 410331, Hunan, China
| | - Hao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Lin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Pei Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
6
|
Pacheco MB, Camilo V, Henrique R, Jerónimo C. Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics 2021; 17:564-588. [PMID: 34130596 DOI: 10.1080/15592294.2021.1939477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epigenome editing consists of fusing a predesigned DNA recognition unit to the catalytic domain of a chromatin modifying enzyme leading to the introduction or removal of an epigenetic mark at a specific locus. These platforms enabled the study of the mechanisms and roles of epigenetic changes in several research domains such as those addressing pathogenesis and progression of cancer. Despite the continued efforts required to overcome some limitations, which include specificity, off-target effects, efficacy, and longevity, these tools have been rapidly progressing and improving.Since prostate cancer is characterized by multiple genetic and epigenetic alterations that affect different signalling pathways, epigenetic editing constitutes a promising strategy to hamper cancer progression. Therefore, by modulating chromatin structure through epigenome editing, its conformation might be better understood and events that drive prostate carcinogenesis might be further unveiled.This review describes the different epigenome engineering tools, their mechanisms concerning gene's expression and regulation, highlighting the challenges and opportunities concerning prostate cancer research.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. DR. António Bernardino De Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| |
Collapse
|
7
|
Alves E, Taifour S, Dolcetti R, Chee J, Nowak AK, Gaudieri S, Blancafort P. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Mol Ther Methods Clin Dev 2021; 21:592-606. [PMID: 34095343 PMCID: PMC8142043 DOI: 10.1016/j.omtm.2021.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Precise clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genetic and epigenetic manipulation of the immune response has become a promising immunotherapeutic approach toward combating tumorigenesis and tumor progression. CRISPR-based immunologic reprograming in cancer therapy comprises the locus-specific enhancement of host immunity, the improvement of tumor immunogenicity, and the suppression of tumor immunoevasion. To date, the ex vivo re-engineering of immune cells directed to inhibit the expression of immune checkpoints or to express synthetic immune receptors (chimeric antigen receptor therapy) has shown success in some settings, such as in the treatment of melanoma, lymphoma, liver, and lung cancer. However, advancements in nuclease-deactivated CRISPR-associated nuclease-9 (dCas9)-mediated transcriptional activation or repression and Cas13-directed gene suppression present novel avenues for the development of tumor immunotherapies. In this review, the basis for development, mechanism of action, and outcomes from recently published Cas9-based clinical trial (genetic editing) and dCas9/Cas13-based pre-clinical (epigenetic editing) data are discussed. Lastly, we review cancer immunotherapy-specific considerations and barriers surrounding use of these approaches in the clinic.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Shahama Taifour
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Riccardo Dolcetti
- Diamantina Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Sir Peter MacCallum Centre for Cancer Immunotherapy, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Carbonic Anhydrase IX Promotes Human Cervical Cancer Cell Motility by Regulating PFKFB4 Expression. Cancers (Basel) 2021; 13:cancers13051174. [PMID: 33803236 PMCID: PMC7967120 DOI: 10.3390/cancers13051174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy. Abstract Carbonic anhydrase IX (CAIX) is a hypoxia-induced protein that is highly expressed in numerous human cancers. However, the molecular mechanisms involved in CAIX and human cervical cancer metastasis remain poorly understood. In this study, CAIX overexpression in SiHa cells increased cell migration and epithelial-to-mesenchymal transition (EMT). Silencing CAIX in the Caski cell line decreased the motility of cells and EMT. Furthermore, the RNA-sequencing analysis identified a target gene, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB4), which is influenced by CAIX overexpression and knockdown. A positive correlation was found between CAIX expression and PFKFB4 levels in the cervical cancer of the TCGA database. Mechanistically, CAIX overexpression activated the phosphorylation of extracellular signal-regulated kinases (ERKs) to induce EMT and promote cell migration. In clinical results, human cervical cancer patients with CAIXhigh/PFKFB4high expression in the late stage had higher rates of lymph node metastasis and the shortest survival time. Our study found that CAIX overexpression increases PFKFB4 expression and EMT, promoting cervical cancer cell migration. CAIX could contribute to cervical cancer cell metastasis and its inhibition could be a cervical cancer treatment strategy.
Collapse
|
9
|
Lenoir M, Martín R, Torres-Maravilla E, Chadi S, González-Dávila P, Sokol H, Langella P, Chain F, Bermúdez-Humarán LG. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 2020; 12:1-16. [PMID: 33054518 PMCID: PMC7567499 DOI: 10.1080/19490976.2020.1826748] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The commensal bacterium Faecalibacterium prausnitzii plays a key role in inflammatory bowel disease (IBD) pathogenesis and serves as a general health biomarker in humans. However, the host molecular mechanisms that underlie its anti-inflammatory effects remain unknown. In this study we performed a transcriptomic approach on human intestinal epithelial cells (HT-29) stimulated with TNF-α and exposed to F. prausnitzii culture supernatant (SN) in order to determine the impact of this commensal bacterium on intestinal epithelial cells. Moreover, modulation of the most upregulated gene after F. prausnitzii SN contact was validated both in vitro and in vivo. Our results showed that F. prausnitzii SN upregulates the expression of Dact3, a gene linked to the Wnt/JNK pathway. Interestingly, when we silenced Dact3 expression, the effect of F. prausnitzii SN was lost. Butyrate was identified as the F. prausnitzii effector responsible for Dact3 modulation. Dact3 upregulation was also validated in vivo in both healthy and inflamed mice treated with either F. prausnitzii SN or the live bacteria, respectively. Finally, we demonstrated by colon transcriptomics that gut microbiota directly influences Dact3 expression. This study provides new clues about the host molecular mechanisms involved in the anti-inflammatory effects of the beneficial commensal bacterium F. prausnitzii.
Collapse
Affiliation(s)
- Marion Lenoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Rebeca Martín
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Sead Chadi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,Sorbonne Universités, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology department, F-75012Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Florian Chain
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luis G. Bermúdez-Humarán
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350Jouy-en-Josas, France
| |
Collapse
|
10
|
Zhang Z, Li Z, Liu Z, Zhang X, Yu N, Xu Z. Identification of microenvironment-related genes with prognostic value in clear cell renal cell carcinoma. J Cell Biochem 2020; 121:3606-3615. [PMID: 31961022 DOI: 10.1002/jcb.29654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor. Previous studies have shown that the interaction between tumor cells and microenvironment has an important impact on prognosis. Immune and stromal cells are two vital components of the tumor microenvironment. Our study aimed to better understand and explore the genes involved in immune/stromal cells on prognosis. We used the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data algorithm to calculate immune/stromal scores. According to the scores, we divided ccRCC patients from The Cancer Genome Atlas database into low and high groups and identified the genes which were differentially expressed and significantly associated with prognosis. The result of functional enrichment analysis and protein-protein interaction networks indicated that these genes mainly were involved in extracellular matrix and regulation of cellular activities. Then another independent cohort from the International Cancer Genome Consortium database was used to validate these genes. Finally, we acquired a list of microenvironment-related genes that can predict prognosis for ccRCC patients.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zeyan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Nengwang Yu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Moses C, Nugent F, Waryah CB, Garcia-Bloj B, Harvey AR, Blancafort P. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:287-300. [PMID: 30654190 PMCID: PMC6348769 DOI: 10.1016/j.omtn.2018.12.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
PTEN expression is lost in many cancers, and even small changes in PTEN activity affect susceptibility and prognosis in a range of highly aggressive malignancies, such as melanoma and triple-negative breast cancer (TNBC). Loss of PTEN expression occurs via multiple mechanisms, including mutation, transcriptional repression and epigenetic silencing. Transcriptional repression of PTEN contributes to resistance to inhibitors used in the clinic, such as B-Raf inhibitors in BRAF mutant melanoma. We aimed to activate PTEN expression using the CRISPR system, specifically dead (d) Cas9 fused to the transactivator VP64-p65-Rta (VPR). dCas9-VPR was directed to the PTEN proximal promoter by single-guide RNAs (sgRNAs), in cancer cells that exhibited low levels of PTEN expression. The dCas9-VPR system increased PTEN expression in melanoma and TNBC cell lines, without transcriptional regulation at predicted off-target sgRNA binding sites. PTEN activation significantly repressed downstream oncogenic pathways, including AKT, mTOR, and MAPK signaling. BRAF V600E mutant melanoma cells transduced with dCas9-VPR displayed reduced migration, as well as diminished colony formation in the presence of B-Raf inhibitors, PI3K/mTOR inhibitors, and with combined PI3K/mTOR and B-Raf inhibition. CRISPR-mediated targeted activation of PTEN may provide an alternative therapeutic approach for highly aggressive cancers that are refractory to current treatments.
Collapse
Affiliation(s)
- Colette Moses
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Fiona Nugent
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charlene Babra Waryah
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Benjamin Garcia-Bloj
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Medicine, Faculty of Science, Universidad Mayor, Camino la Piramide 5750, Huechuraba 8580745, Santiago, Chile
| | - Alan R Harvey
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol 2018; 234:10080-10100. [PMID: 30537129 DOI: 10.1002/jcp.27941] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most frequently occurring malignancy in women worldwide. Despite the substantial advancement in understanding the molecular mechanisms and management of BC, it remains the leading cause of cancer death in women. One of the main reasons for this obstacle is that we have not been able to find the Achilles heel for the BC as a highly heterogeneous disease. Accumulating evidence has revealed that noncoding RNAs (ncRNAs), play key roles in the development of BC; however, the involving of complex regulatory interactions between the different varieties of ncRNAs in the development of this cancer has been poorly understood. In the recent years, the newly discovered mechanism in the RNA world is "competing endogenous RNA (ceRNA)" which proposes regulatory dialogues between different RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). In the latest BC research, various studies have revealed that dysregulation of several ceRNA networks (ceRNETs) between these ncRNAs has fundamental roles in establishing the hallmarks of BC development. And it is thought that such a discovery could open a new window for a better understanding of the hidden aspects of breast tumors. Besides, it probably can provide new biomarkers and potential efficient therapeutic targets for BC. This review will discuss the existing body of knowledge regarding the key functions of ceRNETs and then highlights the emerging roles of some recently discovered ceRNETs in several hallmarks of BC. Moreover, we propose for the first time the "ceRnome" as a new term in the present article for RNA research.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Masoumeh Sepahvand
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Molecular Cellular Sciences Institute, Metabolic Disorders Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wu L, Wang T, He D, Li X, Jiang Y. miR-1 inhibits the proliferation of breast cancer stem cells by targeting EVI-1. Onco Targets Ther 2018; 11:8773-8781. [PMID: 30584335 PMCID: PMC6287527 DOI: 10.2147/ott.s188836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Breast cancer stem cells (BCSCs) have been regarded as the key factor for treatment failure in breast cancer. The abnormal expression of miRNAs plays a significant role in different tumor types. However, the role of miR-1 in breast cancer remains poorly understood. The purpose of this study was to evaluate the effects of miR-1 on the proliferation and apoptosis of BCSCs. Materials and methods CD44+/CD24−/low/epithelial-specific antigen+ BCSCs were isolated by flow cytometry. Real-time PCR and Western blotting were used to determine the expression of miRNAs, mRNAs, and epithelial–mesenchymal transition (EMT)-related genes. Cell proliferation and apoptosis were measured using the Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate flow cytometry, respectively. Luciferase reporter assay was used to verify whether miR-1 targeted ecotropic virus integration-1 (EVI-1). The role of miR-1 in breast cancer in vivo was evaluated using BCSCs xenograft mouse models. Results In this study, we demonstrated that miR-1 was significantly downregulated in breast cancer tissues compared to the adjacent non-tumor tissues. The luciferase reporter assay verified that EVI-1 was a direct target of miR-1, and upregulation of miR-1 negatively correlated with the expression of EVI-1 in BCSCs at both the transcriptional and posttranslational levels. Furthermore, overexpression of miR-1 inhibited BCSCs proliferation and promoted apoptosis, which was reversed by the overexpression of EVI-1. In addition, we demonstrated that aberrant expression of miR-1 could regulate EMT-related genes in BCSCs. Finally, immunohistochemical staining demonstrated that EVI-1 expression was decreased in BCSCs tumors following intra-tumoral miR-1 agomir treatment compared to the control group. Conclusion miR-1 can negatively regulate the expression of EVI-1 and, thus, affect BCSCs proliferation, apoptosis, and EMT-related markers. Taken together, these findings demonstrate that miR-1 could be employed as a therapeutic strategy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| | - Tianyi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dongning He
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
14
|
Pourteimoor V, Paryan M, Mohammadi‐Yeganeh S. microRNA as a systemic intervention in the specific breast cancer subtypes with C‐MYC impacts; introducing subtype‐based appraisal tool. J Cell Physiol 2018; 233:5655-5669. [DOI: 10.1002/jcp.26399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Mahdi Paryan
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Samira Mohammadi‐Yeganeh
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: The CRISPR generation. Eur J Cancer 2018; 93:10-18. [PMID: 29433054 DOI: 10.1016/j.ejca.2018.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023]
Abstract
The hallmarks of cancer were proposed as a logical framework to guide research efforts that aim to understand the molecular mechanisms and derive treatments for this highly complex disease. Recent technological advances, including comprehensive sequencing of different cancer subtypes, have illuminated how genetic and epigenetic alterations are associated with specific hallmarks of cancer. However, as these associations are purely descriptive, one particularly exciting development is the emergence of genome editing technologies, which enable rapid generation of precise genetic and epigenetic modifications to assess the consequences of these perturbations on the cancer phenotype. The most recently developed of these tools, the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), consists of an RNA-guided endonuclease that can be repurposed to edit both genome and epigenome with high specificity, and facilitates the functional interrogation of multiple loci in parallel. This system has the potential to dramatically accelerate progress in cancer research, whether by modelling the genesis and progression of cancer in vitro and in vivo, screening for novel therapeutic targets, conducting functional genomics/epigenomics, or generating targeted cancer therapies. Here, we discuss CRISPR research on each of the ten hallmarks of cancer, outline potential barriers for its clinical implementation and speculate on the advances it may allow in cancer research in the near future.
Collapse
Affiliation(s)
- Colette Moses
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Benjamin Garcia-Bloj
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Medicine, P. Universidad Catolica de Chile, Santiago, Chile
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perth, Australia; Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, Harry Perkins Institute of Medical Research, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
16
|
Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther 2018; 182:1-14. [PMID: 28830839 DOI: 10.1016/j.pharmthera.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future.
Collapse
Affiliation(s)
- Dan-Dan Wu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Juan Song
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Tianjin Medical University, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Department of Immunology, Tianjin, China
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
17
|
Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2018; 7:60535-60554. [PMID: 27528034 PMCID: PMC5312401 DOI: 10.18632/oncotarget.11142] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
The aberrant epigenetic silencing of tumor suppressor genes (TSGs) plays a major role during carcinogenesis and regaining these dormant functions by engineering of sequence-specific epigenome editing tools offers a unique opportunity for targeted therapies. However, effectively normalizing the expression and regaining tumor suppressive functions of silenced TSGs by artificial transcription factors (ATFs) still remains a major challenge. Herein we describe novel combinatorial strategies for the potent reactivation of two class II TSGs, MASPIN and REPRIMO, in cell lines with varying epigenetic states, using the CRISPR/dCas9 associated system linked to a panel of effector domains (VP64, p300, VPR and SAM complex), as well as with protein-based ATFs, Zinc Fingers and TALEs. We found that co-delivery of multiple effector domains using a combination of CRISPR/dCas9 and TALEs or SAM complex maximized activation in highly methylated promoters. In particular, CRISPR/dCas9 VPR with SAM upregulated MASPIN mRNA (22,145-fold change) in H157 lung cancer cells, with accompanying re-expression of MASPIN protein, which led to a concomitant inhibition of cell proliferation and induction of apoptotic cell death. Consistently, CRISPR/dCas9 VP64 with SAM upregulated REPRIMO (680-fold change), which led to phenotypic reprogramming in AGS gastric cancer cells. Altogether, our results outlined novel sequence-specific, combinatorial epigenome editing approaches to reactivate highly methylated TSGs as a promising therapy for cancer and other diseases.
Collapse
|
18
|
Goubert D, Koncz M, Kiss A, Rots MG. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing. Methods Mol Biol 2018; 1767:395-415. [PMID: 29524148 DOI: 10.1007/978-1-4939-7774-1_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Epigenetic editing is a promising approach to modulate the local chromatin environment of target genes with the ultimate goal of stable gene expression reprogramming. Epigenetic editing tools minimally consist of a DNA-binding domain and an effector domain. The CRISPR/dCas9 platform, where mutations in the nuclease domains render the Cas9 protein inactive, is widely used to guide epigenetic effectors to their intended genomic loci. Its flexible nature, simple use, and relatively low cost have revolutionized the research field of epigenetic editing. Although effective expression modulation is readily achieved, only a few studies have addressed the maintenance of the induced effects on endogenous loci. Here, we describe a detailed protocol to engineer cells that stably express the CRISPR/dCas9-effectors. The protocol involves modification of published dCas9-based plasmid vectors for easy transfer of the effector domain between the vector designed for transient transfection and the vector used for establishing cell lines stably expressing the dCas9-effector fusion protein. Transient transfection of the dCas9-effector-producing cells with sgRNA-expressing plasmids allows studying of the maintenance of epigenetic editing. Targeting various genes in different chromatin contexts and/or co-targeting multiple CRISPR/dCas9-effectors can be used to unravel rules underlying maintained gene expression reprogramming.
Collapse
Affiliation(s)
- Désirée Goubert
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical CenterGroningen, Groningen, The Netherlands
| | - Mihály Koncz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Antal Kiss
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Marianne G Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018. [PMID: 29524128 DOI: 10.1007/978-1-4939-7774-1_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
| | - Colette Moses
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mahira Arooj
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Nedlands, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
20
|
Abstract
Genome targeting has quickly developed as one of the most promising fields in science. By using programmable DNA-binding platforms and nucleases, scientists are now able to accurately edit the genome. These DNA-binding tools have recently also been applied to engineer the epigenome for gene expression modulation. Such epigenetic editing constructs have firmly demonstrated the causal role of epigenetics in instructing gene expression. Another focus of epigenome engineering is to understand the order of events of chromatin remodeling in gene expression regulation. Groundbreaking approaches in this field are beginning to yield novel insights into the function of individual chromatin marks in the context of maintaining cellular phenotype and regulating transient gene expression changes. This review focuses on recent advances in the field of epigenetic editing and highlights its promise for sustained gene expression reprogramming.
Collapse
|
21
|
Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 2016; 7:12284. [PMID: 27506838 PMCID: PMC4987519 DOI: 10.1038/ncomms12284] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Histone modifications reflect gene activity, but the relationship between cause and consequence of transcriptional control is heavily debated. Recent developments in rewriting local histone codes of endogenous genes elucidated instructiveness of certain marks in regulating gene expression. Maintenance of such repressive epigenome editing is controversial, while stable reactivation is still largely unexplored. Here we demonstrate sustained gene re-expression using two types of engineered DNA-binding domains fused to a H3K4 methyltransferase. Local induction of H3K4me3 is sufficient to allow re-expression of silenced target genes in various cell types. Maintenance of the re-expression is achieved, but strongly depends on the chromatin microenvironment (that is, DNA methylation status). We further identify H3K79me to be essential in allowing stable gene re-expression, confirming its role in epigenetic crosstalk for stable reactivation. Our approach uncovers potent epigenetic modifications to be directly written onto genomic loci to stably activate any given gene.
Collapse
|
22
|
Xie M, Dart DA, Owen S, Wen X, Ji J, Jiang W. Insights into roles of the miR-1, -133 and -206 family in gastric cancer (Review). Oncol Rep 2016; 36:1191-8. [PMID: 27349337 DOI: 10.3892/or.2016.4908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.
Collapse
Affiliation(s)
- Meng Xie
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xianzi Wen
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Haidian, Beijing 100142, P.R. China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
23
|
Irani S. miRNAs Signature in Head and Neck Squamous Cell Carcinoma Metastasis: A Literature Review. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2016; 17:71-83. [PMID: 27284551 PMCID: PMC4885676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
STATEMENT OF THE PROBLEM Head and neck cancers include epithelial tumors arising in the oral cavity, pharynx, larynx, paranasal sinuses, and nasal cavity. Metastasis is a hallmark of cancer. MicroRNAs (miRNAs) are endogenous small non-coding RNAs involved in cell proliferation, development, differentiation and metastasis. It is believed that miRNA alterations correlate with initiation and progression of cancer cell proliferation or inhibition of tumorigenesis. Moreover, miRNAs have different roles in development, progression, and metastasis of head and neck squamous cell carcinoma (HNSCC). Altered expression of miRNAs could be novel molecular biomarkers for the definite diagnosis of cancer, metastatic site, cancer stage, and its progression. PURPOSE The purpose of this review was to provide a comprehensive literature review of the role of miRNAs in head and neck cancer metastasis. SEARCH STRATEGY A relevant English literature search in PubMed, ScienceDirect, and Google Scholar was performed. The keywords 'miRNA', 'head and neck', and 'cancer' were searched in title and abstract of publications; limited from 1990 to 2015. The inclusion criterion was the role of miRNAs in cancer metastasis. The exclusion criterion was the other functions of miRNAs in cancers. Out of 15221 articles, the full texts of 442 articles were retrieved and only 133 articles met the inclusion criteria. CONCLUSION Despite the advances in cancer treatment, the mortality rate of HNSCC is still high. The potential application of miRNAs for cancer therapy has been demonstrated in many studies; miRNAs function as either tumor suppressor or oncogene. The recognition of metastamir and their targets may lead to better understanding of HNSCC oncogenesis, and consequently, development of new therapeutic strategies which is a necessity in cancer treatment. Development of therapeutic agents based on miRNAs is a promising target.
Collapse
Affiliation(s)
- Soussan Irani
- Dental Research Center, Dept. of Oral and Maxillofacial Pathology, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran. and Lecturer at Griffith University, Gold Coast, Australia
| |
Collapse
|
24
|
Sorolla A, Ho D, Wang E, Evans CW, Ormonde CFG, Rashwan R, Singh R, Iyer KS, Blancafort P. Sensitizing basal-like breast cancer to chemotherapy using nanoparticles conjugated with interference peptide. NANOSCALE 2016; 8:9343-53. [PMID: 27089946 DOI: 10.1039/c5nr08331a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting.
Collapse
Affiliation(s)
- A Sorolla
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - D Ho
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - E Wang
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - C W Evans
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - C F G Ormonde
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - R Rashwan
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - R Singh
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - K Swaminathan Iyer
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - P Blancafort
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
25
|
Jin C, Yan B, Lu Q, Lin Y, Ma L. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol 2015; 37:7383-94. [PMID: 26676637 DOI: 10.1007/s13277-015-4605-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that long noncoding RNAs (lncRNAs) have a critical role in the regulation of cancer progression and metastasis. However, little is known about the mechanism through which metastasis-associated lung adencarcinoma transcript 1 (MALAT1) exerts its oncogenic activity, and the interaction between MALAT1 and microRNA remains largely unknown. In the present study, we reported that MALAT1 was upregulated in triple-negative breast cancer (TNBC) tissues. Knockdown of MALAT1 inhibited proliferation, motility, and increased apoptosis in vitro. In vivo study indicated that knockdown of MALAT1 inhibited tumor growth and metastasis. Patients with high MALAT1 expression had poorer overall survival time than those with low MALAT1 expression. In addition, our findings demonstrate a reciprocal negative control relationship between MALAT1 and miR-1: downregulation of MALAT1 increased expression of microRNA-1 (miR-1), while overexpression of miR-1 decreased MALAT1 expression. Slug was identified as a direct target of miR-1. We proposed that MALAT1 exerted its function through the miR-1/slug axis. In summary, we proposed that MALAT1 may be a target for TNBC therapy.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Cell Line, Tumor
- DNA, Recombinant/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- RNA/genetics
- RNA Interference
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- Snail Family Transcription Factors/biosynthesis
- Snail Family Transcription Factors/genetics
- Snail Family Transcription Factors/physiology
- Specific Pathogen-Free Organisms
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/mortality
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Chuan Jin
- The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bingchuan Yan
- The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Lu
- The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Lin
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Lei Ma
- The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
miR-363 induces transdifferentiation of human kidney tubular cells to mesenchymal phenotype. Clin Exp Nephrol 2015; 20:394-401. [DOI: 10.1007/s10157-015-1167-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022]
|
27
|
Liu R, Li J, Lai Y, Liao Y, Liu R, Qiu W. Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int J Biol Macromol 2015; 81:491-7. [PMID: 26275461 DOI: 10.1016/j.ijbiomac.2015.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/11/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs exert their functions by mainly regulating coding genes or long non-coding RNA expression. In the present study, we reported that hsa-miR-1 was down-regulated in breast cancer tissues. Restoration of miR-1 in breast cancer cells inhibited proliferation, motility and increased apoptosis in vitro. MiR-1 functioned as a tumor suppressor by targeting K-RAS and MALAT1. In addition, the effects of up-regulation of miR-1 were similar to that of silencing K-RAS and MALAT1 in breast cancer cells. In vivo study indicated that restoration of miR-1 inhibited tumor growth and metastasis. Patients with low miR-1 expression had poorer overall survival time than those with high miR-1 expression. Our findings emphasized the potential role of miR-1 as tumor suppressive miRNA in breast cancer.
Collapse
Affiliation(s)
- Ruilei Liu
- Department of Thyroid & Breast Surgery, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, China
| | - Jie Li
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yet-sen University, Guangzhou, China
| | - Yuanhui Lai
- Department of Vascular & Thyroid & Breast Surgery, The First Affiliated Hospital of Sun Yet-sen University, Guangzhou, China
| | - Yi Liao
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yet-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yet-sen University, Guangzhou, China
| | - Wanshou Qiu
- Department of Thyroid & Breast Surgery, The Third Affiliated Hospital of Sun Yet-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Huisman C, van der Wijst MGP, Falahi F, Overkamp J, Karsten G, Terpstra MM, Kok K, van der Zee AGJ, Schuuring E, Wisman GBA, Rots MG. Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs. Epigenetics 2015; 10:384-96. [PMID: 25830725 DOI: 10.1080/15592294.2015.1034415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Epigenetic silencing of tumor suppressor genes (TSGs) is considered a significant event in the progression of cancer. For example, EPB41L3, a potential biomarker in cervical cancer, is often silenced by cancer-specific promoter methylation. Artificial transcription factors (ATFs) are unique tools to re-express such silenced TSGs to functional levels; however, the induced effects are considered transient. Here, we aimed to improve the efficiency and sustainability of gene re-expression using engineered zinc fingers fused to VP64 (ZF-ATFs) or DNA methylation modifiers (ZF-Tet2 or ZF-TDG) and/or by co-treatment with epigenetic drugs [5-aza-2'-deoxycytidine or Trichostatin A (TSA)]. The EPB41L3-ZF effectively bound its methylated endogenous locus, as also confirmed by ChIP-seq. ZF-ATFs reactivated the epigenetically silenced target gene EPB41L3 (∼ 10-fold) in breast, ovarian, and cervical cancer cell lines. Prolonged high levels of EPB41L3 (∼ 150-fold) induction could be achieved by short-term co-treatment with epigenetic drugs. Interestingly, for otherwise ineffective ZF-Tet2 or ZF-TDG treatments, TSA facilitated re-expression of EPB41L3 up to twofold. ATF-mediated re-expression demonstrated a tumor suppressive role for EPB41L3 in cervical cancer cell lines. In conclusion, epigenetic reprogramming provides a novel way to improve sustainability of re-expression of epigenetically silenced promoters.
Collapse
|
29
|
Lionello M, Blandamura S, Staffieri C, Tealdo G, Giacomelli L, Marchese Ragona R, de Filippis C, Staffieri A, Marioni G. Postoperative radiotherapy for laryngeal carcinoma: the prognostic role of subcellular Maspin expression. Am J Otolaryngol 2015; 36:184-9. [PMID: 25459315 DOI: 10.1016/j.amjoto.2014.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/15/2014] [Indexed: 01/21/2023]
Abstract
PURPOSE Reported outcomes of postoperative radiotherapy (PORT) for laryngeal squamous cell carcinoma (LSCC) have varied and sometimes been disappointing. The aim of the present preliminary study was to investigate whether a given immunohistochemical pattern of Maspin expression in laryngeal carcinoma cells could be prognostically associated with response to PORT. MATERIALS AND METHODS Thirty-two consecutive patients treated for LSCC with primary surgery and PORT. The subcellular (nuclear vs non-nuclear) pattern of Maspin expression was assessed immunohistochemically on LSCC surgical specimens and analyzed in relation to recurrence rate (RR) and disease-free survival (DFS). RESULTS A non-nuclear Maspin expression was found in 23 of 32 cases (72%), and all recurrences (17 cases) occurred in this subgroup of patients. A non-nuclear Maspin expression was strongly associated with recurrence [p = 0.0002, hazard ratio (HR) 5.58] and a shorter DFS (p = 0.0004) after PORT for LSCC. Even in N0 patients, a non-nuclear Maspin expression was associated with a significantly higher RR (p = 0.04, HR 1.42) and a shorter DFS (p = 0.02). Among the common clinic-pathological parameters considered, only N stage showed a trend toward an association with prognosis in terms of DFS (p = 0.08). CONCLUSION Assessing subcellular patterns of Maspin expression in LSCC specimens could identify patients less likely to respond to PORT, who might benefit from combined chemo-radiotherapy to improve the efficacy of adjuvant protocols.
Collapse
Affiliation(s)
- Marco Lionello
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy.
| | | | - Claudia Staffieri
- Department of Neurosciences, Otolaryngology Section, Treviso Branch, University of Padova, Treviso, Italy
| | - Giulia Tealdo
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | | | | | - Cosimo de Filippis
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Alberto Staffieri
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gino Marioni
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| |
Collapse
|
30
|
Expression and localization of maspin in cervical cancer and its role in tumor progression and lymphangiogenesis. Arch Gynecol Obstet 2014; 289:373-82. [PMID: 23959090 PMCID: PMC3894428 DOI: 10.1007/s00404-013-2988-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
Objectives Cervical cancer is the most common malignant tumor in female reproductive tract and primarily metastasizes through the lymphatic system that will affect prognosis of patients. Maspin, a member of the serine protease inhibitors (serpins) super family, has recently been indicated as a tumor suppressor in many cancers. In this study, we investigated the clinical significance of maspin expression, especially the subcellular location of maspin and its functional role in progression and lymphangiogenesis, in cervical squamous cell carcinoma. Methods Labelled streptavidin biotin method (LSAB) was used to determine cytoplasmic and nuclear maspin expressions, respectively, in 13 cases of normal cervix, 15 cases of cervical intraepithelial neoplasia grade 3 (CIN3), 62 cases of squamous cell carcinoma (SCC) of the uterine cervix, and 13 cases of pelvic lymphatic nodes which were all positive lymphatic nodes in our selected cancer cases. LSAB is also used to detect podoplanin which is used for counting density of lymphatic microvessels (LMVD). The clinical significance of subcellular maspin expression and the relationship between maspin expression and LMVD in cervical cancer are analyzed. Results Both cytoplasmic and nuclear maspin expressions in SCC were significantly weaker than those of normal cervix and CIN3. Nuclear maspin expression showed a peak in CIN3 and then dropped in SCC. Declined maspin expression was correlated with later clinical stage, increased LMVD, and lymphatic metastasis. Conclusions Our results suggest that subcellular location of maspin expression is a potential predictive factor in tumor progression and in patients’ prognosis of cervical cancer, and maspin plays a suppression role in lymphangiogenesis and metastasis.
Collapse
|
31
|
Beltran AS, Graves LM, Blancafort P. Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Oncogene 2014; 33:4767-77. [PMID: 24141779 PMCID: PMC4184217 DOI: 10.1038/onc.2013.422] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/08/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
Basal-like breast tumors are aggressive cancers associated with high proliferation and metastasis. Chemotherapy is currently the only treatment option; however, resistance often occurs resulting in recurrence and patient death. Some extremely aggressive cancers are also associated with hypoxia, inflammation and high leukocyte infiltration. Herein, we discovered that the neural-specific transcription factor, Engrailed 1 (EN1), is exclusively overexpressed in these tumors. Short hairpin RNA (shRNA)-mediated knockdown of EN1 triggered potent and selective cell death. In contrast, ectopic overexpression of EN1 in normal cells activated survival pathways and conferred resistance to chemotherapeutic agents. Exogenous expression of EN1 cDNA reprogrammed the breast epithelial cells toward a long-lived, neural-like phenotype displaying dopaminergic markers. Gene expression microarrays demonstrated that the EN1 cDNA altered transcription of a high number of inflammatory molecules, notably chemokines and chemokine receptors, which could mediate prosurvival pathways. To block EN1 function, we engineered synthetic interference peptides (iPeps) comprising the EN1-specific sequences that mediate essential protein-protein interactions necessary for EN1 function and an N-terminal cell-penetrating peptide/nuclear localization sequence. These EN1-iPeps rapidly mediated a strong apoptotic response in tumor cells overexpressing EN1, with no toxicity to normal or non EN1-expressing cells. Delivery of EN1-iPeps into basal-like cancer cells significantly decreased the fifty percent inhibitory concentrations (IC50) of chemotherapeutic drugs routinely used to treat breast cancer. Lastly, matrix-assisted laser desorption/ionization-time of flight mass spectrometry and immunoprecipitation assays demonstrated that EN1-iPeps captured targets involved in transcriptional and post-transcriptional regulation. Importantly, the EN1-iPeps bound the glutamyl-prolyl tRNA synthetase (EPRS) target, which has been associated with the transcript-specific translational control of inflammatory proteins and activation of amino-acid stress pathways. This work unveils EN1 as an activator of intrinsic inflammatory pathways associated with prosurvival in basal-like breast cancer. We further build upon these results and describe the engineering of iPeps targeting EN1 (EN1-iPeps) as a novel and selective therapeutic strategy to combat these lethal forms of breast cancer.
Collapse
Affiliation(s)
- A S Beltran
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L M Graves
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - P Blancafort
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cancer Epigenetics Group, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
32
|
Role of microRNA-1 in human cancer and its therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:428371. [PMID: 24949449 PMCID: PMC4052501 DOI: 10.1155/2014/428371] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
While the mechanisms of human cancer development are not fully understood, evidence of microRNA (miRNA, miR) dysregulation has been reported in many human diseases, including cancer. miRs are small noncoding RNA molecules that regulate posttranscriptional gene expression by binding to complementary sequences in the specific region of gene mRNAs, resulting in downregulation of gene expression. Not only are certain miRs consistently dysregulated across many cancers, but they also play critical roles in many aspects of cell growth, proliferation, metastasis, apoptosis, and drug resistance. Recent studies from our group and others revealed that miR-1 is frequently downregulated in various types of cancer. Through targeting multiple oncogenes and oncogenic pathways, miR-1 has been demonstrated to be a tumor suppressor gene that represses cancer cell proliferation and metastasis and promotes apoptosis by ectopic expression. In this review, we highlight recent findings on the aberrant expression and functional significance of miR-1 in human cancers and emphasize its significant values for therapeutic potentials.
Collapse
|
33
|
Machowska M, Wachowicz K, Sopel M, Rzepecki R. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells. BMC Cancer 2014; 14:142. [PMID: 24581141 PMCID: PMC3975902 DOI: 10.1186/1471-2407-14-142] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022] Open
Abstract
Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear maspin on breast cancer cells was statistically significant in comparison to cytoplasmic maspin. Conclusions Our results suggest that nuclear maspin localization may be a prognostic factor in breast cancer and may have a strong therapeutic potential in gene therapy. Moreover, these data provide a new insight into the role of cytoplasmic and nuclear fractions of maspin in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, 63/77 Przybyszewskiego Street, 51-148 Wrocław, Poland.
| |
Collapse
|
34
|
Mosakhani N, Räty R, Tyybäkinoja A, Karjalainen-Lindsberg ML, Elonen E, Knuutila S. MicroRNA profiling in chemoresistant and chemosensitive acute myeloid leukemia. Cytogenet Genome Res 2013; 141:272-6. [PMID: 23689423 DOI: 10.1159/000351219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNA (miRNA) deregulation is associated with progression and treatment outcome in various types of cancers. To identify miRNAs related to therapeutic response, we applied an miRNA microarray followed by PCR verification of 33 available diagnostic bone marrow core biopsies from 33 acute myeloid leukemia patients including 15 chemoresistant and 18 chemosensitive patients. We found 3 significantly upregulated miRNAs, miR-363, miR-532-5p and miR-342-3p, related to therapeutic response (q < 0.05). Further validation of miR-532-5p and miR-363 expression by quantitative RT-PCR confirmed microarray analysis results. Genes targeted by miR-363 include RGS17 and HIPK3, both reported to be associated with drug response.
Collapse
Affiliation(s)
- N Mosakhani
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
35
|
Huisman C, Wisman GBA, Kazemier HG, van Vugt MATM, van der Zee AGJ, Schuuring E, Rots MG. Functional validation of putative tumor suppressor gene C13ORF18 in cervical cancer by Artificial Transcription Factors. Mol Oncol 2013; 7:669-79. [PMID: 23522960 DOI: 10.1016/j.molonc.2013.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/03/2013] [Accepted: 02/21/2013] [Indexed: 01/04/2023] Open
Abstract
C13ORF18 is frequently hypermethylated in cervical cancer but not in normal cervix and might serve as a biomarker for the early detection of cervical cancer in scrapings. As hypermethylation is often observed for silenced tumor suppressor genes (TSGs), hypermethylated biomarker genes might exhibit tumor suppressive activities upon re-expression. Epigenetic drugs are successfully exploited to reverse TSG silencing, but act genome-wide. Artificial Transcription Factors (ATFs) provide a gene-specific approach for re-expression of silenced genes. Here, we investigated the potential tumor suppressive role of C13ORF18 in cervical cancer by ATF-induced re-expression. Five zinc finger proteins were engineered to bind the C13ORF18 promoter and fused to a strong transcriptional activator. C13ORF18 expression could be induced in cervical cell lines: ranging from >40-fold in positive (C13ORF18-unmethylated) cells to >110-fold in negative (C13ORF18-methylated) cells. Re-activation of C13ORF18 resulted in significant cell growth inhibition and/or induction of apoptosis. Co-treatment of cell lines with ATFs and epigenetic drugs further enhanced the ATF-induced effects. Interestingly, re-activation of C13ORF18 led to partial demethylation of the C13ORF18 promoter and decreased repressive histone methylation. These data demonstrate the potency of ATFs to re-express and potentially demethylate hypermethylated silenced genes. Concluding, we show that C13ORF18 has a TSG function in cervical cancer and may serve as a therapeutic anti-cancer target. As the amount of epimutations in cancer exceeds the number of gene mutations, ATFs provide promising tools to validate hypermethylated marker genes as therapeutic targets.
Collapse
Affiliation(s)
- Christian Huisman
- Dept. of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sun Q, Zhang J, Cao W, Wang X, Xu Q, Yan M, Wu X, Chen W. Dysregulated miR-363 affects head and neck cancer invasion and metastasis by targeting podoplanin. Int J Biochem Cell Biol 2013; 45:513-20. [PMID: 23246488 DOI: 10.1016/j.biocel.2012.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterised by an elevated capacity for tumour invasion and lymph node metastasis and the cause remains to be determined. Recent studies suggest that microRNAs can regulate the evolution of malignant behaviours by regulating multiple target genes. In this study, we have first confirmed that miR-363 is down-regulated in HNSCC tissues with lymph node metastasis and cell lines with highly invasive capacity. We used bioinformatics, cellular and molecular methods to predict and prove that miR-363 directly targeted to podoplanin (PDPN) and caused up-regulation of PDPN in HNSCC. MSP assay showed that DNA promoter methylation was involved in silencing the miR-363 in HNSCC. Furthermore, we provided evidence to demonstrate that PDPN dysregulation caused by down-regulation of miR-363 contributes to HNSCC invasion and metastasis. These data reveal a key role of miR-363-PDPN in HNSCC metastasis and support biological and clinical links between miR-363-PDPN and HNSCC.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Juárez-Moreno K, Erices R, Beltran AS, Stolzenburg S, Cuello-Fredes M, Owen GI, Qian H, Blancafort P. Breaking through an epigenetic wall: re-activation of Oct4 by KRAB-containing designer zinc finger transcription factors. Epigenetics 2013; 8:164-76. [PMID: 23314702 DOI: 10.4161/epi.23503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gene Oct4 encodes a transcription factor critical for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition, improper re-activation of Oct4 contributes to oncogenic processes. Herein, we describe a novel designer zinc finger protein (ZFP) capable of upregulating the endogenous Oct4 promoter in a panel of breast and ovarian cell lines carrying a silenced gene. In some ovarian tumor lines, the ZFP triggered a strong reactivation of Oct4, with levels of expression comparable with exogenous Oct4 cDNA delivery. Surprisingly, the reactivation of Oct4 required a KRAB domain for effective upregulation of the endogenous gene. While KRAB-containing ZFPs are traditionally described as transcriptional repressors, our results suggest that these proteins could, in certain genomic contexts, function as potent activators and, thus, outline an emerging novel function of KRAB-ZFPs. In addition, we document a novel ZFP that could be used for the epigenetic reprograming of cancer cells.
Collapse
Affiliation(s)
- Karla Juárez-Moreno
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Blancafort P, Jin J, Frye S. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2012; 83:563-76. [PMID: 23150486 DOI: 10.1124/mol.112.080697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epigenomic era has revealed a well-connected network of molecular processes that shape the chromatin landscape. These processes comprise abnormal methylomes, transcriptosomes, genome-wide histone post-transcriptional modifications patterns, histone variants, and noncoding RNAs. The mapping of these processes in large scale by chromatin immunoprecipitation sequencing and other methodologies in both cancer and normal cells reveals novel therapeutic opportunities for anticancer intervention. The goal of this minireview is to summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. These approaches include the use of novel small molecule inhibitors of epigenetic processes specifically deregulated in cancer cells and the design of engineered proteins able to stably reprogram the epigenetic code in cancer cells in a way that is similar to normal cells.
Collapse
Affiliation(s)
- Pilar Blancafort
- School of Anatomy, Physiology, and Human Biology, M309, the University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.
| | | | | |
Collapse
|
39
|
Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 2012; 23:644-50. [DOI: 10.1016/j.copbio.2012.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 12/18/2022]
|
40
|
Spencer P, Fry RC, Kisby GE. Unraveling 50-Year-Old Clues Linking Neurodegeneration and Cancer to Cycad Toxins: Are microRNAs Common Mediators? Front Genet 2012; 3:192. [PMID: 23060898 PMCID: PMC3460211 DOI: 10.3389/fgene.2012.00192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/09/2012] [Indexed: 01/19/2023] Open
Abstract
Recognition of overlapping molecular signaling activated by a chemical trigger of cancer and neurodegeneration is new, but the path to this discovery has been long and potholed. Six conferences (1962–1972) examined the puzzling neurotoxic and carcinogenic properties of a then-novel toxin [cycasin: methylazoxymethanol (MAM)-β-d-glucoside] in cycad plants used traditionally for food and medicine on Guam where a complex neurodegenerative disease plagued the indigenous population. Affected families showed combinations of amyotrophic lateral sclerosis (ALS), parkinsonism (P), and/or a dementia (D) akin to Alzheimer’s disease (AD). Modernization saw declining disease rates on Guam and remarkable changes in clinical phenotype (ALS was replaced by P-D and then by D) and in two genetically distinct ALS-PDC-affected populations (Kii-Japan, West Papua-Indonesia) that used cycad seed medicinally. MAM forms DNA lesions – repaired by O6-methylguanine methyltransferase (MGMT) – that perturb mouse brain development and induce malignant tumors in peripheral organs. The brains of young adult MGMT-deficient mice given a single dose of MAM show DNA lesion-linked changes in cell-signaling pathways associated with miRNA-1, which is implicated in colon, liver, and prostate cancers, and in neurological disease, notably AD. MAM is metabolized to formaldehyde, a human carcinogen. Formaldehyde-responsive miRNAs predicted to modulate MAM-associated genes in the brains of MGMT-deficient mice include miR-17-5p and miR-18d, which regulate genes involved in tumor suppression, DNA repair, amyloid deposition, and neurotransmission. These findings marry cycad-associated ALS-PDC with colon, liver, and prostate cancer; they also add to evidence linking changes in microRNA status both to ALS, AD, and parkinsonism, and to cancer initiation and progression.
Collapse
Affiliation(s)
- Peter Spencer
- Global Health Center, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
41
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Lara H, Wang Y, Beltran AS, Juárez-Moreno K, Yuan X, Kato S, Leisewitz AV, Cuello Fredes M, Licea AF, Connolly DC, Huang L, Blancafort P. Targeting serous epithelial ovarian cancer with designer zinc finger transcription factors. J Biol Chem 2012; 287:29873-86. [PMID: 22782891 DOI: 10.1074/jbc.m112.360768] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers.
Collapse
Affiliation(s)
- Haydee Lara
- Department of Pharmacology, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, Strahl BD, Blancafort P. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012; 40:6725-40. [PMID: 22561374 PMCID: PMC3413152 DOI: 10.1093/nar/gks360] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the ‘undruggable’ characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.
Collapse
Affiliation(s)
- Sabine Stolzenburg
- Epigenetic Editing, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|