1
|
Ramírez-Salinas G, Rosales-Hernandéz MC, Correa-Basurto J, Guerrero-González I, Hernández-Castro SS, Martinez-Archundia M. In silico study suggests potential drugs that target CD151 to treat breast cancer and glioblastoma. J Comput Chem 2024; 45:2666-2677. [PMID: 39082832 DOI: 10.1002/jcc.27439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 10/11/2024]
Abstract
Recently tetraspanin CD151 has been identified as an important biological target involved in metastatic processes which include cell adhesion, tumor progression processes, and so forth in different types of cancers, such as breast cancer and glioblastoma. This in Silico study considered 1603 compounds from the Food and Drug Administration database, after performing an ADMET analysis; we selected 853 ligands, which were used for docking analysis. The most promising ligands were selected from docking studies, based on two criteria: (a) showed lowest affinity to the CD151 protein and (b) they interact with the QRD motif, located in the second extracellular loop. Furthermore, we investigate the stability of the protein-ligand complexes through MD simulations as well as free energy MM-PBSA calculations. From these results, loperamide and glipizide were identified as the best evaluated drugs. We suggest an in vitro analysis is needed to confirm our in silico prediction studies.
Collapse
Affiliation(s)
- Gema Ramírez-Salinas
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernandéz
- Laboratorio de Biofísica y Biocatálisis, Sección de estudios de Posgrado e Investigación Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Issac Guerrero-González
- Laboratorio de Biofísica y Biocatálisis, Sección de estudios de Posgrado e Investigación Escuela superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Selene Saraí Hernández-Castro
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marlet Martinez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological. Innovation, SEPI-Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S, Zhang C. Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 2024; 30:200. [PMID: 39239742 PMCID: PMC11411235 DOI: 10.3892/mmr.2024.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Collapse
Affiliation(s)
- Kexin Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyi Li
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
3
|
Wei S, Tan J, Huang X, Zhuang K, Qiu W, Chen M, Ye X, Wu M. Metastasis and basement membrane-related signature enhances hepatocellular carcinoma prognosis and diagnosis by integrating single-cell RNA sequencing analysis and immune microenvironment assessment. J Transl Med 2024; 22:711. [PMID: 39085893 PMCID: PMC11293133 DOI: 10.1186/s12967-024-05493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and second leading cause of cancer-related deaths worldwide. The heightened mortality associated with HCC is largely attributed to its propensity for metastasis, which cannot be achieved without remodeling or loss of the basement membrane (BM). Despite advancements in targeted therapies and immunotherapies, resistance and limited efficacy in late-stage HCC underscore the urgent need for better therapeutic options and early diagnostic biomarkers. Our study aimed to address these gaps by investigating and evaluating potential biomarkers to improve survival outcomes and treatment efficacy in patients with HCC. METHOD In this study, we collected the transcriptome sequencing, clinical, and mutation data of 424 patients with HCC from The Cancer Genome Atlas (TCGA) and 240 from the International Cancer Genome Consortium (ICGC) databases. We then constructed and validated a prognostic model based on metastasis and basement membrane-related genes (MBRGs) using univariate and multivariate Cox regression analyses. Five immune-related algorithms (CIBERSORT, QUANTISEQ, MCP counter, ssGSEA, and TIMER) were then utilized to examine the immune landscape and activity across high- and low-risk groups. We also analyzed Tumor Mutation Burden (TMB) values, Tumor Immune Dysfunction and Exclusion (TIDE) scores, mutation frequency, and immune checkpoint gene expression to evaluate immune treatment sensitivity. We analyzed integrin subunit alpha 3 (ITGA3) expression in HCC by performing single-cell RNA sequencing (scRNA-seq) analysis using the TISCH 2.0 database. Lastly, wound healing and transwell assays were conducted to elucidate the role of ITGA3 in tumor metastasis. RESULTS Patients with HCC were categorized into high- and low-risk groups based on the median values, with higher risk scores indicating worse overall survival. Five immune-related algorithms revealed that the abundance of immune cells, particularly T cells, was greater in the high-risk group than in the low-risk group. The high-risk group also exhibited a higher TMB value, mutation frequency, and immune checkpoint gene expression and a lower tumor TIDE score, suggesting the potential for better immunotherapy outcomes. Additionally, scRNA-seq analysis revealed higher ITGA3 expression in tumor cells compared with normal hepatocytes. Wound healing scratch and transwell cell migration assays revealed that overexpression of the MBRG ITGA3 enhanced migration of HCC HepG2 cells. CONCLUSION This study established a direct molecular correlation between metastasis and BM, encompassing clinical features, tumor microenvironment, and immune response, thereby offering valuable insights for predicting clinical outcomes and immunotherapy responses in HCC.
Collapse
Affiliation(s)
- Shijia Wei
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524000, China
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xueshan Huang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Kai Zhuang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Weijian Qiu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Mei Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524000, China
| | - Xiaoxia Ye
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, 524000, China.
| |
Collapse
|
4
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
5
|
Fernández-Palanca P, Payo-Serafín T, Méndez-Blanco C, San-Miguel B, Tuñón MJ, González-Gallego J, Mauriz JL. Neuropilins as potential biomarkers in hepatocellular carcinoma: a systematic review of basic and clinical implications. Clin Mol Hepatol 2023; 29:293-319. [PMID: 36726054 PMCID: PMC10121286 DOI: 10.3350/cmh.2022.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
El Kharbili M, Cario M, Béchetoille N, Pain C, Boucheix C, Degoul F, Masse I, Berthier-Vergnes O. Tspan8 Drives Melanoma Dermal Invasion by Promoting ProMMP-9 Activation and Basement Membrane Proteolysis in a Keratinocyte-Dependent Manner. Cancers (Basel) 2020; 12:cancers12051297. [PMID: 32455575 PMCID: PMC7281247 DOI: 10.3390/cancers12051297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most aggressive skin cancer with an extremely challenging therapy. The dermal-epidermal junction (DEJ) degradation and subsequent dermal invasion are the earliest steps of melanoma dissemination, but the mechanisms remain elusive. We previously identified Tspan8 as a key actor in melanoma invasiveness. Here, we investigated Tspan8 mechanisms of action during dermal invasion, using a validated skin-reconstruct-model that recapitulates melanoma dermal penetration through an authentic DEJ. We demonstrate that Tspan8 is sufficient to induce melanoma cells’ translocation to the dermis. Mechanistically, Tspan8+ melanoma cells cooperate with surrounding keratinocytes within the epidermis to promote keratinocyte-originated proMMP-9 activation process, collagen IV degradation and dermal colonization. This concurs with elevated active MMP-3 and low TIMP-1 levels, known to promote MMP-9 activity. Finally, a specific Tspan8-antibody reduces proMMP-9 activation and dermal invasion. Overall, our results provide new insights into the role of keratinocytes in melanoma dermal colonization through a cooperative mechanism never reported before, and establish for the first time the pro-invasive role of a tetraspanin family member in a cell non-autonomous manner. This work also displays solid arguments for the use of Tspan8-blocking antibodies to impede early melanoma spreading and therefore metastasis.
Collapse
Affiliation(s)
- Manale El Kharbili
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Muriel Cario
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, F-33000 Bordeaux, France; (M.C.); (C.P.)
- AquiDerm, University Bordeaux, F-33076 Bordeaux, France
| | | | - Catherine Pain
- National Reference Center for Rare Skin Disease, Department of Dermatology, University Hospital, INSERM 1035, F-33000 Bordeaux, France; (M.C.); (C.P.)
| | - Claude Boucheix
- INSERM U935, Université Paris-Sud, F-94800 Villejuif, France;
| | - Françoise Degoul
- INSERM U1240, Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France;
| | - Ingrid Masse
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSERM U1052, Université de Lyon, F-69008 Lyon, France
- Correspondence:
| | - Odile Berthier-Vergnes
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR5534, Université de Lyon, F-69003 Lyon, France; (M.E.K.); (O.B.-V.)
- US7INSERM /UMS3453 UCBL SFR Santé Lyon-Est, F-69372 Lyon, France
| |
Collapse
|
9
|
Liu LX, Lu JC, Zeng HY, Cai JB, Zhang PF, Guo XJ, Huang XY, Dong RZ, Zhang C, Kang Q, Zou H, Zhang XY, Zhang L, Zhang XW, Ke AW, Shi GM. Mortalin stabilizes CD151-depedent tetraspanin-enriched microdomains and implicates in the progression of hepatocellular carcinoma. J Cancer 2019; 10:6199-6206. [PMID: 31772652 PMCID: PMC6856732 DOI: 10.7150/jca.36301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/14/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Our previous studies showed that tetraspanin CD151 was implicated in the progression of hepatocellular carcinoma (HCC), mainly depending on the formation of functional complexes with molecular partners, including Mortalin. In this study, we investigate the role of mortalin in CD151-depedent progression of HCCs. Methods: Immunofluorescent staining, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to investigate the expression and location of CD151 and Mortalin in four HCC cell lines with different metastatic ability. The relationship between Mortalin and CD151 was investigated in HCCLM3 cells using co-immunoprecipitation. CD151 or Mortalin expression in HCC cells were modified by transfection technology. Wound-healing assay and Transwell assay were used to assay the role of CD151 and Mortalin in cell migration and invasion. The expression and prognostic implication of CD151 and Mortalin in 187 cases of HCCs were analyzed. Results: Expression of Mortalin in HCC cells was positive related to their metastatic ability and its tendency was in line with the expression of CD151. Immunofluorescent staining showed that Mortalin was located in cytoplasm, while positive staining for CD151 was observed in cytoplasm and membrane of HCC cells. co-IP revealed that Mortalin formed a complex with CD151. Down-regulation of Mortalin induced a moderate decreased CD151 protein, but not CD151 mRNA, while inhibition of CD151 did not influence the expression of Mortalin at the level of both protein and mRNA. Interference of Mortalin significantly inhibited the invasion and migration of HCC cells with high CD151 expression and partially restored the invasion and migration of HCC cells induced by CD151 over-expression. Clinically, high Mortalin expression correlated with malignant phenotype of HCC, such as microvascular invasion (p=0.017) and tumor diameter (p=0.001). HCC patients expressing high Mortalin were tend to have higher expression of CD151. HCC patients expressing high level of CD151 showed the poorer prognosis in a Mortalin-dependent manner. Conclusions: Mortalin maybe stabilize of the structure of CD151-dependent tetraspanin-enriched microdomains and implicate in the progression of HCC.
Collapse
Affiliation(s)
- Li-Xin Liu
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China.,Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jia-Bin Cai
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Peng-Fei Zhang
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Xiao-Jun Guo
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Rui-Zhao Dong
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Chi Zhang
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Hao Zou
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Xin-Yu Zhang
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Lu Zhang
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Xiao-Wen Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Liver transplantation of Liver Cancer Institute & Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
| |
Collapse
|
10
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Zeng P, Wang YH, Si M, Gu JH, Li P, Lu PH, Chen MB. Tetraspanin CD151 as an emerging potential poor prognostic factor across solid tumors: a systematic review and meta-analysis. Oncotarget 2018; 8:5592-5602. [PMID: 27888619 PMCID: PMC5354932 DOI: 10.18632/oncotarget.13532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023] Open
Abstract
Tetraspanin CD151, also known as PETA-3 or SFA-1, has been reported to predict prognosis in various solid tumors. Yet, the results of these studies remained inconclusive. Here, we performed this meta-analysis of relevant studies published on the topic to quantitatively evaluate the clinicopathological significance of CD151 in solid tumors. The relevant articles were identified via searching the PubMed, Web of Science and Embase database. The pooled hazard ratios (HRs) and corresponding 95% confidence intervals (CI) of overall survival (OS) and disease-free survival (DFS) were calculated to evaluate the prognostic value of CD151 expression in patients with solid tumors. A total of 19 studies involving 4, 270 participants were included in the study, we drew the conclusion that CD151 overexpression was associated with statistically significant poor OS (pooled HR = 1.498, 95% CI = 1.346-1.667, P<0.001) and poor DFS (pooled HR = 1.488, 95% CI = 1.314-1.685, P<0.001). Furthermore, the subgroup analysis revealed that the associations between CD151 overexpression and the outcome endpoints (OS or TTP) were significant within the Asian region and European, as well in patients with breast cancer or gastric cancer. Taken together, the incorporative HR showed CD151 overexpression was associated with poor survival in human solid tumors. CD151 could be a valuable prognosis biomarker or a potential therapeutic target of solid tumors.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yin-Hua Wang
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China.,Department of Oncology, Changshu Second People's Hospital Affiliated to Yangzhou University, Changshu 215500, Jiangsu Province, China
| | - Meng Si
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Li
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Pei-Hua Lu
- Department of Medical Oncology, Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
12
|
Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, Cai JB, Huang XY, Wu C, Zhang L, Kang Q, Liu LX, Xie N, Shen ZZ, Hu MY, Cao Y, Qiu SJ, Sun HC, Zhou J, Fan J, Shi GM. Generation and characterization of a tetraspanin CD151/integrin α6β1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget 2017; 7:6314-22. [PMID: 26756217 PMCID: PMC4868758 DOI: 10.18632/oncotarget.6833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/29/2015] [Indexed: 01/17/2023] Open
Abstract
Our previous studies revealed that tetraspanin CD151 plays multiple roles in the progression of hepatocellular carcinoma (HCC) by forming a functional complex with integrin α6β1. Herein, we generated a monoclonal antibody (mAb) that dissociates the CD151/integrin α6β1 complex, and we evaluated its bioactivity in HCCs. A murine mAb, tetraspanin CD151 (IgG1, called CD151 mAb 9B), was successfully generated against the CD151-integrin α6β1 binding site of CD151 extracellular domains. Co-immunoprecipitation using CD151 mAb 9B followed by Western blotting detected a 28 kDa protein. Both immunofluorescent and immunohistochemical staining showed a good reactivity of CD151 mAb 9B in the plasma membrane and cytoplasm of HCC cells, as well as in liver cells. In vitro assays demonstrated that CD151 mAb 9B could inhibit neoangiogenesis and both the mobility and the invasiveness of HCC cells. An in vivo assay showed that CD151 mAb 9B inhibited tumor growth potential and HCC cells metastasis. We successfully produced a CD151 mAb 9B targeting the CD151/integrin α6β1-binding domain, which not only can displayed good reactivity to the CD151 antigen but also prevented tumor progression in HCC.
Collapse
Affiliation(s)
- Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Peng-Fei Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ying-Hao Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Zhao-Ru Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Chi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Chao Wu
- Department of Hepatobiliary Surgery, Subei People's Hospital, Yangzhou University, Yangzhou 225000, China
| | - Lu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Li-Xin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Nan Xie
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Zao-Zhuo Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Mei-Yu Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Hunan 410008, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Hui-Chuan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Kang Q, Cai JB, Dong RZ, Liu LX, Zhang C, Zhang PF, Zou H, Xie N, Zhang L, Zhang XY, Song ZJ, Dong ZR, Hu MY, Huang XY, Zhang XW, Ke AW, Shi GM. Mortalin promotes cell proliferation and epithelial mesenchymal transition of intrahepatic cholangiocarcinoma cells in vitro. J Clin Pathol 2017; 70:677-683. [PMID: 28096273 DOI: 10.1136/jclinpath-2016-204251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
AIMS The prognosis of patients with intrahepatic cholangiocarcinoma (ICC) remains poor in terms of overall survival (OS) and recurrence rate. Mortalin, a stress chaperone, has been reported to be involved in carcinogenesis and metastasis. However, its role in ICC has not been defined. METHODS Mortalin expression in tumour samples from patients with ICC was examined by Western blot and immunohistochemistry, and correlation between its expression and clinicopathological features was assessed. In addition, invasion, migration proliferation and apoptosis, and the expression of epithelial-mesenchymal transition (EMT)-related markers in ICC cells were assessed after mortalin depletion. Finally, the prognostic significance of mortalin in patients with ICC was further evaluated by Kaplan-Meier and Cox regression analysis. RESULTS We provide evidence that expression of mortalin in human ICC tissues is higher than that in matched peritumoural tissues. The interference of mortalin expression inhibited the proliferation and invasion of ICC cells in vitro. Mechanistically, inhibition of mortalin expression in ICC cells upregulated E-cadherin expression and decreased vimentin and snail expression. Clinically, a high level of mortalin in ICC samples was associated with loss of E-cadherin, and increased expression of vimentin and snail. Patients with ICC and high mortalin expression had a shorter OS and a higher recurrence rate. Multivariate analysis revealed that mortalin overexpression was an independent prognostic indicator for patients with ICC. CONCLUSIONS Mortalin may promote cell proliferation and invasion via induction of EMT of ICC cells. A high level of mortalin may be used as a prognostic biomarker and therapeutic target for patients with ICC.
Collapse
Affiliation(s)
- Qiang Kang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China.,Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Rui-Zhao Dong
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Li-Xin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Chi Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Peng-Fei Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Hao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Nan Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Lu Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xin-Yu Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zheng-Ji Song
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Zhao-Ru Dong
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Mei-Yu Hu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiao-Yong Huang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiao-Wen Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Ai-Wu Ke
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
14
|
Tilghman J, Schiapparelli P, Lal B, Ying M, Quinones-Hinojosa A, Xia S, Laterra J. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia 2016; 18:185-98. [PMID: 26992919 PMCID: PMC4796809 DOI: 10.1016/j.neo.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) represent tumor-propagating cells with stem-like characteristics (stemness) that contribute disproportionately to GBM drug resistance and tumor recurrence. Understanding the mechanisms supporting GSC stemness is important for developing therapeutic strategies for targeting GSC-dependent oncogenic mechanisms. Using GBM-derived neurospheres, we identified the cell surface tetraspanin family member CD151 as a novel regulator of glioma cell stemness, GSC self-renewal capacity, migration, and tumor growth. CD151 was found to be overexpressed in GBM tumors and GBM neurospheres enriched in GSCs. Silencing CD151 inhibited neurosphere forming capacity, neurosphere cell proliferation, and migration and attenuated the expression of markers and transcriptional drivers of the GSC phenotype. Conversely, forced CD151 expression promoted neurosphere self-renewal, cell migration, and expression of stemness-associated transcription factors. CD151 was found to complex with integrins α3, α6, and β1 in neurosphere cells, and blocking CD151 interactions with integrins α3 and α6 inhibited AKT phosphorylation, a downstream effector of integrin signaling, and impaired sphere formation and neurosphere cell migration. Additionally, targeting CD151 in vivo inhibited the growth of GBM neurosphere-derived xenografts. These findings identify CD151 and its interactions with integrins α3 and α6 as potential therapeutic targets for inhibiting stemness-driving mechanisms and stem cell populations in GBM.
Collapse
Affiliation(s)
- Jessica Tilghman
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Paula Schiapparelli
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bachuchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Huang YK, Fan XG, Qiu F. TM4SF1 Promotes Proliferation, Invasion, and Metastasis in Human Liver Cancer Cells. Int J Mol Sci 2016; 17:ijms17050661. [PMID: 27153056 PMCID: PMC4881487 DOI: 10.3390/ijms17050661] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Transmembrane 4 superfamily member 1 (TM4SF1) is a member of tetraspanin family, which mediates signal transduction events regulating cell development, activation, growth and motility. Our previous studies showed that TM4SF1 is highly expressed in liver cancer. HepG2 cells were transfected with TM4SFl siRNA and TM4SF1-expressing plasmids and their biological functions were analyzed in vitro and in vivo. HepG2 cells overexpressing TM4SF1 showed reduced apoptosis and increased cell migration in vitro and enhanced tumor growth and metastasis in vivo, whereas siRNA-mediated silencing of TM4SF1 had the opposite effect. TM4SF1 exerts its effect by regulating a few apoptosis- and migration-related genes including caspase-3, caspase-9, MMP-2, MMP-9 and VEGF. These results indicate that TM4SF1 is associated with liver tumor growth and progression, suggesting that TM4SF1 may be a potential target for treatment of liver cancer in future.
Collapse
Affiliation(s)
- Yu-Kun Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
- Key Laboratory of Viral Hepatitis, Central South University, Changsha 410008, China.
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
- Key Laboratory of Viral Hepatitis, Central South University, Changsha 410008, China.
| | - Fu Qiu
- Department of General Surgery, Xiangya Third Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
16
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
17
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
18
|
Abstract
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell-cell adhesion, cell-ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jiaping Zhang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| | - Yuesheng Huang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| |
Collapse
|
19
|
Ubiquitin-protein ligase E3C promotes glioma progression by mediating the ubiquitination and degrading of Annexin A7. Sci Rep 2015; 5:11066. [PMID: 26067607 PMCID: PMC4464076 DOI: 10.1038/srep11066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/13/2015] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-protein ligase E3C (UBE3C) belongs to the E3 ligase enzyme family and implicates in the ubiquitin-proteasome pathway, thus regulates physiological and cancer-related processes. Here, we investigated the expression and roles of UBE3C in glioma. We demonstrated that UBE3C was overexpressed in glioma tissues and cell lines. Inhibition of UBE3C expression in glioma cells significantly decreased cell migration and invasion in vitro. Mechanistically, we disclosed that UBE3C physically interacted with and ubiquitinated tumor suppressor gene annexin A7 (ANXA7), resulting in ubiquitination and degradation of ANXA7. Our results also revealed that increased UBE3C expression was accompanied by a reduction in ANXA7 protein expression in glioma tissues, but not ANXA7 mRNA. Importantly, the inhibition of ANXA7 expression in gliomas cells with UBE3C interference could rescue the cell invasion. Clinically, UBE3C overexpression significantly correlated with high-grade tumors (p < 0.05), poor overall survival, and early tumor recurrence. Thus, our data reveal that high UBE3C expression contributes to glioma progression by ubiquitination and degradation of ANXA7, and thus presents a novel and promising target for glioma therapy.
Collapse
|
20
|
Kumari S, Devi G, Badana A, Dasari VR, Malla RR. CD151-A Striking Marker for Cancer Therapy. BIOMARKERS IN CANCER 2015; 7:7-11. [PMID: 25861224 PMCID: PMC4372031 DOI: 10.4137/bic.s21847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 12/28/2022]
Abstract
Cluster of differentiation 151 (CD151) is a member of the mammalian tetraspanin family, which is involved in diverse functions such as maintaining normal cellular integrity, cell-to-cell communication, wound healing, platelet aggregation, trafficking, cell motility and angiogenesis. CD151 also supports de novo carcinogenesis in human skin squamous cell carcinoma (SCC) and tumor metastasis. CD151 interacts with α3β1 and α6β4 integrins through palmitoylation where cysteine plays an important role in the association of CD151 with integrins and non-integrin proteins. Invasion and metastasis of cancer cells were diminished by decreasing CD151 association with integrins. CD151 functions at various stages of cancer, including metastatic cascade and primary tumor growth, thus reinforcing the importance of CD151 as a target in oncology. The present review highlights the role of CD151 in tumor metastasis and its importance in cancer therapy.
Collapse
Affiliation(s)
- Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Gayatri Devi
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Anil Badana
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, College of Medicine, University of Illinois, Peoria, IL, USA
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
21
|
Li P, Zeng H, Qin J, Zou Y, Peng D, Zuo H, Liu Z. Effects of tetraspanin CD151 inhibition on A549 human lung adenocarcinoma cells. Mol Med Rep 2014; 11:1258-65. [PMID: 25351816 DOI: 10.3892/mmr.2014.2774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Tetraspanin protein CD151 is overexpressed in a wide variety of cancer types, including lung cancer, and is closely associated with metastasis and poor prognosis of carcinoma. To investigate whether knockdown of CD151 expression can inhibit the malignant biological behavior of lung adenocarcinoma (LAC), RNA interference technology (RNAi) was used to silence CD151 expression in the A549 LAC cell line. Specific small interfering RNA (siRNA) for targeting human endogenous CD151 were delivered into A549 cells in order to examine the effects on cell proliferation, survival, migration, invasion and colony formation. The expression levels of CD151 were assayed by western blotting, proliferation was evaluated by MTT method and apoptosis was determined by flow cytometry. The invasive and metastatic ability of A549 cells was investigated by wound healing and Boyden chamber assays. Colony formation analysis was used to determine the A549 cell growth properties. Finally, the expression of phosphorylated FAK, PI3K‑AKT, MEK‑Erk1/2, MMPs, and VEGF was detected by western blotting. The results demonstrated that CD151‑siRNA significantly decreased the expression level of CD151 in A549 cells. Reduced CD151 expression in A549 cells lead to the inhibition of cellular proliferation, migration, invasion and colony formation and an enhancement of apoptosis. Furthermore, the expression of tumor development‑related proteins, including FAK, PI3K‑AKT, MEK‑ERK1/2MAPK as well as the expression of MMP9 and VEGF, were restrained. Taken together, the present study has shown that CD151 expression is essential for LAC progression. Thus, knockdown CD151 expression by targeted siRNA could inhibit the related downstream intercellular signaling pathways, and this may provide a novel gene therapy for patients with LAC.
Collapse
Affiliation(s)
- Pengcheng Li
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hesong Zeng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jin Qin
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanlin Zou
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dan Peng
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Houjuan Zuo
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengxiang Liu
- Departments of Cardiology and Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Lett 2014; 351:64-71. [PMID: 24944078 DOI: 10.1016/j.canlet.2014.05.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/24/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
Abstract
The androgen receptor (AR) has been shown to promote the initiation and development of hepatocellular carcinoma (HCC) during the early stage of the disease process and to suppress HCC cell invasion during the later stages of the disease. The mechanisms governing these dual yet opposite roles have yet to be elucidated. Using carcinogen-induced HCC in vivo mouse models and the in vitro human HCC cell line SKhep1, we found that knockout of AR in primary HCC cells led to a decrease in HCC cell focal adhesion capacity compared to cells from wildtype mice. Similar results were obtained after adding functional AR into human HCC SKhep1 cells. Further analysis revealed that the role AR plays in adhesion of HCC cells is governed, at least in part, by its ability to up-regulate β1-integrin and activate the PI3K/AKT pathway. We also found that AR-β1-integrin-mediated cell adhesion suppresses cell migration. Those findings indicate that the AR-β1-integrin-PI3K/AKT signaling pathway might play a role in the bimodal function of AR on cell adhesion and migration at the cellular level.
Collapse
|
23
|
Glycosylation of the laminin receptor (α3β1) regulates its association with tetraspanin CD151: Impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp Cell Res 2014; 322:249-64. [PMID: 24530578 DOI: 10.1016/j.yexcr.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022]
Abstract
Invasion is the key requirement for cancer metastasis. Expression of β1,6 branched N-oligosaccharides associated with invasiveness, has been shown to promote adhesion to most Extra Cellular Matrix (ECM) and basement membrane (BM) components and haptotactic motility on ECM (fibronectin) but attenuate it on BM (laminin/matrigel) components. To explore the mechanism and to evaluate the significance of these observations in terms of invasion, highly invasive B16BL6 cells were compared with the parent (B16F10) cells or B16BL6 cells in which glycosylation was inhibited. We demonstrate that increased adhesion to matrix components induced secretion of MMP-9, important for invasion. Further, both the subunits of integrin receptors for fibronectin (α5β1) and laminin (α3β1) on B16BL6 cells were shown to carry these oligosaccharides. Although, glycosylation of receptors had no effect on their surface expression, it had same differential effect on cell spreading as haptotactic motility. Absence of correlation between invasiveness and expression of most tetraspanins (major regulators of integrin function) hints at an alternate mechanism. Here we show that glycosylation on α3β1 impedes its association with CD151 and modulates spreading and motility of cells apparently to reach an optimum required for invasion of BM. These studies demonstrate the complex mechanisms used by cancer cells to be invasive.
Collapse
|
24
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
25
|
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. J Transl Med 2014; 94:41-51. [PMID: 24247563 DOI: 10.1038/labinvest.2013.136] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
Originally identified as a molecular organizer of interacting proteins into tetraspanin-enriched microdomains, the tetraspanin CD151 has now been shown to be involved in tumour progression. Increasing evidence emerging from in vitro, in vivo and clinical analyses implicates this tetraspanin in supporting growth of various types of tumours at different levels. It affects both cell autonomous behavior and communication with neighboring cells and the microenvironment. CD151 regulates post-adhesion events, that is, cell spreading, migration and invasion including subsequent intravasation and formation of metastasis. Present on both neoplastic and endothelial cells, CD151 is engaged in promotion of tumour neovascularization. The molecular mechanism of CD151 in cancer is based on its ability to organize distribution and function of interacting proteins, ie, laminin-binding integrins (α3β1, α6β1 and α6β4), receptors for growth factors (HGFR, EGFR and TGF-β1R) and matrix metalloproteinases (MMP-7, MMP-2 and MMP-9), which indicates its importance in disease development. Results of clinical analyses of CD151 expression in different types of cancer and a large number of in vivo models demonstrate its impact on tumour growth and invasion and implicate CD151 as a valuable diagnostic and prognostic marker as well as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Grudowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
26
|
Ha SY, Do IG, Lee J, Park SH, Park JO, Kang WK, Choi MG, Lee JH, Bae JM, Kim S, Kim KM, Sohn TS. CD151 overexpression is associated with poor prognosis in patients with pT3 gastric cancer. Ann Surg Oncol 2013; 21:1099-106. [PMID: 24306658 DOI: 10.1245/s10434-013-3339-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration. Overexpression of CD151 has been reported in several cancers and controls MET-dependent neoplastic growth by enhancing receptor signaling. However, association of CD151 overexpression with MET or tumor progression has not been reported in gastric cancer. MATERIALS AND METHODS We conducted immunohistochemical analysis of CD151 overexpression in 491 pT3 gastric carcinomas and analyzed the relationship with MET overexpression and prognostic significance. RESULTS CD151 was highly expressed in 119 gastric carcinomas (24.2 %) and was significantly associated with higher pN stages. Patients with CD151-positive gastric cancer showed shorter overall (p = 0.003) and disease-free survival (p = 0.001) compared with patients with CD151-negative gastric carcinoma. CD151 overexpression was an independent prognostic factor for overall survival [hazard ration (HR) 1.335; 95 % CI 1.005-1.775; p = 0.046] and disease-free survival (HR 1.903; 95 % CI 1.348-2.685; p < 0.001). Co-overexpression of CD151 and MET was observed in 30 (6.1 %) gastric cancers and was more frequent in advanced pN stages than in other groups. Moreover, co-overexpression of CD151 and MET was a strong independent prognostic factor for overall survival (HR 3.163; 95 % CI 1.958-5.108; p < 0.001) and disease-free survival (HR 3.834; 95 % CI 2.145-6.852; p < 0.001). CONCLUSION CD151 overexpression is an independent prognostic factor and could be a potential molecular therapeutic target in patients with advanced gastric cancers. Further studies are needed to establish the biological significance of CD151/MET co-overexpression and the potential of targeting both molecules as a therapeutic strategy.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Zhao GY, Ding JY, Lu CL, Lin ZW, Guo J. The overexpression of 14-3-3ζ and Hsp27 promotes non–small cell lung cancer progression. Cancer 2013; 120:652-63. [PMID: 24804299 DOI: 10.1002/cncr.28452] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The 14-3-3ζ protein has been identified as a putative oncoprotein in several cancers, including non–small cell lung cancer (NSCLC). However, the mechanisms underlying its functions have not been well defined. METHODS Proteins that interact with 14-3-3ζ were identified through coimmunoprecipitation and mass spectrometry in NSCLC cells. The interaction of 14-3-3ζ with these molecular partners and their roles in the invasiveness and metastasis of NSCLC cells were assayed through specific disruptions in the 14-3-3ζ signaling network. In addition, the clinical implications of this 14-3-3ζ complex were examined in samples from patients with NSCLC. RESULTS Among the identified proteins that interacted with 14-3-3ζ, there were 230 proteins in 95-D cells, 181 proteins in 95-C cells, and 203 proteins in A549 cells; and 16 interacting proteins were identified that overlapped between all cell lines. Further studies revealed 14-3-3ζ complexes within the heat shock protein 27 (Hsp27) protein and demonstrated that the interference of Hsp27 or 14-3-3ζ inhibited the invasion and metastasis of NSCLC cells. The invasive and metastatic capabilities of cells with both Hsp27 and 14-3-3ζ interference could be completely restored only by Hsp27 and 14-3-3ζ complementary DNA transfection and not by either agent alone. Clinically, the postoperative 5-year overall survival (OS) in patients who had high expression of both 14-3-3ζ and Hsp27 was significantly lower than the 5-year OS in patients who had low expression of both 14-3-3ζ and Hsp27 (26.5% vs 59.7%, respectively). Multivariate analysis revealed that the combined expression of 14-3-3ζ and Hsp27 was an independent prognostic indicator of OS(P = .036). CONCLUSIONS The current data suggest that the combined expression of 14-3-3ζ and Hsp27 may be a biomarker for predicting survival in patients with NSCLC, and this combination may have potential as a therapeutic target for NSCLC.
Collapse
|
29
|
Wu YB, Huang YS, Xu YP, Sun YF, Yu DL, Zhang XQ, Long X, Zhu SQ, Zhou JL, Xu JJ. A high level of TM4SF5 is associated with human esophageal cancer progression and poor patient survival. Dig Dis Sci 2013; 58:2623-33. [PMID: 23633159 DOI: 10.1007/s10620-013-2690-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/13/2013] [Indexed: 12/09/2022]
Abstract
PURPOSE We investigated expression of TM4SF5 and its involvement in human esophageal cancer (HEC). METHODS We analyzed TM4SF5 expression in normal esophageal epithelial cells (HEEC), in four HEC cell lines, and in 20 HEC clinical tissue samples and matched nontumor samples. The effect of TM4SF5 on HEC cell proliferation and metastasis and invasion was assessed, and the relationship between TM4SF5 and integrin β1 was determined. Finally, TM4SF5 and integrin β1 expression were further examined by use of immunohistochemistry (IHC) and tissue microarray analysis, and the prognostic use of TM4SF5 and integrin β1 in HEC was evaluated. RESULTS TM4SF5 was more highly expressed in HEC cells and in HEC tissues than in HEEC and matched nontumor tissues. Down-regulation of TM4SF5 in KYSE150 cells reduced cell proliferation and metastasis and invasion whereas metastasis and invasion by KYSE510 increased after TM4SF5 cDNA transfection. In HEC cells, TM4SF5 formed a complex with integrin β1, and interference with integrin β1 in KYSE510-TM4SF5 cells markedly inhibited cell invasion on laminin 5. Our findings also showed that TM4SF5 and integrin β1 overexpression correlated with low differentiation and high stage (p<0.05, respectively). Postoperative 5-year overall survival of patients with TM4SF5low and/or integrin β1low was higher than for patients with TM4SF5high and/or integrin β1high. Multivariate analysis demonstrated that TM4SF5 and integrin β1 co-overexpression was an independent prognostic marker for HEC. CONCLUSION TM4SF5 is positively associated with HEC invasiveness. The combination of TM4SF5 with integrin β1 could potentially serve as a novel marker for predicting HEC prognosis.
Collapse
Affiliation(s)
- Yong-bing Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fei Y, Wang J, Liu W, Zuo H, Qin J, Wang D, Zeng H, Liu Z. CD151 promotes cancer cell metastasis via integrins α3β1 and α6β1 in vitro. Mol Med Rep 2012; 6:1226-30. [PMID: 23007325 DOI: 10.3892/mmr.2012.1095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
Abstract
CD151 is a member of the tetraspanin family that is implicated as a promoter of the tumor metastasis of malignant cells. Tetraspanins form membrane complexes with integrins. In the present study, we constructed a CD151-AAA mutant to assess the roles of Rac, cdc42 and phospho-Rac/cdc42 (P-Rac/cdc42) and the effects of CD151‑integrin complexes on the proliferation, migration and invasion of HepG2 cells. The pAAV-CD151 and pAAV‑CD151‑AAA mutant plasmids were constructed and used to transiently transfect HepG2 cells using the Qiagen Attractene transfection reagent. Following transfection, the expression of CD151 was determined by western blotting. A cell proliferation assay was performed using the cell counting kit-8 (CCK-8) method, cell migration was assessed by a cell wound-healing assay and cell invasion was evaluated in microchemotaxis chambers using FBS as the chemotactic stimulus. The potential involvement of various signaling pathways was explored using relevant antibodies. The association between CD151 and integrins was evaluated by immunoblotting analysis. We found that CD151 promoted cell proliferation, migration and chemotaxis and increased P-Rac/cdc42 activity. The CD151-AAA mutant had reduced cellular proliferation, migration and invasion compared with the CD151 mutant. Moreover, the CD151-AAA mutant abrogated the association between CD151 and integrins. These data suggest that CD151 forms complexes by interacting with integrins, particularly α3β1 and α6β1, and thereby affects the functioning of the HepG2 cells. The mechanism is possibly related to the Rac, cdc42 and P-Rac/cdc42 signaling pathways.
Collapse
Affiliation(s)
- Yujie Fei
- Department of Cardiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sala-Valdés M, Ailane N, Greco C, Rubinstein E, Boucheix C. Targeting tetraspanins in cancer. Expert Opin Ther Targets 2012; 16:985-97. [PMID: 22880813 DOI: 10.1517/14728222.2012.712688] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tetraspanins are a family of small proteins that cross the membrane four times and form complexes by interacting between themselves and with a variety of transmembrane and cytosolic proteins, building a network of interactions referred to as tetraspanin web or tetraspanin enriched microdomains (TEMs). These domains provide a signaling platform involved in many important cellular functions and malignant processes. AREAS COVERED The authors describe the methods and the rationale for targeting tetraspanins in the therapy of cancer in this review. EXPERT OPINION Targeting tetraspanins in cancer may be a promising therapy due to the importance of tetraspanins in several steps of tumor formation, communication with the environment, dissemination, and metastasis.
Collapse
Affiliation(s)
- Mónica Sala-Valdés
- André Lwoff Institute, Inserm U1004, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, Villejuif 94800, France.
| | | | | | | | | |
Collapse
|
32
|
Kohn KW, Zeeberg BR, Reinhold WC, Sunshine M, Luna A, Pommier Y. Gene expression profiles of the NCI-60 human tumor cell lines define molecular interaction networks governing cell migration processes. PLoS One 2012; 7:e35716. [PMID: 22570691 PMCID: PMC3343048 DOI: 10.1371/journal.pone.0035716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/20/2012] [Indexed: 12/14/2022] Open
Abstract
Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes.
Collapse
Affiliation(s)
- Kurt W Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Huang XY, Shi GM, Devbhandari RP, Ke AW, Wang Y, Wang XY, Wang Z, Shi YH, Xiao YS, Ding ZB, Dai Z, Xu Y, Jia WP, Tang ZY, Fan J, Zhou J. Low level of low-density lipoprotein receptor-related protein 1 predicts an unfavorable prognosis of hepatocellular carcinoma after curative resection. PLoS One 2012; 7:e32775. [PMID: 22427881 PMCID: PMC3299691 DOI: 10.1371/journal.pone.0032775] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/30/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC). METHODS LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specific chaperone, receptor-associated protein (RAP), the role of LRP1 in the migration and invasion of HCC cells was assessed in vivo and in vitro, and the expression of matrix metalloproteinase (MMP) 9 in cells and the bioactivity of MMP9 in the supernatant were assayed. The expression and prognostic value of LRP1 were investigated in 327 HCC specimens. RESULTS Low LRP1 expression was associated with poor HCC prognosis, with low expression independently related to shortened overall survival and increased tumor recurrence rate. Expression of LRP1 in non-recurrent HCC samples was significantly higher than that in early recurrent samples. LRP1 expression in HCC cell lines was inversely correlated with their metastatic potential. After inhibition of LRP1, low-metastatic SMCC-7721 cells showed enhanced migration and invasion and increased expression and bioactivity of MMP9. Correlation analysis showed a negative correlation between LRP1 and MMP9 expression in HCC patients. The prognostic value of LRP1 expression was validated in the independent data set. CONCLUSIONS LRP1 modulated the level of MMP9 and low level of LRP1 expression was associated with aggressiveness and invasiveness in HCCs. LRP1 offered a possible strategy for tumor molecular therapy.
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, People's Republic of China,
| | - Guo-Ming Shi
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | | | - Ai-Wu Ke
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Yuwei Wang
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Xiao-Ying Wang
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Zheng Wang
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Yong-Sheng Xiao
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Zhen-Bin Ding
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Zhi Dai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Yang Xu
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhao-You Tang
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
| | - Jia Fan
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, People's Republic of China,
- * E-mail: (JF); (JZ)
| | - Jian Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Zhongshan Hospital, Shanghai, People's Republic of China
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, People's Republic of China,
- * E-mail: (JF); (JZ)
| |
Collapse
|
34
|
Bassani S, Cingolani LA. Tetraspanins: Interactions and interplay with integrins. Int J Biochem Cell Biol 2012; 44:703-8. [PMID: 22326999 DOI: 10.1016/j.biocel.2012.01.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/20/2012] [Accepted: 01/27/2012] [Indexed: 12/14/2022]
Abstract
Tetraspanins are small transmembrane proteins present on the cell surface of almost every eukaryotic cell. Through binding with other transmembrane and intracellular proteins, they regulate diverse cellular processes ranging from cell adhesion and motility to synapse formation and tumor progression. Here, we provide a brief overview of molecular, cellular and clinical studies to illustrate how the multiple functions of this fascinating family of molecules stem from their interplay with multiple molecular partners. In particular, we emphasize the special relationship between tetraspanins and the cell adhesion molecules integrins in regulating cell physiology in health and disease.
Collapse
Affiliation(s)
- Silvia Bassani
- CNR Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Pharmacology, University of Milan, Italy
| | | |
Collapse
|